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EVALUATION OF MASS TRANSFER COEFFICIENTS FOR LAMINAR FLOW
IN MONOLITHIC REACTORS WITH CATALYTIC WALLS
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C.so Duca degli Abruzzi 24, 10129 Torino, Italy.
e-mail: barresi@polchil.polito.it; vanni@polchi1.polito. it

Abstract - The local Sherwood (and Nusselt) numbers in a monolithic reactor with an exothermic
reaction occurring at the catalytic wall have been evaluated. Fully developed velocity profiles in
round channels, with developing concentration (and temperature) profiles have been considered. The
influence of Damkéohler number, dimensionless activation energy, Lewis number and adiabatic
temperature rise has been investigated; a power law kinetics has been assumed, and the effect of the
reaction order has been analysed.

Monolithic reactors have a wide application in chemical engineering, both for pollution control and in
production processes (Irandoust and Anderson, 1988; Cybulski and Moulijn, 1994). Their greatest
advantages are the very limited pressure drop and the large geometric surface/volume ratio, that is
interesting in case of fast catalytic reactions. Villermaux and Schweich (1994) have recently pointed out
that this type of device is particularly well suited for environmentally benign processes; its greatest
advantages are the very limited pressure drop and the large geometric surface/volume ratio.

Monolithic catalysts are constituted of a large number of small straight parallel channels, in which the
flow is laminar, obtained in a ceramic or metallic matrix; the wall is coated with a catalyst, and here
heterogeneous reaction takes place. Circular, square and triangular cells are commercially available for
ceramic monoliths. :

The use of a simple one-dimensional model appears very interesting especially for industrial design
applications, because it greatly reduces the complexity of the problem and the computation time; this is
particularly true for non-axisymmetrical channels. In order to use a lumped pardmeter model, the fluid to
wall heat and mass transfer coefficients must be available; it has been shown that large differences between
the predictions of the model can be obtained using different correlations from literature, and average-value
correlations cannot be employed, but local ones are required (Barresi e? al., 1993).

A few experimental investigations have been carried out on external mass transfer in tubular reactors, in
reactive and non reactive conditions, but the results are contradictory; in some cases the correlations
proposed predict abnormally small values, even an order of magnitude lower than theoretical predictions
(Cybulski and Moulijn, 1994). It has been shown that under reacting conditions, even a small residual
contribution of chemical reaction to the overall rate of the process, essentially controlled by mass-transfer
resistance, may be sufficient to strongly reduce the apparent Sherwood number (Villermaux and Schweich,
1994): in addition, by experimental investigation, averaged correlations are obtained. Therefore it appears
convenient to evaluate the correct Sh and Nu by solving the correspondent two- or three-dimensional
problem with the proper boundary conditions.

Many data are available in the literature on Nu values in compact heat exchangers, whose geometry is
very similar to that of a monolith. The heat transfer problem in the entrance region of a duct, for a laminar
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flowing fluid, is known as the "Graetz problem" and has been widely investigated in the past, considering a
variety of channel shapes and boundary conditions (Shah and London, 1978). Recently, contributions for
the simplest case of circular ducts have been added also by Nguyen (1992, 1993) and Pagliarini (1991),
who analyzed both the developed and developing flow cases and the conjugate problem. A complete
analogy with the Graetz-Nusselt problem for heat transfer in a duct with constant wall temperature has
been usually assumed in order to evaluate the Sherwood number in mass-transfer controlled conditions;
analogy with the constant wall flux case has also been considered, in order to describe the zone of the
reactor before the ignition point. But in the actual case of a fluid reacting at the wall the boundary
conditions are different and can significantly modify the mass transfer coefficient; this fact has been
demonstrated for an isothermal reactor: the largest deviations occur for non-square channels and non-first-
order wall-reaction (Tronconi and Forzatti, 1992). Thus for accurate predictions the correlations for mass
(and heat) transfer must be properly evaluated, especially if the data of interest are the species emission
concentrations, which are much more sensitive than conversion to the value of the Nu and Sh.

Some results are available in the literature for the case of the isothermal reactor: analytical solutions
have been proposed for the entrance region of an isothermal reactor, adopting the Lévéque approximation
[see Basic and Dudukovic (1991)], while recently Tronconi and Forzatti (1992) evaluated numerically the
Sherwood number for an isothermal first order reaction. They considered three different cell shapes,
showing that significant variations in the Sherwood number can occur in dependence of the Damkohler
number in circular and triangular cells, while the variation is very small in square cells; for Da—0 and
Da — the asymptotic Sh approaches the values corresponding to the Graetz-Nusselt problem with
boundary conditions H2 (constant axial flux with uniform peripheral wall heat flux) and T (constant
temperature), respectively.

Very little work, on the contrary, has been done for the case of heat and mass transfer in a duct with
heat generation at the wall due to a surface chemical reaction.

Some modelling works have shown that with exothermic reactions a spike can occur in the Nu and Sh
number correlations, in correspondence of the light-off point: this is a consequence of the creation of a
second thermal inlet (Heck ef al., 1976; Young and Finlayson, 1976); but the dependence on the system
parameters was not investigated. Quest and Mewes (1991), on the other side, have carried out a very
thoroughly investigation of mass transfer in tubular reactor, considering also the case of exothermic
reactions, but only averaged Sherwood numbers, and for nonisothermal cases only averaged mass fluxes,
have been reported.

The aim of this work is to evaluate numerically the local Sherwood and Nusselt numbers in the entrance
zone of a round channel, with an exothermic reaction occurring at the wall and to show it dependence on
the relevant system parameters; orders of reaction both lower and higher than one will be investigated. The

analysis will be limited to the case of cylindrical channels, with constant property fluid and
hydrodynamically developed flow.

THE MODEL

A Newtonian constant property fluid, with fully developed parabolic velocity profile, is considered:
viscous dissipation is neglected. Thermal conduction in the solid and axial diffusion in the fluid are also
neglected: in ceramic monoliths and for the range of Re and Pe values generally adopted in monolithic
converters these simplifications are valid; a perfectly adiabatic reactor is considered.

The governing equations are:

2 2
—2(v>(1——’-7)?1+£ 107,971 g (1
R°) oz pc|ror or
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with the boundary conditions

=1, ; W =Wy z=0, 0<r<R (3)

P2, o, _ kyexp(—E/RT )M,,(%) z.20 (4)
or M,

-k%z (-AT, )k, exp(~E / RT)(P—‘&) z 20 (5)
A

Uniform temperature and concentration profiles are assumed at the inlet. A general power—law kinetics
is considered, where 7 is the apparent reaction order:

ri'= -k exp( RET) (6)

The energy and material balances must be solved simultaneously, as the reaction rate and the heat
generation rate at the wall depends both on the reactant concentration and the temperature at the wall.
Introducing the dimensionless variables

O = (T-Ty)/AT ,q ; Q=wiw, ; x=2/(D Re Sc) ; y=(2r/D)y? (7)
the governing equations and the boundary conditions become:

Q0 8 aQ Q

—= +y 2 (8)

& (1-y) dy

20 8le (0® 50 |

P B [P, ,9° ©)
ox (A-y)\oy ~ oy

Q=1; 60=0 x=0,0<y<l (10)

XY o Da, (YSG) x>0 (11)
. 4 1450

0 _oDa exp( 75@) x>0 (12)
o,  4le \1+80

Axis symmetry is imposed implicitly, by assuming that the solution is a function of y, that is, an even
function of r. The solution is dependent on the kinetic law (the order of reaction) and on four additional
parameters:

ky " exp(—— R—Z%)D

@A
the dimensionless adiabatic temperature rise, 6=AT,4/T;
the dimensionless activation energy, y=E/RT,

the Damkohler number, Da = (13)
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the Lewis number, Le=Sc/Pr.
The local Sherwood number has been calculated according to the following relationships:

oQ
—4— Q,Da exp(——————yS@“’ )
Sh = Yy 1+80,, ©)
@)-a. (@)-a.

By applying the orthogonal collocation method (Michelsen and Villadsen, 1978) along the radial
direction, the previous set of equations has been transformed into an initial value system of ordinary
differential equations, which has been solved by means of the routine lsode of ODEPACK (Hindmarsh,
1983). The calculated Sherwood numbers have always at least 5 significant figures. The precision was
verified by comparing a first solution with a more accurate one, obtained by doubling the collocation
points and decreasing ten times the bound on the local error of the integrator.

It can be noted that if Le=1, a similarity exists between the energy and mass balance equations, and the
respective boundary conditions; this can be evidenced considering the substitution t=1-®. Therefore,
limited to the case of equal Schmidt and Prandtl numbers, Sh=Nu; as concemns the concentration and
temperature profiles in the channel, one can be obtained from the other immediately considering that O=1
-Q.

RESULTS AND DISCUSSION

The dependence of the Sherwood (and Nusselt) number on the Damkéhler number, activation energy,
adiabatic temperature rise, Lewis number and reaction order has been investigated, and will be discussed in
the following. The model equations have been solved for the following range of the parameter values: Da =
0.001 +100;y=0+30;6=-0.5+1;Le=0.5+100;n0=0.5 + 2.

15.0 , . 10

=0.5
10.0 5\ !
~

Sh ~o

50| ~2

™
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n=1.0
50+t

-

0.0
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0.0 - - - X
107 107 10" 10° 0.50 0.75 1.00
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Figure 1. Dependence of local Sh on reaction order » Figure 2. Dependence of concentration profiles on
and Damkéhler. Athermal reaction (or ¥y = 0). Damkeéhler and reaction order; conditions as in Fig. 1.
.Da=001;.----Da=1;- - ,Da=100. , average over the cross section; - - -, wall value.

1046 4




In previous works only first order kinetics has been
considered. Here a more general power law equation
has been investigated; this is a simplified kinetic law,
but still widely used in practical applications. Its use is
very convenient to highlight the dependence of the
Sherwood number on the kinetic law, as more
complex kinetics, included those of the Langmuir-
Hinshelwood type, can be approximated by a
fractional order kinetics. ’

In Figure 1 the effect of the reaction order on the
behaviour of the Sherwood number is shown in the
limit case of an athermal reaction; this is also
correspondent to the limit case of reaction with zero
activation energy, and therefore independent on the
wall temperature (for a constant property fluid). With
a first order kinetics, the Sh vs x curves obtained at
different Damkéhler are parallel, and have different
asymptotic values, in the range 4.364 - 3.657 (Da—0
and Da —oo respectively), as pointed out by Tronconi
and Forzatti (1992). A different behaviour is observed
for the other orders of reaction, but a dependence on
the reaction order can be noted only at high
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10°
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conversion rates (high Da); at very low Damkéhler a Figure 3. Dependence of local Sh (and Nu) on reaction
unique curve is obtained, independent of 7. order n. Exothermic reaction; Le = 1, y=20; 8 = 1.

In Figure 2 the concentration profiles along the Uppergraph:Da=0.1; lower graph: Da = 100.
monolith axis are shown; at high Damkéhler values the wall concentration fall to zero quickly, and as a
consequence the Sh curve approaches that corresponding to constant concentration; it can be noted that in
case of fast reaction the reactant is almost completely consumed when the asymptote in the Sh curve is
reached; thus for reactors the asymptotic Sherwood number is of little significance, if the conversion rate is
high.

Significant differences can be observed when an exothermic reaction occurs (see Figure 3). At low Da a
spike can occur, whose location is slightly affected by the reaction order; at high Da, the Sherwood
number becomes independent of 1, as shown in the lower graph of Figure 3, where the three curves
overlap.

The influence of the Lewis number on the Sherwood and Nusselt number is shown in Figures 4 and 5. A
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Figure 4. Dependence of local Sh on Lewis number, at

Figure 5. Dependence of local Nu on Lewis number,
low and high Damkéhler. y=30;8=1,n=1.

at low and high Damkéhler.. y=30:8=1:n= 1.

1046

wn



wide range of Le values, representative of gas and
liquid systems, has been conmsidered. The Lewis
number takes into account the relative velocity of
development of the concentration and temperature
profiles; however Nu and Sh are quite sensitive to the
Sc/Pr ratio only at low Lewis numbers; in the range of
values characteristic of liquid systems, variations have
a very small effect.

If Le is different from unit, a different and not
symmetrical behaviour occurs for the Nusselt and the
Sherwood numbers; it must be noted that in this case
the Nu curves are more conveniently plotted using
z/(D Re Pr) as dimensionless coordinate: by this way
the curves relative to the entrance zone can be
grouped together, similarly to what happens for the Sh
curves. In any case, both for the Nu and the Sh
number, the location of the spike depends on Le; but
while the asymptotic value of the Sherwood number is
not affected by the Lewis number, the latter influences
the asymptotic Nusselt.

It can be observed that for high values of the
dimensionless activation energy the influence of the
Lewis number on the asymptotic value is practically
independent of Da (see Figure 5), while a small effect
of Da is observed for low y values.

The Damkéhler number takes into account the
relative rate of reaction at the wall and of species
diffusion to the wall; therefore its value strongly
affects the behaviour of the Sherwood number, and in
particular the ignition in the reactor and thus the
location of the eventual spike in the Sh curve; this fact
is clearly shown in Figures 3-5. The location of the
spike moves toward the inlet when the Damkéhler
increases; for very high values of Da, the ignition
occurs at the very beginning of the channel, and
practically all the reactor is in light off conditions. The
Da parameter is evaluated at the inlet condition; but
the local values of the reaction rate strongly depends
on species concentration and temperature; this explain

25.0

200

150 1

Sh=Nu

100

50¢t

Figure 6.

, 2I(D Re Sc)
Dependence of local Sh (and Nu) on

dimensionless activation energy, at low and high
Damkéhier number. 8=1;Le=1,n=1.

1.00

Figure 7.
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0

10

107 107

2#(D Re Pr)
Axial temperature profile for different

values of Damkéhler and activation energy.
§=1;Le=1;n=1.

the influence of the kinetic law and of the activation energy and heat effect of the reaction on the position

and intensity of the spikes.

The dimensionless activation energy is a measure of the temperature sensitivity of the reaction, and is
the parameter that, with Damkéhler, has the strongest effect on the location of the spikes.

Figure 6 shows that an increase of y (= E/RTy) causes an earlier light off of the reactor, and thus moves
the spikes toward the inlet. If ignition occurs at the reactor inlet, Sh becomes very weakly affected by the
activation energy value, and a monotonically decreasing curve is obtained in practice. An example of the
temperature profile is shown in Figure 7, where the influence of Damkohler and activation energy is

evident.
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In the limit of y—>0 (and if the dependence of the 15.0
physical properties on temperature is neglected), the
mass and energy balances become uncoupled, and the
Sh curves are equal to those obtained for an isothermal
reaction (see Figure 1). 100 |

The adiabatic temperature rise accounts for the
thermal effect of the reaction; both endothermic and
exothermic reactions have been considered. The effect
of this parameter is relatively weak; in fact, it must be sor
considered that the values of 8 considered are very
large for general applications. As expected, 6 affects
the position of the ignition point, but has small 00 , ,
influence on the other regions (Figure 8). Only at “10° 10" 10™
intermediate values of the Damkdohler some differences ‘ /(D Re Sc)
are appreciable; in this case the curves corresponding Figure 8. Dependence of local Sh (and Nu) on 8.
to negative § values (endothermic reactions), that are Da=001;y=30;Le=L;n=1.
generally very close to the limit curve of an athermic 150
reaction, are intermediate between this one and those
with positive & (Figure 9).

The influence of Da, y and & on the asymptotic
Sherwood and Nusselt pumber (at Le = 1), is
summarised in Fig. 10; the continuous line is the curve
corresponding to reactions with no activation energy
(y = 0), and is also the limit curve for athermic
reactions (& —0). The effect of an exothermic reaction
is to decrease the asymptotic value: the variation range
is comprised, for the circular channel, between 4.364
and 3.657, that is to the same range in which 00 4
variations occurs for the isothermal case: these limiting 10 2/(D Re S¢)
values for Da—0 and Da—o correspond to the Figure 9. Dependence of local Sh (and Nu) on 8.
solution of the classical Graetz problem with the pa=1 y=30;Le=1;n=1.
boundary conditions of constant temperature and
constant axial wall heat flux respectively (Shah and
London, 1978); in case of non-axisymmetric geometry,
the second limit would be that corresponding to
constant axial and uniform peripheral wall heat flux,
with peripherally varying temperature). For an )
endothermic reaction the asymptotic values are higher _$40} N =0
than for the athermal case, but still bounded by the %
limit value of 4.364. It is evident that the influence of
the adiabatic temperature rise is significant only at \,730 .
intermediate values of Da and y; at high Damkéhler, IR e hizee =
no other parameter is significant. '

Sh=Nu
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CONCLUSIONS Figure 10. Dependence of asymptotic Nusselt and
The local Sherwood number has been determined in Shgrvvtgod number - on dDz;x?m;oh‘}er, chmensmnlgss
the region of developing concentration profiles in a activation energy (y) and adiabatic temperature nise
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the wall; both exothermic and endothermic reactions have been considered, and the influence of the kinetic
law has also been investigated.

With exothermic reactions the behaviour of the Sherwood number is complex, as ignition can occur in
the channel and this causes a spike in the Sh curve, with the formation of a second inlet and a large
increase in the transfer coefficient.

The position and intensity of the spikes depend strongly on Damkéhler and activation energy, while
reaction order, Lewis number and adiabatic temperature rise have a weaker effect; at high Damkohler
numbers, ignition occurs at the inlet and a monotonically decreasing curve is obtained in practice.

In isothermal conditions in a round channel at higher Da correspond lower values of the Sherwood
number; if light off occur in the reactor, the transition to lower values occur after the spike.

The analogy between heat and mass transfer holds true only at Le = 1; in the other cases the effect of
the Lewis number is different for Sh and Nu.

It must be noted that in most chemical engineering applications the use of the asymptotic values would
lead to an underestimate of the phenomenon, because large part of the reaction may occur in the zone in
which the thermal profile is developing; in some cases no asymptote can be reached, because the reactants
are completely consumed before. The accurate evaluation of the heat transfer in reactors in which
exothermic reactions are carried out is required in cases in which hot spots can occur and deteriorate
severely the characteristics of the catalyst or the performances of the reactor; in this respect it can become
important to predict correctly the occurrence of a new thermal inlet corresponding to the light off of the
reactor.

Work is currently in progress to extend the current analysis to the case of fluids with temperature
variable properties; the influence of the developing velocity profile will be also taken into consideration.

Acknowledgements - Support to this work by the Italian National Research Council (C.N.R. - Progetto
Strategico) is gratefully acknowledged.

NOMENCLATURE T temperature

& specific heat AT,s adiabatic temperature rise

C4 molar concentration AU , internal energy change

D channel diameter v fluid velocity

Dy diffusivity w mass fraction

Da  Damkéhler number X dimensionless axial coordinate, def. in (13)
E activation energy y dimensionless radial coordinate, def. in (13)
k thermal conductivity = axial coordinate

ko kinet-ic constant Greek symbols

Le  Lewis number (Sc/Pr) Y dimensionless activation energy, def. in (8)
M molegular weight ) dimensionless adiabatic temperature rise,

n reaction order def. in (13)

Nu Nusselt number densi

R channel radius P .ensny. .

R gas constant © dimensionless temperature, def. in (7)

, radial coordinate Q dimensionless concentration, def. in (7)

r! surface reaction rate, def. in (1) 0 initial conditions

Re  Reynolds number © asymptotic value

Sc Schmidt number w wall conditions

Sh Sherwood number <>  average over the cross section
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