
13 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

New Bin Packing Fast Lower Bounds / Crainic, T. G.; Perboli, Guido; Pezzuto, M; Tadei, Roberto. - In: COMPUTERS &
OPERATIONS RESEARCH. - ISSN 0305-0548. - STAMPA. - 34:11(2007), pp. 3439-3457. [10.1016/j.cor.2006.02.007]

Original

New Bin Packing Fast Lower Bounds

Publisher:

Published
DOI:10.1016/j.cor.2006.02.007

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1485018 since:

Elsevier

New Bin Packing Fast Lower Bounds

Teodor Gabriel Crainic
Département de management et technologie, U.Q.A.M.

and
Centre de recherche sur les transports, U. de Montréal

C.P. 6128, Succursale Centre-ville - H3C 3J7 Montral (QC) Canada

Guido Perboli ∗

Department of Control and Computer Engineering
Politecnico di Torino

Corso Duca degli Abruzzi, 24 - I-10129 Torino (Italy)
Tel: +39 011 5647097
Fax: +39 011 5647099

e-mail: guido.perboli@polito.it

Miriam Pezzuto
Department of Control and Computer Engineering

Politecnico di Torino
Corso Duca degli Abruzzi, 24 - I-10129 Torino (Italy)

Roberto Tadei
Department of Control and Computer Engineering

Politecnico di Torino
Corso Duca degli Abruzzi, 24 - I-10129 Torino (Italy)

∗ Corresponding Author

1

Abstract

In this paper, we address the issue of computing fast lower bounds
for the Bin Packing problem, i.e., bounds that have a computational
complexity dominated by the complexity of ordering the items by
non-increasing values of their volume. We introduce new classes of
fast lower bounds with improved asymptotic worst-case performance
compared to well-known results for similar computational effort. Ex-
perimental results on a large set of problem instances indicate that the
proposed bounds reduce both the deviation from the optimum and the
computational effort.
Keywords: Bin Packing, lower bounds

1 Introduction

Given a set of n items i, with volumes vi, i ∈ 1, ..., n, and containers of fixed
capacity V called bins, the Bin Packing (BP) problem consists in assigning
each item to a bin, such that: 1) the sum of the volumes of the items within
the same bin is not greater than the capacity of the bin; 2) the number of
used bins is minimal. The BP problem is known to be NP-hard [10].

The BP problem occurs as sub-problem in many other settings, including
multi-dimensional bin packing, strip packing, network design, circuit design,
and loading in flexible manufacturing systems. An important area of research
is thus dedicated to the development of bounding procedures that yield tight
bounds with limited computational effort. Fast Lower Bounds (BPFBs),
i.e., bounds that have a computational complexity dominated by the com-
plexity of ordering the items by non-increasing values of their volume, belong
to this category.

The goal and main contribution of this paper is to introduce Fast Lower
Bounds able to extend and outperform existing Fast Lower Bounds. The
performance of the new bounds is analyzed both theoretically, by determining
their asymptotic worst-case performance, and computationally by means of
an extensive set of tests.

It is indeed known that both measures are required to correctly character-
ize the behavior of lower bounds. Worst-case asymptotic analysis provides
an understanding of this behavior when the size of the problem instances
increases. But this analysis is not sufficient to completely characterize the
performance of a lower bound. Thus, for example, lower bounds for the BP
problem with worst-case ratio asymptotically approximated to 1 can theo-
retically be obtained in polynomial time, but the process cannot be applied
in practice for computational reasons (see [5] for further details). Moreover,
lower bounds with very different results in quality and computational effort
display the same asymptotic behavior [7].

The new Fast Lower Bounds are able to achieve an asymptotic worst-case
performance of at least 3/4 independently on the Fast Lower Bound they are
extending.

Moreover, experimental results indicate that one of the proposed lower
bound achieves the best results when compared to the other Fast Lower

2

Bounds, reducing both the deviation of the bound from the optimum and
the computational effort by a significant factor. These results are obtained
in particular for some hard-to-solve instances.

The paper is organized as follows. We recall existing lower bounds for
the BP problem in Section 2. Section 3 is dedicated to the introduction of
two new BPFBs. For each of them, we discuss the asymptotic worst-case
analysis in Section 4 and present the computational performance in Section
5. The Annex contains the pseudo-code description of the various procedures
presented in the paper.

2 Existing Lower Bounds for the BP Problem

Let us assume, without loss of generality, that the volume of item i, vi,
i ∈ 1, ..., n, is at most equal to the bin capacity V . One may then normalize
the volumes in the interval [0, 1], where 1 corresponds to the bin capacity V .
Define the following set of variables:

xij : binary variable that is equal to 1 if item i is assigned to bin j, 0
otherwise;

yj : binary variable that is equal to 1 if bin j contains at least one item,
0 otherwise.

The BP problem can then be formulated as follows:

min
n∑

j=1

yj (1)

n∑
i=1

vixij ≤ yj j = {1, ..., n} (2)

n∑
j=1

xij = 1 i = {1, ..., n} (3)

yj ∈ {0, 1} , ∀j (4)

xij ∈ {0, 1} , ∀i, ∀j. (5)

The objective function (1) minimizes the number of used bins. Con-
straints (2) enforce the bin capacity restrictions and force variables yj to
assume value 1 if at least one item i is assigned to bin j. Equations (3) force
to load each item into just one bin. In the following, we present existing lower
bounds and discuss their performance. We first introduce existing BPFBs
(Sub-section 2.1). We then present lower bounds characterized by heavier
computational complexity (Sub-section 2.2).

2.1 Fast Lower Bounds for the BP Problem

Elementary bounds can be derived from the continuous, Lagrangian, and
surrogate relaxations of the model (1) - (5).

3

Martello and Toth [15] proved that bounds obtained from the continuous
and surrogate relaxations are dominated by the lower bound

L1 (I) =

⌈
n∑

i=1

vi

⌉
. (6)

The bound L1 can be computed in O (n) and it has a worst-case perfor-
mance of 1

2
[15, 16]. The bound obtained from the Lagrangian relaxation of

constraints (2) is also dominated by L1 [15].
A tighter bound was obtained by focusing on the items with vi > 1

2

[15, 16]. The main idea is that, given a value ε ∈
[
0, 1

2

]
, the items with a

volume vi > 1− ε cannot be loaded together. Moreover, the authors suppose
that the items with volume vi < ε are used to completely fill the bins in which
the items with volume vi > 1 − ε are loaded. For uniformity of notation,
we report in the following the formulation of the bound given by Fekete and
Schepers in [9]:

L2(I) = max
ε∈[0, 1

2]
(L2(I, ε)) , (7)

L2(I, ε) = |{i ∈ I | vi > 1− ε}|+ L1 ({i ∈ I | ε ≤ vi ≤ 1− ε}) .

In [13] Haouaria and Gharbia show that in the formulation by Fekete and
Schepers the only relevant values of ε are ε ∈ V ′, where V ′ = {vi ∈ [0, 1/2]}∪
{1/2}.

The worst-case performance of L2 is 2
3

and it can be computed in O (n)
if the items are sorted by non-increasing volume.

Labbé, Laporte, and Mercure improved L2 [14]. Let us define I(a, b) =
{i ∈ I|a < vi ≤ b}. Their bound LLLM focuses on the items in I(1

3
, 1

2
) that

cannot be loaded together with the items in I(1
2
, 1).

The authors make use of an adapted First Fit Procedure [6] that first
assigns each item in I(1

2
, 1) to a different bin. The procedure then assigns

items with the smallest volumes to the bins with the smallest residual ca-
pacities. Let I3 be the set of items with volumes 1/3 < vi ≤ 1/2 which
cannot be assigned to a bin according to this procedure. Thus, they require
at least d|I3| /2e additional bins. Using the formalization given by Bourjolly
and Rebetez [3], the bound LLLM can be expressed as:

LLLM(I) = max
ε∈[0, 1

2]
{LLLM(I, ε)} (8)

LLLM(I, ε) = |I(1/2, 1)|+
⌈
|I3|
2

⌉
+ p(ε)

p(ε) = max

0,

∑

{ε≥vi≥1−ε}

vi −
∣∣∣∣I (

1

2
, 1− ε

)∣∣∣∣− ⌈
|I3|
2

⌉
 .

Bourjolly and Rebetez [3] proved that this bound has an asymptotic
worst-case ratio of 3

4
. LLLM can be computed in time O (n lg n) if the items

are unsorted and in O (n) if the items are sorted by non-increasing volumes.

4

A new class of BPFBs has been introduced by Fekete and Schepers [9].
It is based on the use of item volumes modified by Dual Feasible Functions.
A function u : [0, 1] −→ [0, 1] is called dual feasible if, given a finite set F
such that

∑
x∈F x ≤ 1, then

∑
x∈F u (x) ≤ 1. The authors also proved that,

given a lower bound of the BP problem, new lower bounds can be obtained
by applying the same lower bound on the volumes modified by one or more
dual feasible functions. Their bound, called L

∗(p)
FS , is defined as follows:

L
∗(p)
FS = max

{
L2 (I) , maxk=2,...,pL

(k)
FS (I)

}
,

where

L
(k)
FS (I) = max

ε∈[0, 12]
L1

(
u(k) ◦ U (ε) (I)

)
u(k)(x) : [0, 1] → [0, 1] , u(k)(x) =

{
x x (k + 1) ∈ N
bx(k+1)c

k
otherwise

U (ε)(x) : [0, 1] → [0, 1] , U (ε)(x) =

1 x > 1− ε
x ε ≤ x ≤ 1− ε
0 x < ε.

The dual feasible function u(k) maps, for a given value k, the volumes up to
2k+1 distinct values, while U (ε) is the expression (7) written as dual feasible
function.

Fekete and Schepers proved that L
∗(p)
FS has an asymptotic worst-case per-

formance of 3
4

for p ≥ 2 and can be computed in O (pn) if the items are
sorted by non-increasing volumes. Considering that p is a constant not re-
lated to the problem instance but fixed by the user, this bound can be con-
sidered O (n) when p is sufficiently small (e.g., p ≤ 100). Moreover, extensive
computational results show that p = 20 provides the best tradeoff between
computational efficiency and quality of solution.

2.2 Other Lower Bounds for the BP Problem

One of the tightest bounds for the BP problem, known as L3, has been
developed by Martello and Toth [15]. The authors use a reduction procedure
called MTRP to build the non-dominated bins in an optimal solution that
contains at most 3 items (if such bins exist). The corresponding items are
then removed and the L2 bound is applied on the remaining ones.

Consider an instance I of the BP problem where the items are sorted by
non-increasing volumes and define a Feasible Set (FS) as a set of items for
which the sum of volumes is not greater than the capacity of a bin. Then,
for a given item i, the maximum cardinality of the FSs that include i in an
optimal solution is

Fi,max = 1 +

{
0 vi + vN > 1

maxk∈I\{i}

{
k :

∑k
j=1 vN−j+1 ≤ 1− vi

}
otherwise.

The MTRP procedure is then based on the following dominance criteria:

5

D1 If F1,max = 1, then, there exists an optimal solution containing the FS
F = {v1}.

D2 If F1,max = 2 or ∃k : (v1 + vk) = 1, then, there exists an optimal
solution containing the FS F =

{
1, j

}
, where

j =

{
arg minj:{1,j} is a FS {1− (v1 + vj)} if F1,max = 2

k if (v1 + vk) = 1.

D3 If F1,max = 3, then, there exists an optimal solution containing the
feasible set:

(a) F =
{
1, k

}
, k = arg min{1,k} is a FS {1− (v1 + vk)} if @ {i, j} ∈ I :

1− (v1 + vi + vj) ≤ 1− (v1 + vk) , {1, i, j} is a FS;

(b) F =
{
1, i, j

}
,

{
i, j

}
= arg min{1,i,j} is a FS,i<j {1− (v1 + vi + vj)},

if i = arg min{1,i} is a FS {1− (v1 + vi)} and i− j ≤ 2;

(c) F =
{
1, i, j

}
,
{
i, j

}
= arg min{1,i,j} is a FS,i<j {1− (v1 + vi + vj)},

if i = arg min{1,i} is a FS {1− (v1 + vi)} and v1 + vj−1 + vj−2 > 1.

The MTRP procedure can be applied in O (n2) and L3 in O (n3). The
bound L3 is quite time consuming. However, computational experiments
show that this bound is very tight [15]. It has been proved recently that its
asymptotic worst-case ratio is 3/4 [7, 17].

An alternative formulation of the BP problem is given by Gilmore and
Gomory [11, 12]. In this formulation, an integer variable λq is introduced for
each FS of the instance. The variable represents the number of times FS q is
used in the optimal solution. Let Q be the set of the FSs and qi a constant
that is equal to 1 if item i is contained in FS q, 0 otherwise. Then, the IP
formulation is as follows

min
∑
q∈Q

λq (9)∑
q∈Q

qiλq = 1 i = {1, ..., n} (10)

λq ∈ N+. (11)

The lower bound Lcg derived by relaxing constraints (11) of model (9) -
(11) dominates the continuous bound L1 [11, 12]. Due to the large number
of columns involved, Vanderbeck solved the relaxed model by means of a
column generation method [20]. This bound obtained better results than L3

on some hard instances.
Chen and Srivastava [5] introduced a family of lower bounds that can be

expressed as follows :

LCS(I,m) = max {Opt(1/m, 1), L1(I)} , (12)

where Opt(1/m, 1) is the optimal solution of the instance obtained consid-
ering the items in I with volumes greater than 1/m. The authors derived

6

BPFBs for m ≤ 3. Moreover, the authors proved that the worst-case perfor-
mance of their bound is 2/3 for m ≥ 2, while the bounds have an asymptotic
worst-case ratio of m/m + 1. The complexity of the bounds is dominated by
the complexity of computing Opt(1/m, 1), which increases with the value of
m.

3 New Fast Lower Bounds

BPFBs are a sub-set of BP lower bounds characterized by a computational
effort that does not exceed the computational effort of ordering items by
non-increasing volumes. These bounds are important because many problem
classes include the BP problem as sub-problem and require the computation
of a good approximation of its optimum with a small computational effort.
We introduce two general classes of BPFBs that yield the current best fast
bounding procedure according to both solution quality and computational
effort (see Sections 4 and 5).

3.1 Truncated-reduction lower bounds

Consider an instance on the BP problem. The basic idea is to first reduce
the instance using the dominance criteria D1 and D2 and, then, to apply a
fast lower bound to the instance with the remaining items. The reduction
procedure is called TMTRP (Algorithm 1 in the Annex). TMTRP proceeds
iteratively and considers one item at a time. If the dominance criterion
D1 or D2 holds, the non-dominated FS is built and the corresponding item
is removed from the original instance. Assuming items are sorted by non-
increasing volumes, each item is considered at most twice. Dominance can
be verified in O(n) time and, thus, the TMTRP procedure is O(n) if the
items are in non-increasing order of volume (for further details, see [17]).
Moreover, according to the following theorem, the procedure TMTRP solves
to optimality all the instances of the BP problem where the smallest item
has a volume greater than 1/3.

Theorem 1 Given an instance I of the BP problem with all the volumes
vi > 1

3
, the procedure TMTRP finds an optimal solution of the instance.

Proof. Order the items by non-increasing values of the volumes vi and
consider the first item of the instance. Then, v1 = maxi {vi}. We have to
check the following cases:

1. |I| = 1. An optimal solution is 1.

2. v1 ∈
(

2
3
, 1

]
. We know (hypothesis) that vN > 1

3
, so v1 + vN > 1. By

dominance criterion D1, the FS F1 = {1} is in an optimal solution,
thus

OPT (I) = 1 + OPT (I ′)

I ′ = I\F1.

7

3. v1 ∈
(

1
3
, 2

3

]
and |I| = 2. The procedure TMTRP returns an optimal

value of 1.

4. v1 ∈
(

1
3
, 2

3

]
and |I| ≥ 3. If v1 + vN > 1, then D1 applies and the FS

F1 = {1} is in an optimal solution.

Otherwise, by hypothesis, we know that vi > 1
3
,∀i, so the following

inequalities are satisfied

(v1 + vN) ≤ 1

1− (v1 + vN + vN−1) < 0.

By dominance criterion D2, we know that an item j exists such that
the FS F1 = {1, j} is in an optimal solution.

Thus,

OPT (I) = 1 + OPT (I ′)

I ′ = I\F1.

Consider now the instance I ′. We know that either the hypotheses of the
theorem are satisfied or the instance is empty. If the instance is not empty,
we can apply recursively the cases 1-4 to the first item of the instance I ′,
building a new non-dominated FS F2. We continue with this process until
the instance is empty. At the end of this process, we have that

OPT (I) = 1 + OPT (I ′) = 1 + 1 + OPT (I ′′) =
K∑

j=1

1 + OPT ({Ø}) ,

where K is the number of sub-instances on which the cases 1-4 have been
applied. Thus, the set I is split into the FSs Fi and each FS Fi is non-
dominated. Then the solution

F1, ..., FK

is an optimal solution of the instance I and OPT (I) = K is the optimal
value.

New fast bounds, called Truncated-Reduction Lower Bounds (TRLB), can
therefore be obtained as

LBTRLB = max{BTMTRP (I(1/3, 1)), BTMTRP + FLB (TMTRP)}, (13)

where BTMTRP are the bins loaded by the TMTRP procedure applied to I,
BTMTRP (I(1/3, 1)) are the bins loaded by the TMTRP procedure applied to
the subset of I with volumes greater than 1/3, while FLB(TMTRP) is a
fast lower bound with FLB (I) ≥ L1 (I), applied to the instance with the
remaining items.

Replacing FLB with L2, L
∗(p)
FS , and LLLM , respectively, we obtain the

bounds

LBTRLB2 = max{BTMTRP (I(1/3, 1)), BTMTRP + L2 (TMTRP)},
LB

(p)
TRLBFS

= max{BTMTRP (I(1/3, 1)), BTMTRP + L
∗(p)
FS (TMTRP)},

LBTRLBLLM
= max{BTMTRP (I(1/3, 1)), BTMTRP + LLLM (TMTRP)}.

8

Given that L2 is dominated by L
∗(p)
FS , LB

(p)
TRLBFS

dominates LBTRLB2 .

Both the TMTRP procedure and the lower bounds L2, L
∗(p)
FS , and LLLM are

O(n) when the items are sorted by non-increasing volumes. Then, the lower

bounds LBTRLB2 , LB
(p)
TRLBFS

, and LBTRLBLLM
are O(n) and can be classified

as BPFBs.
The bounds LBTRLB2 , LB

(p)
TRLBFS

, and LBTRLBLLM
dominate the bounds

LCS(m), m ≤ 3. In fact, setting m = 1, the bound LCS(1) reduces to L1,
while setting m = 2 we obtain

LCS(I, 2) = max{L2(I, 1/2), L1(I)} ≤ L2(I)

and both L1(I) and L2(I) are dominated by LBTRLB2 , LB
(p)
TRLBFS

and LBTRLBLLM
.

For m = 3, we obtain

LCS(3) = max {Opt(1/3, 1), L1(I)} = max {BTMTRP (I(1/3, 1)), L1(I)}
≤ max{BTMTRP (I(1/3, 1)), BTMTRP + L1 (TMTRP)},

and max{BTMTRP (I(1/3, 1)), BTMTRP +L1 (TMTRP)} is dominated by LBTRLB2 ,

LB
(p)
TRLBFS

, and LBTRLBLLM
.

3.2 Dual feasible functions and reduction lower bounds

Computational experiments indicate that the bound L3 is stronger than all
currently known classes of Fast Lower Bounds [9, 15]. This is mainly due to
the iterative use of the procedure MTRP (see [15] for a description of the
algorithm). Unfortunately, this bound has a computational complexity of
O (n3). We present a new bound that builds on ideas from L3, but reduces
the overall complexity to O(n).

Consider an instance I and suppose that the item volumes assume at most
q different values, with q fixed. We can then derive a quicker version of the
procedure MTRP , called CPPT RED (Algorithm 2 in the Annex), by using
a list of the different values of the volumes and the associated number of items
with the same volume. We refer to each pair (volume value, number of items
with this volume) as a volume class. Suppose there exist three procedures
FINDF1, FINDF2, and FINDF3 (Algorithms 3, 4, and 5 in the Annex)
that, given the list of the volume classes lclass and the last volume class
considered, build the non-dominated FSs that verify the dominance criteria
D1, D2, and D3, respectively. More precisely, FINDFi, i = 1, 2, 3, builds
the non-dominated FSs that verify the dominance criterion i = D1, D2, or
D3. If FINDFi verifies that the corresponding dominance criterion holds for
the k−tuple of items (i1, ..., ik), then the criterion also holds for the k−tuples
(i′1, ..., i

′
k) with the same item volume (i.e., vi1 = vi′1

, ..., vik = vi′k
). Finding

these k − tuples (i′1, ..., i
′
k) can be accomplished in constant time by means

of a list that associates the item volume values to volume classes. Then, the
algorithm builds m + 1 FSs at each iteration, where m is the number of the
k − tuples (i′1, ..., i

′
k).

According to the results of Fekete and Schepers, the bound L3 applied to
an instance modified by u(k) (x) is a bound of the original problem. Further-
more, the dual feasible function u(k) (x), given k, modifies the values of the

9

volumes of the items such that the volumes assume 2k + 1 different values
only (vi = i

k
, i ∈ {0, ..., k} , and vi = j

k+1
, j ∈ {1, ..., k}). Thus, given a fixed

value p, we can derive the following new bound

LB
(k)
CPPT RED = BCPPT RED(I(uk)) + LB

(k)
FS (14)

LB
(p)
DFFR = max

k=1,...,p

{
LB

(k)
CPPT RED

}
, (15)

where BCPPT RED(I(uk)) are the non-dominated FSs found by the CPPT RED
procedure applied to the instance where the volumes have been modified by
the u(k)(x) dual feasible function and LB

(k)
FS is applied to the remaining items.

Using (15) as FLB in (13) yields

LB
∗(p)
DFFR = max{BTMTRP (I(1/3, 1)),

BTMTRP + max
{

LB
(p)
DFFR, LB

∗(p)
FS

}
}. (16)

Both LB
∗(p)
FS and BTMTRP are O(n). Then, to prove that LB

∗(p)
DFFR is a

BPFB, we have to prove that, given a fixed k, the CPPT RED procedure
is O(n) too.

Theorem 2 Given an instance I of the BP problem with at most q differ-
ent values of the item volumes vi, q << n, the complexity of the procedure
CPPT RED is O (n).

Proof. Let lclass be a list that associates each volume value to a volume
class. lclass is built in O (n) and can be ordered by non-increasing values of
the volumes in O (q lg q). FINDF1 and FINDF2 have complexity O (q),
while FINDF3 is O (q2) because, in the worst case, one must test all the
pairs j1, j2 ∈ lclass. Volume classes are examined successively. If FINDF1,
FINDF2, and FINDF3 fail to build non-dominated FSs for a given volume
class j, it is removed from lclass and one proceeds to the next one.

If the dominance criterion D1 holds for an item i in the volume class
j, then it holds for all the items in j (by definition, the items in the same
volume class have the same volume). Thus, D1 holds for all the items in j
and FINDF1 can produce |j| FSs. Moreover, the volume class j becomes
empty and is removed from lclass.

Similarly, if dominance criterion D2 holds, then FINDF2 identifies a
pair of items (i1, i2) that produces a non-dominated FS. Suppose, without
loss of generality, that j is the volume class of i1 and j

′
the volume class of i2.

If j 6= j
′
, we can build min{|j|, |j ′|} FSs and one of the two volume classes

becomes empty (i.e., contains no more items) and is removed. Otherwise,
j = j′ and we can build b|j|/2c FSs. If |j| is even, once the FSs are built, the
volume class is empty (all items with vi = j have been used if |j| is even).
Otherwise, if |j| is odd, after building the FSs the volume class contains
exactly one item.

Let us suppose that FINDF1 and FINDF2 fail to build FSs, but a
triplet exists such that the dominance criterion D3 holds. We then consider
the volume classes of the items in the triplet and, by an argument similar to

10

those used above for FINDF2, at least one of the volume classes becomes
empty or holds at most two items.

If, after applying procedures FINDF2 and FINDF3, one or more FSs
have been built but no volume class became empty, then at least one volume
class contains one or two items only. When procedure CPPT RED consid-
ers this volume class again, by applying FINDF1, FINDF2 or FINDF3,
the volume class becomes empty if it contains one item. Otherwise, if the
volume class contains two items, after reconsideration it will contain either 1
item (and it will be emptied if it will be considered for the third time) or it
will be empty. Consequently, each volume class is considered at most three
times and the procedure performs at most 3q (q + q + q2) operations. Be-
cause FINDF1, FINDF2, and FINDF3 are applied at most q times, the
procedure CPPT RED has an O (n + q ∗ 3q (qn + qn + q2n)) = O (n + q3)
complexity. With q fixed and sufficiently small, the procedure CPPT RED
has complexity O (n).

L1 and L2 are dominated by LB
∗(p)
FS , LCS(1) = L1, and LCS(2) is domi-

nated by L2. Then, the bound LB
∗(p)
DFFR dominates L1, L2, LB

∗(p)
FS , LCS(1),

and LCS(2). Moreover, deriving LB
∗(p)
DFFR from (13), we obtain:

LCS(3) = max {Opt(1/m, 1), L1(I)} = max {BTMTRP (I(1/3, 1)), L1(I)}
≤max{BTMTRP (I(1/3, 1)), BTMTRP + L1 (TMTRP)}
≤LB

∗(p)
DFFR.

4 Asymptotic Worst-Case Analysis of the New

Fast Lower Bounds

The asymptotic worst-case analysis provides a better understanding of the
behavior of a lower bound when the size of the problem instances is increas-
ing. It is a well known and widely used theoretical performance measure that
complements an experimental performance evaluation.

Let I be an instance of the BP problem and L a lower bound on the
optimum value OPT (I). The performance of L for the instance I is defined

as L(I)
OPT (I)

. The asymptotic worst-case analysis of the performance of L is
given by:

Definition 3 (Asymptotic worst-case) Let I be a generic BP instance,
L a lower bound for the BP problem, and OPT (I) the optimum of I. Given
a positive integer s, the asymptotic worst-case of L is given by

r∞ (L) = lims→∞sup

{
L (I)

OPT (I)
| ∀I with OPT (I) ≥ s

}
.

It is known that lower bounds of the BP problem with an asymptotic
worst case converging to 1 can be defined (e.g, the family of lower bounds
defined by Chen and Srivastava [5]). Performing the asymptotic worst-case
analysis is, generally, a hard task, however. The authors proved in [7] and
[17] the following general result that reduces the complexity of computing
the asymptotic worst-case of BP lower bounds.

11

Theorem 4 Given a value k > 1, k ∈ N and a lower bound LB of the BP
problem such that

H1) LB (I ′) = OPT (I ′) ,∀ I ′ : min
i∈I′

(vi) >
1

k
,

H2) LB (I) ≥ L1 (I) , ∀I,

H3) LB(I∗) ≤ LB(I),∀I

where L1 is the bound given by (6) and I∗ is the sub-instance of I defined as
I∗ = {i ∈ I : vi > 1

k
}, the asymptotic worst-case of LB is

r∞ (LB) ≥ k

k + 1
.

We apply this general result to derive the asymptotic worst-case of the lower
bounds previously introduced.

Theorem 5 Any lower bound of the family LBTRLB defined by (13) has an
asymptotic worst-case at least equal to 3

4
.

Proof. By Theorem 1, TRLB solves to optimality all the instances
with vi > 1

3
. Moreover, the definition of the lower bounds ensures that the

Hypothesis H3 of Theorem 4 is satisfied. Thus, one can assert that

r∞ (LBTRLB) ≥ 3

4
.

Theorem 6 The asymptotic worst-case of the lower bounds LBTRLB1, LB
(2)
TRLB2

,

LBTRLB3, and LB
(2)
DFFR is 3

4
.

Proof. By Theorem 5, we have

r∞ (LBTRLB2) ≥
3

4

r∞

(
LB

(2)
TRLBFS

)
≥ 3

4

r∞ (LBTRLBLLM
) ≥ 3

4

r∞

(
LB

(2)
DFFR

)
≥ 3

4
.

To prove that the equality holds for the four bounds, consider instances
with 3k items of volume vi = 1

4
+ 1

k
. These instances need at least k bins.

When the size and, consequently, k increase, BTMTRP is not able to reduce
the instance size, while L2 = L

(2)
FS = LB

(2)
CPPT RED = L1 =

⌈
3
4
k + 3

⌉
.

12

5 Computational Experiments

We presented in Section 4 a theoretical performance measure of the new
BPFBs based on worst-case analysis. In this section, we analyze the com-
putational performance of the new lower bounds on a large set of problem
instances and compare these results to those of known BPFBs. More pre-
cisely, we compare the fast lower bounds LB

∗(p)
DFFR, LBTRLB2 , LB

(p)
TRLBFS

, and

LBTRLBLLM
to the lower bounds L1, L2, L

∗(p)
FS , and LLLM . The results ob-

tained by the bound L3 are also presented in order to compare the Fast Lower
Bounds with more complex ones. Optimal solutions have been obtained by
using the Branch-and-Bound algorithm presented in [15].

The BPFB LCS(m), m ≤ 3, derived from (12) is not included because

LCS(1) = L1, LCS(2) is dominated by L2, and LCS(3) is ominated by LB
∗(p)
DFFR,

LBTRLB2 , LB
(p)
TRLBFS

, and LBTRLBLLM
.

All bounds were implemented in C. Tests were conducted on a Pentium3
personal computer with 700Mhz clock and 256 Mb of Ram. Two types of
benchmark problem sets have been used:

• Uniform distribution: instance sets based on a uniform distribution of
the item volumes as in [15];

• Hard instances: hard-to-solve instances derived from specific sets col-
lected in previous works by Scholl et al. [18], Schwerin and Wäscher
[19], and Wäscher and Gau [21]. The ORLIB [2] instances are not con-
sidered, because the bound L1 solves to optimality 159 instances out of
160, which is a clear indication that these instances are too easy and do
not make a good benchmark. The TRIPLETS instances of Falkenauer
[8] are discarded for the same reason: by construction, the value of the
bound L1 equals the optimal value.

5.1 Uniform distribution instances

The benchmark problem instances are generated according to the following
parameters:

• Number of items: 50, 100, 300, 1000.

• Volume size class: S1 = [1, 100], S2 = [10, 100], S3 = [1, 90], S4 =
[1, 80], S5 = [20, 100], S6 = [20, 80], S7 = [20, 70], S8 = [20, 60], S9 =
[20, 50], S10 = [20, 40], S11 = [20, 35], and S12 = [20, 30].

• Bin capacity: 100.

We use the volume classes defined by both Martello and Toth [15] and
Fekete and Schepers [9]. Martello and Toth use S ′

1 = [1, 100], S ′
2 = [20, 100],

and S ′
3 = [20, 80] with bin sizes c = 100, 120, and 150. After normalizing

the volumes in the interval {1, 100}, these classes are a sub-set of the sets we
use.

13

Relative to the tests performed by Fekete and Schepers, we add the set
[20, 100]. While it is true that this set is covered by Theorem 1, the com-
putational experiments show that it is interesting to consider it in order to
compare how the bounds L

∗(20)
FS and LB

(20)
DFFR perform near their optimality

region.
We consider instances with 50, 100, 300, and 1000 items. 1000 random

instances are generated for each combination of volume size and number of
items. The seed for the random generation is changed every 100 instances.

5.2 Hard instances

We also consider the following instance classes known to be difficult to solve
[1]:

• Test problems from Scholl et al. [18].

– set 1: 720 instances with n = 50, 100, 200, and 500, bin capacity
C = 100, 120, and 150, and weights uniformly generated from the
intervals [1, 100], [20, 100], and [30, 100]. Those instances are
built similarly to some of those proposed by Martello and Toth
[16].

– set 2: 480 instances with n = 50, 100, 200, and 500 and bin ca-
pacity C = 1000, generated to accommodate more items (three to
nine items per bin in the average) in their optimal solutions than
those in set 1.

– set 3: ten difficult instances with n = 200, bin capacity C =
100000, and items weights in the range [20000; 35000].

• Test problems from Schwerin and Waescher [19].

– was 1: 100 instances with bin capacity C = 1000, n = 100, min-
imum item weight equal to 150 and maximum item weight equal
to 200.

– was 2: 100 instances with bin capacity C = 1000, n = 120, min-
imum item weight equal to 150 and maximum item weight equal
to 200.

• Test problems from Waescher and Gau [21]: 17 instances with the same
parameters as for the was 1 and was 2 sets.

5.3 Analysis of results

The results obtained for the uniform distribution instances are reported in
Tables 1, 2, 3, and 4, while Tables 5 and 6 report the results obtained for the
hard instances.

The results of the bounds LBTRLB2 and LBTRLBLLM
are generally equal

to those of the lower bounds L2 and LLLM on all problem instances, and are
therefore not included in the tables.

14

Tables 1, 2, 3 and 4 report the computational results on the uniform
distribution instances. Tables 1 and 2 compare the mean relative gaps of
the bounds L1, L2, LLLM , L3, L

∗(p)
FS , LB

(p)
TRLBFS

, and LB
∗(p)
DFFR relative to the

optimum. The volume size class and the number of items are reported in
the first two columns, while the remaining columns display the relative gap
of each bound. Following Fekete and Schepers, we present results for p = 20
and 100 for the bound L

∗(p)
FS , while for the bounds LB

(p)
TRLBFS

and LB
∗(p)
DFFR,

results are presented for p equal to 20 only. Tables 3 and 4 show, for each
bound, the number of instances (out of 1000) for which the lower bound is
equal to the optimum.

The results indicate that L
∗(p)
FS outperforms L1, L2, and LLLM , while

the new bounds LB
(p)
TRLBFS

and LB
∗(p)
DFFR are able to improve the results of

L
∗(p)
FS by both reducing the mean gap and increasing the number of instances

solved to optimality. In particular, LB
∗(p)
DFFR outperforms L

∗(p)
FS even if we

are executing 100 iterations for the latter and only 20 for LB
∗(p)
DFFR, reducing

the number of iterations by a factor of 5. The time required to compute the
bounds is quite small for all of them (at most 10−2 seconds for the instances
with 1000 items). Actually, the execution times for problem instances with a
small number of items is negligible and, thus, only the mean execution times
for the instances with 1000 items are included in Table 7.

The results for LLLM present the same behavior as L2 on all instances,
except those with 50 items and volumes between 20% and 50% of the bin.
In this case, the percentage deviation from the optimal solutions is reduced
from 5.4735% to 5.4683%. This behaviour is related to the structure of the
instances where LLLM is able to improve L2. Indeed, from the definitions
of L2 (equation (7)) and LLLM (equation (8)), when the set I3 of LLLM is
empty, LLLM reduces to L2. Otherwise, computing LLLM for ε ∈ [0, 1

2
], such

that L1{I2{ε}} ≥ d|I3/2|e, we obtain⌈
|I3|
2

⌉
+ (|I(1− ε, 1)|+ max {0, L1 (I2(ε))− d|I3|/2e}) =

|I(1− ε, 1)|+ L1 (I2(ε)) = L2(I, ε),

while for ε ∈ [0, 1
2
] such that L1{I2{ε}} < d|I3/2|e, we obtain⌈

|I3|
2

⌉
+ (|I(1− ε, 1)|+ max {0, L1 (I2(ε))− d|I3|/2e}) > L2(I, ε).

Because both bounds are computed as maxima over ε ∈ [0, 1/2], LLLM

improves L2 if and only if the value of LLLM is obtained for an ε = ε1 such
that L1{I2{ε1}} < d|I3/2|e and no other value ε2 exists such that L2(I, ε2) =
LLLM . Unfortunately, according to our tests, this situation rarely occurs for
randomly built instances, in particular for instances with less than 100000
items. Indeed, Bourjolly and Rebetez obtained an improvement only for 15
very large instances with 200000 items [3].

According to [15], [4], and [9], the limits of the fast lower bounds for
the BP problem become apparent for instances where the item volumes are
neither small nor large. For those instances, however, the volume bound

15

L1 usually finds good results, results that the other bounds are not able to
improve upon. It is thus worth emphasizing that the bound LB

∗(p)
DFFR is able

to significantly improve the results on the classes of volumes {20, 50} and
{20, 40}, while it obtains the same values as the other bounds on the classes
{20, 35} and {20, 30}.

Tables 5 and 6 display the computational results for the hard instances.
Table 5 compares the mean relative optimality gaps of the bounds L1, L2,
LLLM , L3, L

∗(p)
FS , LB

(p)
TRLBFS

, and LB
∗(p)
DFFR. The set name is reported in the

first column, while the remaining columns display the relative gap of each
bound. Following Fekete and Schepers, results are displayed for p = 20 and
100 for the bound L

∗(p)
FS , while for the bounds LBTRLBFS

and LB
∗(p)
DFFR, only

results for p equal to 20 are presented.
Table 6 shows, for each bound, the number of instances for which the lower

bound is equal to the optimum. The set name and the number of instances in
each set are reported in the first two columns, while the remaining columns
display the number of instances for which each bound is able to find the
optimal number of bins.

The results show that all the BPFBs are outperformed by the more
complex bound L3 and obtain, except for L1 and L2, the same results. This
situation marks the limits of the BPFBs. Indeed, when applied to known
hard-to-solve instances, they pay their lower complexity by a lower accuracy.
However, the bound LB

∗(p)
DFFR is able to improve the results of the other

BPFBs on some hard instances, in particular sets 1 and 2 of the Scholl’s
instances. This is remarkable if one recalls that, usually, all BPFBs behave
similarly to L1 for those instances. The same behavior can be observed for
the instances solved to optimality.

As stated before, from a computational point of view, the time needed to
compute the different bounds is negligible (at most 10−2 seconds for 1000-

item instances). One may argue, however, that LB
∗(p)
DFFR will require more

time than L
∗(p)
FS when the size of the problem instances increases, because

the procedure CPPT RED has a complexity that can be dominated by the
constant q3 when q is high. From a practical point of view, however, the
mean computational effort of the procedure CPPT RED up to q = 100 is
at most 3 times that of LB

∗(p)
FS . Moreover, our results show that LB

∗(p)
DFFR

achieves for p = 20 the same results that LB
∗(p)
FS obtains with p = 100. In

this case, LB
∗(20)
DFFR requires about half the time needed by LB

∗(100)
FS to solve

the same problem.

6 Conclusions

We introduced two new classes of fast lower bounds that combine and extend
existing BPFB. The derived fast lower bounds have an asymptotic worst
case of 3/4 independently on the BPFB they extend. Extensive computa-
tional experiments have been run on a large data set, comparing existing and
new BPFB.

These experiments indicate that one of the proposed BPFB, LB
∗(p)
DFFR, is

16

able to obtain the best results among existing BPFB relative to the deviation
of the bound from the optimum. In particular, LB

∗(p)
DFFR is the only BPFB

able to improve the results in the Scholl et al. instances.

7 Acknowledgments

The authors wish to thank Professors Paolo Toth, Silvano Martello, and Al-
berto Caprara for their support and encouragement, as well as the anonymous
referees for their helpful comments.

This research has been supported by ASI, the Italian Space Agency, under
the ICARO Project, n. ASI I/R/137/01.

Partial funding for this project has also been provided by the Natural
Sciences and Engineering Council of Canada, through its Discovery Research
Grant program.

While working on this project, Dr. T.G. Crainic was Adjunct Profes-
sor at the Département d’informatique et de recheche opérationnelle of the
Université de Montréal.

References

[1] A. C. F. Alvim, C. C. Ribeiro, F. Glover, D. J. Aloise, A hybrid improve-
ment heuristic for the one-dimensional bin packing problem, Journal of
Heuristics 10 (2) (2004) 205–229.

[2] J. E. Beasley, Or-library: distributing test problems by electronic mail,
Journal of the Operational Research Society 41 (11) (1990) 1069–1072.

[3] J. M. Bourjolly, V. Rebetez, An analysis of lower bound procedures,
Computers and Operations Research 32 (3) (2005) 395–405.

[4] H. Chao, M. P. Harper, R. W. Quong, A tight lower bound for optimal
bin packing, Operations Research Letters 18 (3) (1995) 133–138.

[5] B. Chen, B. Srivastava, An improved lower bound for the bin packing
problem, Discrete Applied Mathematics 66 (1996) 81–94.

[6] E. G. Coffman, M. R. Garey, D. S. Johnson, Bin packing approximation
algorithms: a survey, in: D. S. Hochbaum (Ed.), Approximation Algo-
rithms for NP-Hard Problems, PWS Publishing Company, Boston, MA,
1997 46–93.

[7] T. G. Crainic, G. Perboli, M. Pezzuto, R. Tadei, Computing the asymp-
totic worst-case of bin packing lower bounds, European Journal of Op-
erational Research (forthcoming).

[8] E. Falkenauer, A hybrid grouping genetic algorithm for bin packing,
Journal of Heuristics 2 (1) (1996) 5–30.

17

[9] S. P. Fekete, J. Schepers, New classes of lower bounds for bin packing
problems, Mathematical Programming 91 (1) (2001) 11–31.

[10] M. R. Garey, D. S. Johnson, Computers and Intractability, W. H. Free-
man and Co., New York, USA, 1979.

[11] P. C. Gilmore, R. E. Gomory, A linear programming approach to the
cutting stock problem, Operations Research 9 (1961) 849–859.

[12] P. C. Gilmore, R. E. Gomory, A linear programming approach to the
cutting stock problem - part ii, Operations Research 11 (1963) 863–888.

[13] M. Haouaria, A. Gharbia, Fast lifting procedures for the bin packing
problem, Discrete Optimization 2 (2005) 201–218.

[14] M. Labbé, G. Laporte, H. Mercure, Capacitated vehicle routing on trees,
Operations Research 39 (1991) 616–622.

[15] S. Martello, P. Toth, Knapsack Problems - Algorithms and computer
implementations, John Wiley & Sons, Chichester, UK, 1990.

[16] S. Martello, P. Toth, Lower bounds and reduction procedures for the bin
packing problem, Discrete Applied Mathematics 28 (1) (1990) 59–70.

[17] G. Perboli, Bounds and heuristics for the packing prob-
lems, Ph.D. thesis, Politecnico di Torino, available at
http://www.orgroup.polito.it/People/perboli/phd-thesys.pdf (2002).

[18] A. Scholl, R. Klein, C. Jürgens, Bison: A fast hybrid procedure for
exactly solving the one-dimensional bin packing problem, Computers
and Operations Research 24 (7) (1997) 627–645.

[19] P. Schwerin, G. Wäscher, The bin-packing problem: A problem gener-
ator and some numerical experiments with ffd packing and mtp, Inter-
national Transactions in Operational Research 4 (5/6) (1997) 377–389.

[20] F. Vanderbeck, Computational study of a column generation algorithm
for bin packing and cutting stock problems, Mathematical Programming
86 (3) (1999) 565–594.

[21] G. Wäscher, T. Gau, Heuristics for the integer one-dimensional cutting
stock problem: A computational study, OR Spektrum 18 (1996) 131–
144.

18

Set n L1 L2 LLLM L3 L
∗(20)
FS L

∗(100)
FS LB

(20)
TRLBFS

LB
∗(20)
DFFR

{1,100} 50 5,0665 0,6554 0,6554 0,2147 0,3886 0,3886 0,3886 0,3802
100 3,9539 0,5499 0,5499 0,1951 0,3351 0,3351 0,3329 0,3251
300 2,5056 0,3647 0,3647 0,1225 0,2067 0,2053 0,2067 0,1954
500 1,9992 0,2659 0,2659 0,0879 0,155 0,1526 0,155 0,1418
1000 1,4437 0,207 0,207 0,0698 0,1184 0,1166 0,1184 0,1105

{1,90} 50 4,8326 0,6961 0,6961 0,2476 0,3976 0,3976 0,3976 0,3811
100 3,3923 0,5402 0,5402 0,1962 0,3152 0,3152 0,3152 0,2917
300 1,7277 0,2847 0,2847 0,0911 0,1537 0,1523 0,1537 0,1428
500 1,2107 0,1922 0,1922 0,0653 0,105 0,105 0,105 0,0985
1000 0,6332 0,099 0,099 0,0324 0,0426 0,0426 0,0426 0,0411

{1,80} 50 2,8282 0,692 0,692 0,4771 0,5601 0,5601 0,5601 0,5553
100 1,3768 0,411 0,411 0,3119 0,3254 0,3254 0,3254 0,3231
300 0,3366 0,1427 0,1427 0,1318 0,1333 0,1333 0,1333 0,1333
500 0,1419 0,0877 0,0877 0,0853 0,0853 0,0853 0,0853 0,0853
1000 0,0377 0,0372 0,0372 0,0372 0,0372 0,0372 0,0372 0,0372

{10,100} 50 5,9236 0,6042 0,6042 0,1557 0,3211 0,3211 0,3211 0,3177
100 4,7013 0,4851 0,4851 0,1854 0,302 0,3002 0,302 0,2948
300 3,2794 0,3459 0,3459 0,1239 0,197 0,1958 0,197 0,1831
500 2,8287 0,2795 0,2795 0,0959 0,1568 0,155 0,1568 0,1485
1000 2,2811 0,2148 0,2148 0,0773 0,1208 0,1201 0,1208 0,114

{20,100} 50 8,2331 0,5786 0,5786 0,1494 0,304 0,304 0,304 0,2974
100 7,252 0,4964 0,4964 0,0997 0,2547 0,2531 0,2547 0,2338
300 5,9705 0,3256 0,3256 0,0808 0,167 0,1648 0,167 0,1557
500 5,5259 0,2559 0,2559 0,0614 0,1333 0,1327 0,1333 0,1226
1000 5,0315 0,2011 0,2011 0,049 0,1017 0,1012 0,1017 0,0925

{20,80} 50 6,0511 0,9357 0,9357 0,2127 0,4346 0,4305 0,4346 0,39
100 4,5131 0,7401 0,7401 0,2095 0,3796 0,3775 0,3796 0,3317
300 2,5733 0,4818 0,4818 0,1501 0,2641 0,2634 0,2641 0,2393
500 2,0135 0,4018 0,4018 0,132 0,2119 0,2107 0,2119 0,1906
1000 1,3241 0,3105 0,3105 0,1047 0,1647 0,1641 0,1647 0,1504

{20,70} 50 3,3755 2,3641 2,3641 1,4705 1,7752 1,7752 1,7706 1,6028
100 2,3986 2,1616 2,1616 1,5577 1,7237 1,7237 1,7214 1,6212
300 1,822 1,8192 1,8192 1,5134 1,5735 1,5735 1,5735 1,5607
500 1,7275 1,7275 1,7275 1,4842 1,5344 1,5344 1,5344 1,5331
1000 1,633 1,633 1,633 1,4681 1,5365 1,5365 1,5365 1,5363

Table 1: Uniform distribution instances - Mean relative optimality gaps (1000
instances)- Part 1

19

Set n L1 L2 LLLM L3 L
∗(20)
FS L

∗(100)
FS LB

(20)
TRLBFS

LB
∗(20)
DFFR

{20,60} 50 2,9006 2,9006 2,9006 2,7739 2,8559 2,8559 2,8511 2,6855
100 2,6206 2,6206 2,6206 2,6089 2,6139 2,6139 2,6139 2,5914
300 2,0841 2,0841 2,0841 2,0841 2,0841 2,0841 2,0841 2,0833
500 1,9839 1,9839 1,9839 1,9839 1,9839 1,9839 1,9839 1,9839
1000 1,9066 1,9066 1,9066 1,9066 1,9066 1,9066 1,9066 1,9066

{20,50} 50 5,4735 5,4735 5,4683 5,464 5,4485 5,4485 5,4485 4,8155
100 5,982 5,982 5,982 5,982 5,982 5,982 5,982 5,3776
300 6,3165 6,3165 6,3165 6,3165 6,3165 6,3165 6,3165 5.8552
500 6,3685 6,3685 6,3685 6,3685 6,3685 6,3685 6,3685 5,8916
1000 6,3799 6,3799 6,3799 6,3799 6,3799 6,3799 6,3799 5,9317

{20,40} 50 3,6376 3,6376 3,6376 3,6376 3,6376 3,6376 3,6376 3,2607
100 3,8339 3,8339 3,8339 3,8339 3,8339 3,8339 3,8339 3,5721
300 4,0625 4,0625 4,0625 4,0625 4,0625 4,0625 4,0625 4,0038
500 4,1036 4,1036 4,1036 4,1036 4,1036 4,1036 4,1036 4,0817
1000 4,1446 4,1446 4,1446 4,1446 4,1446 4,1446 4,1446 4,1388

{20,35} 50 6,4165 6,4165 6,4165 6,4165 6,4165 6,4165 6,4165 6,4165
100 6,8002 6,8002 6,8002 6,8002 6,8002 6,8002 6,8002 6,8002
300 7,1046 7,1046 7,1046 7,1046 7,1046 7,1046 7,1046 7,1046
500 7,1424 7,1424 7,1424 7,1424 7,1424 7,1424 7,1424 7,1424
1000 7,2003 7,2003 7,2003 7,2003 7,2003 7,2003 7,2003 7,2003

{20,30} 50 1,5041 1,5041 1,5041 1,5041 0,7349 0,7349 0,7349 0,7349
100 0,4903 0,4903 0,4903 0,4903 0,3543 0,3543 0,3543 0,3543
300 1,3353 1,3353 1,3353 1,3353 1,1366 1,1366 1,1366 1,1366
500 1,5888 1,5888 1,5888 1,5888 1,4344 1,4344 1,4344 1,4344
1000 1,5962 1,5962 1,5962 1,5962 1,4873 1,4873 1,4873 1,4873

Table 2: Uniform distribution instances - Mean relative optimality gaps (1000
instances) - Part 2

20

Set n L1 L2 LLLM L3 L
∗(20)
FS L

∗(100)
FS LB

(20)
TRLB2

LB
∗(20)
DFFR

{1,100} 50 172 830 830 947 901 901 901 903
100 82 719 719 903 830 830 831 835
300 19 510 510 824 712 713 712 725
500 17 460 460 792 658 660 658 680
1000 2 389 389 734 606 607 606 618

{1,90} 50 287 835 835 945 908 908 908 912
100 214 751 751 914 858 858 858 869
300 244 645 645 878 795 797 795 809
500 280 643 643 864 787 787 787 798
1000 398 672 672 863 830 830 830 834

{1,80} 50 550 853 853 902 883 883 883 884
100 627 830 830 874 868 868 868 869
300 738 826 826 840 838 838 838 838
500 786 823 823 828 828 828 828 828
1000 849 850 850 850 850 850 850 850

{10,100} 50 67 830 830 958 911 911 911 912
100 8 731 731 899 833 834 833 837
300 0 493 493 803 689 691 689 710
500 0 420 420 759 644 646 644 656
1000 0 343 343 703 585 585 585 599

{20,100} 50 1 816 816 954 904 904 904 906
100 0 689 689 939 841 842 841 854
300 0 504 504 859 714 717 714 733
500 0 431 431 829 673 673 673 691
1000 0 343 343 772 610 611 610 630

{20,80} 50 134 761 761 948 891 892 891 902
100 72 645 645 899 811 812 811 835
300 5 455 455 811 672 673 672 701
500 0 387 387 740 627 627 627 648
1000 0 325 325 675 552 552 552 573

{20,70} 50 301 453 453 660 588 588 589 628
100 85 137 137 319 280 280 281 308
300 1 2 2 10 35 35 35 35
500 0 0 0 0 13 13 13 13
1000 0 0 0 0 0 0 0 0

Table 3: Uniform distribution instances - Instances with zero gap (out of
1000 instances) - Part 1

21

Set n L1 L2 LLLM L3 L
∗(20)
FS L

∗(100)
FS LB

(20)
TRLB2

LB
∗(20)
DFFR

{20,60} 50 400 400 400 422 409 409 410 421
100 87 87 87 88 87 87 87 93
300 0 0 0 0 0 0 0 0
500 0 0 0 0 0 0 0 0
1000 0 0 0 0 0 0 0 0
1000 0 0 0 0 0 0 0 0

{20,50} 50 131 131 131 131 131 131 131 174
100 2 2 2 2 2 2 2 13
300 0 0 0 0 0 0 0 0
500 0 0 0 0 0 0 0 0
1000 0 0 0 0 0 0 0 0

{20,40} 50 418 418 418 418 418 418 418 439
100 28 28 28 28 28 28 28 76
300 0 0 0 0 0 0 0 4
500 0 0 0 0 0 0 0 1
1000 0 0 0 0 0 0 0 0

{20,35} 50 63 63 63 63 63 63 63 63
100 0 0 0 0 0 0 0 0
300 0 0 0 0 0 0 0 0
500 0 0 0 0 0 0 0 0
1000 0 0 0 0 0 0 0 0

{20,30} 50 809 809 809 909 909 909 909 909
100 890 890 890 924 924 924 924 924
300 163 163 163 172 172 172 172 172
500 7 7 7 7 7 7 7 7
1000 0 0 0 0 0 0 0 0

Table 4: Uniform distribution instances - Instances with zero gap (out of
1000 instances) - Part 2

Set L1 L2 LLLM L3 L
∗(20)
FS L

∗(100)
FS LB

(20)
TRLB2

LB
∗(20)
DFFR

Scholl 1 5,0791 1,5163 1,5163 0,5651 1,3239 1,3235 1,3239 1,3078
Scholl 2 4,8495 4,8495 4,8495 2,0381 4,8245 4,8245 4,8245 4,7191
Scholl 3 8,5593 8,5593 8,5593 6,8814 8,5593 8,5593 8,5593 8,5593
Schwerin and
Waescher 1

6,8977 6,8977 6,8977 4,7368 6,8977 6,8977 6,8977 6,8977

Schwerin and
Waescher 2

8,4881 8,4881 8,4881 6,0889 8,4881 8,4881 8,4881 8,4881

Waescher and
Gau

6,573 6,573 6,573 5,8727 6,573 6,573 6,573 6,573

Table 5: Hard instances - Mean relative optimality gaps

22

Set Inst. L1 L2 LLLM L3 L
∗(20)
FS L

∗(100)
FS LB

(20)
TRLB2

LB
∗(20)
DFFR

Scholl 1 720 65 244 244 525 296 297 296 298
Scholl 2 480 92 92 92 280 92 92 92 98
Scholl 3 10 0 0 0 0 0 0 0 0
Schwerin and
Waescher 1

100 9 9 9 10 9 9 9 9

Schwerin and
Waescher 2

100 0 0 0 4 0 0 0 0

Waescher and
Gau

17 0 0 0 0 0 0 0 0

Table 6: Hard instances - Instances with zero gap

Set L1 L2 LLLM L
∗(20)
FS L

∗(100)
FS LB

(20)
TRLB2

LB
∗(20)
DFFR

{1,100} 0.0000 0.0001 0.0001 0.0021 0.0109 0.0032 0.0052
{1,90} 0.0000 0.0002 0.0002 0.0051 0.0221 0.0046 0.0132
{1,80} 0.0000 0.0001 0.0001 0.0022 0.0099 0.0031 0.0053
{10,100} 0.0000 0.0001 0.0002 0.0019 0.0113 0.0032 0.0055
{20,100} 0.0000 0.0001 0.0001 0.0024 0.0115 0.0027 0.0048
{20,80} 0.0000 0.0001 0.0002 0.0020 0.0108 0.0028 0.0055
{20,70} 0.0000 0.0002 0.0002 0.0055 0.0245 0.0062 0.0166
{20,60} 0.0000 0.0001 0.0001 0.0022 0.0113 0.0032 0.0062
{20,50} 0.0000 0.0001 0.0001 0.0020 0.0119 0.0031 0.0063
{20,40} 0.0000 0.0001 0.0001 0.0021 0.0110 0.0030 0.0052
{20,35} 0.0000 0.0002 0.0002 0.0045 0.0212 0.0047 0.0100
{20,30} 0.0000 0.0002 0.0002 0.0041 0.0224 0.0055 0.0087

Table 7: Uniform distribution instances - Mean execution times for the in-
stances with 1000 items

23

Annex: Procedures

Algorithm 1 TMTRP

Input I : Instance of the BP problem ordered by non-increasing values of
vj

head : beginning of the list;
tail : end of the list;
j : last j found;
usedbins : minimum number of bins to use

head = 1
tail = N
j = k = N
usedbins = 0
For the dominance criterion D1
while (head < tail) and (1− vhead < vtail) do

usedbins = usedbins + 1
I \ {head}
head = head + 1

end while
For the dominance criterion D2
while (head < tail) and (head < j) and (1− vhead − vtail < vtail−1) do

usedbins = usedbins + 1
while (vhead + vj−1 ≤ 1) and (head < j) do

k = j
j = j + 1

end while
head = head + 1
if k = tail then

tail = tail − 1
end if
I \ {head, k}
j = j − 1

end while
return I

24

Algorithm 2 CPPT RED

Input I : Instance of the BPP ordered by non-increasing values of vi

Input k : parameter for the dual feasible function u(k)

usedbins : number of used bins
lb : minimum number of bins to use;
lclass : list of loading classes in the instance;

lb = 0
usedbins = 0
We apply the u(k) (x) dual feasible function
for all i ∈ I do

if @lclass[vi] then
add the class u(k) (vi) to lclass

end if
lclass[vi] = lclass[vi] + 1

end for
cont = true
while lclass 6= ∅ do

I ′ = I
lclass′ = lclass
while not cont and I 6= ∅ do

cont = false
if not cont then

cont = FINDF1 (I ′, lclass′, usedbins)
end if
if not cont then

cont = FINDF2 (I ′, lclass′, usedbins)
end if
if not cont then

cont = FINDF3 (I ′, lclass′, usedbins)
end if

end while
tvol = 0
for all j ∈ lclass′ do

tvol = j ∗ lclass′[j]
end for
lb = max {lb, usedbins + dtvole}
remove the class lclass[j] with the minimum j

end while
return lb

25

Algorithm 3 FINDF1

Input I : Instance of the BPP ordered by non-increasing values of vi

Input lclass : list of loading classes in the instance
Input usedbins : number of used bins

head = u(k) (v1)
tail = u(k) (vN)
if 1− head < tail1 then

usedbins = usedbins + |lclass[u (head))]|
remove the class head from lclass
return true

else
return false

end if

Algorithm 4 FINDF2

Input I : Instance of the BPP ordered by non-increasing values of vi

Input lclass : list of loading classes in the instance
Input usedbins : number of used bins

if |I| < 3 then
return false

end if
head = u(k) (v1)
tail1 = u(k) (vN)
tail2 = u(k) (vN−1)
if (1− head− tail1 ≥ 0) and (1− head− tail1 < tail2) then

j = arg minj∈lclass:{1,j} is a FS {1− (head + j)}
if j = head then

usedbins = usedbins + b|lclass[head]| /2c
if |lclass[head]| − 2 ∗ b|lclass[head]| /2c = 0 then

remove the class head from lclass
else
|lclass[head]| = 1

end if
else

usedbins = usedbins + min {lclass[head], lclass[j]}
|lclass[head]| = |lclass[head]| −min {lclass[head], lclass[j]}
|lclass[j]| = |lclass[j]| −min {lclass[head], lclass[j]}
Remove the classes between lclass (head) and lclass (j) with cardi-
nality equal to 0

end if
return true

else
return false

end if

26

Algorithm 5 FINDF3

Input I : Instance of the BPP ordered by non-increasing values of vi

Input lclass : list of loading classes in the instance
Input usedbins : number of used bins

if |I| < 4 then
return false

end if
head = u(k) (v1) ; tail1 = u(k) (vN) ; tail2 = u(k) (vN−1) ;
tail3 = u(k) (vN−2) ; cont = false;
if (1− head− tail1− tail2 ≥ 0) and (1− head− tail1− tail2 < tail3)
then

j1, j2 = arg minj1,j2∈lclass:{1,j1,j2} is a FS {1− (head + j1 + j2)}
j3 = arg minj3∈lclass:{1,j3} is a FS {1− (head + j3)}
if j3 ≥ j1 + j2 then

The pair (head, j3) dominates the other bins
if j = head then

usedbins = usedbins + b|lclass[head]| /2c
if |lclass[head]| − 2 ∗ b|lclass[head]| /2c = 0 then

remove the class head from lclass
else
|lclass[head]| = 1

end if
else

usedbins = usedbins + min {lclass[head], lclass[j3]}
|lclass[head]| = |lclass[head]| −min {lclass[head], lclass[j3]}
|lclass[j]| = |lclass[j]| −min {lclass[head], lclass[j3]}

end if
cont = true

else
if (j1 = j3)or(j2 = j3) and case 2 or 3 of the dominance criterion D3
hold then

The triplet (head, j1, j2) dominates the other bins
FINDF3 TRIPLET()

end if
end if
if cont = true then

FINDF3 UPDATELIST()
end if

end if
Remove the classes in lclass with cardinality equal to 0
return cont

27

Algorithm 6 FINDF3 TRIPLET

divHead = 1; divIT1 = 1; divIT2 = 1;
if j1 = head then

divHead = divHead + 1; divIT1 = divIT1− 1;
end if
if j2 = head then

divHead = divHead + 1; divIT2 = divIT1− 1;
end if
if (j1 = j2)and(j1 6= head) then

divIT1 = divIT1 + 1; divIT2 = divIT2− 1;
end if
cont = true

Algorithm 7 FINDF3 UPDATELIST

bin2add = blclass[head)]/divHeadc
if divIT1! = 0 then

bin2add = min (bin2add, blclass (j1) /divIT1c)
end if
if divIT2! = 0 then

bin2add = min (bin2add, blclass (j2) /divIT2c)
end if
usedbins = usedbins + bin2add
lclass (head) = lclass (head)− divHead ∗ bin2add
lclass (j1) = lclass (j1)− divIT1 ∗ bin2add
lclass (j1) = lclass (j2)− divIT2 ∗ bin2add

28

