
06 November 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Data Mining Techniques for Effective Flow-based Analysis of Multi-Gigabit Network Traffic / Baldi, Mario; Baralis, ELENA
MARIA; Risso, FULVIO GIOVANNI OTTAVIO. - ELETTRONICO. - (2004), pp. 330-334. (Intervento presentato al
convegno 12th International Conference on Software, Telecommunications and Computer Networks (SoftCom 04)
tenutosi a Split (Croatia) nel October 10-13, 2004).

Original

Data Mining Techniques for Effective Flow-based Analysis of Multi-Gigabit Network Traffic

Publisher:

Published
DOI:

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1417048 since: 2016-11-28T14:42:01Z

Abstract: This paper describes a novel approach to traffic
capture and analysis in high speed networks. A format for the
representation of captured packets that (i) limits the amount of
data stored and (ii) enables efficient processing is defined. Then,
data mining techniques widely studied and deployed for
extracting relevant information from extremely large data
bases, are applied as a means to effectively process the
significant amount of captured data.
The paper provides a first evaluation of the proposed approach
in terms of its ability of extracting relevant information and its
computational complexity. Such evaluation is based on the first
experiments run on the prototypal implementation of the
proposed approach within the Analyzer traffic capturing and
analysis tool.

I. INTRODUCTION

 ne of the most critical issues in keeping a network
under control is capturing and analyzing its traffic. The
complexity of these tasks is increasing as networks

become faster and faster.
Traffic capturing and analysis goes through the steps

depicted in Figure 1, all of which are critical when operating
at high data rates. Some equipment vendors, such as Endace
[1], offer network interfaces specifically designed for
supporting packet capture at high data rates (e.g., 10 Gbps),
thereby facilitating the realization of the first step in Figure 1.

Capture
On-line

Processing
Dump results

DiskDisk

On-line monitoring and analysis

Off-line analysis

Off-line
Processing

Dump results

DiskDisk

Figure 1. Basic steps in network traffic capture and analysis.

The time required to receive a minimum size Ethernet
frame at 10 Gbps speed is less than 70 ns, which leaves a few
hundreds clock cycles to a multi-GHz processor for handling
a captured packet. This makes the realization of the second
step critical. However, the deployment of multi-processor
machines that concurrently process multiple packets
increases the time available for handling each packet.

While ad-hoc solutions based on advanced hardware can
mitigate the problems related to the first two steps in Figure
1, no straightforward solution exists to reduce the criticalities

of the following steps. For instance, a 10Gbps pipe carries
more than 100 TBytes in the course of a day, which is a
tremendous amount of data to be stored on a disk for
subsequent processing. This results in two problems: on the
one hand, the infrastructure needed to store such amount of
data is sophisticated and costly and, on the other hand,
locating relevant information within the saved data is
computationally intense and time consuming.

This work addresses the above problems, whose solutions
are strictly related since the complexity of off-line data
processing depends on the amount and format of such data.
After having provided the current state of the art in
significantly reducing the amount of data stored (Section II),
we describe our approach, which consists of two strictly
related parts. First, Section III defines a format to represent
captured packets that (i) limits the amount of data stored and
(ii) enables efficient processing. Second, as explained in
Section IV, data mining techniques [13] widely studied and
deployed for extracting relevant information from extremely
large data bases are applied to our problem. A prototypal
implementation of the proposed approach has been integrated
into the Analyzer traffic capturing and analysis tool [2].
Section V discusses the benefits and limitations expected
from the deployment of the proposed approach, especially for
what concerns the extraction of relevant information, which
is still under evaluation.

II. RELATED WORK

Two methods are known in literature to reduce the amount
of information about network traffic to be stored before
further processing.

Packet sampling [3] consists in capturing only a subset of
the packets, e.g. one out of N. Although several studies
demonstrate that statistical properties can be inferred from
sampled traffic without any noticeable loss of information,
this approach is not be effective when all packets must be
analyzed. One example is the detection of network attacks
that are usually based on a small number of packets
exploiting a security bug (e.g. ping of death).

The second method is based on the fact that each packet
can be associated to a flow (e.g. a TCP connection). A flow
can be defined as the set of packets that share the value of
some fields in their headers (e.g. IP source and destination
addresses, TCP source and destination ports, etc.), which can

Data Mining Techniques for Effective
Flow-based Analysis of Multi-Gigabit Network Traffic

Mario Baldi, Elena Baralis, Fulvio Risso
Computer Engineering Department

Politecnico di Torino, Italy
E-mail: {mario.baldi, elena.baralis, fulvio.risso}@polito.it

O

be seen as the signature of the flow. Flow-based techniques
use this signature as elementary unit for storing traffic
information: the network administrator is no longer able to
see complete packets, but this might not be necessary for
most applications. However, this approach cannot be used in
case the payload should be available for inspection, e.g. in
case of applications that detect network attacks based on
some data in the packet payload (e.g. a malformed URL).

One of the most common flow-based technologies is Cisco
Netflow [4] (currently being standardized under the umbrella
of the IETF IPFIX working group [5]) in which a probe
(usually running within a network device) analyzes traffic
and creates a record for each flow. Flow records are then
exported to a collector machine for further processing. A
flow is usually exported when one of following conditions
applies:

• the flow ends (e.g. a TCP segment with the FIN or
RST flags is captured);

• the flow has been inactive for a certain period of time,
i.e. no packets belonging to it have been observed for
a given time (usually 15 sec);

• the flow is still active, but a timeout (usually 30 min)
is expired; this is useful for exporting long-lasting
flows on a regular basis;

• internal constraints (e.g. counters wrapping or low
memory) compromise the probe functionality or
accuracy; in this case, a flow may be forced to
“expire” prematurely.

The main advantage of this technology compared to
similar proposals is the support offered by many other
vendors, among which is notably included Cisco Systems.
However it suffers several limitations [10], among others (1)
the large number of events possibly triggering flow export
(which increases the amount of required processing) and (2)
records representing a variable time of flow life, which
causes unnecessary complexity and inaccuracy for trace
analysis. Furthermore, Netflow (and IPFIX) is suitable only
for TCP/IP networks since it does not take into account either
link-layer headers, or other protocol stacks.

The Real-time Traffic Flow Measurement (RTFM) IETF
working group [6] proposed another technology based on
flow sampling in the past [7]. From many points of view, the
RTFM proposal is more advanced than Netflow, among other
reasons because processing in the probe can be partially
customized. The Simple Ruleset Language [8] provides a
method to customize both the flow definition and the actions
(byte count, etc.) to be performed on each flow. Additionally,
flows are bidirectional, making it easier to keep under control
the two directions of a connection. Interaction between the
probe and the flow collector is done through SNMP queries,
therefore the probe must store flow records in memory until
the collector asks for them. Unfortunately, router vendors did
not support this proposal and the public-domain NeTraMet
software [9] is the only implementation available.

The sFlow technology [11] is a mixture between packet

sampling and flow extraction. Packet sampling is deployed to
achieve scalability and either sampled packets or the flow
information related to it can be exported. This approach
makes this technology suitable for a large set of
environments because it allows both packet analysis
(although limited to the first few hundred bytes of the packet)
and flow analysis. The most important limitation is the lack
of support from some of the key equipment vendors.

A common problem among the presented technologies is
the impossibility to customize the set of fields being stored
for each flow, which is one of the key advantages of the
approach presented in this paper. Other solutions, such as
standards like RMON (the IETF’s remote network
monitoring system) or applications like ntop [11][12],
provide another way to measure network traffic. However,
while they allow a network manager to determine traffic
levels in network segments, total traffic loads to/from busy
hosts, etc., they do not provide any flow measurement
capability.

III. DATA COLLECTION AND STORAGE

Saving to disk each captured packet — or possibly just a
snapshot of it — may be feasible in some cases, but it
anyway requires a significant amount of resources.
Therefore, such approach cannot be considered as the basis
of generic traffic monitoring procedures.

In any case, single packets are not necessarily relevant for
many types of traffic analysis whose focus is on packet
flows. Our approach is based on flow-based processing: a
probe collecting data saves a given set of information related
to each flow, rather than dumping to disk (part of) the
content of each packet. As mentioned earlier, a flow is a set
of packets that have the same values in a given set of fields;
in our approach they are not necessarily IP source/destination
address, source/destination port, and protocol type — widely
used as transport flow identifiers in TCP/IP networks. Our
flow definition mechanism is more general and several fields
can be included in the set that best characterizes each flow.
For instance, if the administrator is interested in the analysis
of differentiated services traffic, the value of the DS field can
be saved for each flow. Alternatively, if the administrator is
interested only in the accounting based on the IP source
address, this can be the only parameter identifying a flow.
Due to the flexible architecture of the underlying dumping
mechanism, the addition of a new field in the definition of
flows does not preclude the possibility of extracting statistics
on previously stored data that do not have such information.
A difference between our approach and the RTFM one is that
the former does not support netmasks (e.g. network
130.192.0.0/16). The problem of using such a coarse flow
definition is that there is no way to disaggregate data. For
example, the amount of traffic sent by each host cannot be
known.

The most relevant novelty of our approach is that the fields
that are saved for each flow are completely customizable. For

instance, the fields that are extracted by default in the current
prototypal implementation of our solution are listed in Table
1; however, any field present in any protocol header can be
extracted. The flow identification process does not require all
these fields to be present at the same time: for example,
ARP-related fields are not present when analyzing IPv6
flows.

Protocol Field name (s)
Ethernet Source and destination address
Ethernet Protocol type
VLAN Priority
VLAN VLAN ID
ARP Source and destination IP address
IP / IPv6 Traffic class
IP / IPv6 Protocol type / Next header
IP / IPv6 Source and destination address
ICMP / ICMPv6 Type
TCP /UDP Source and destination port

Table 1. Default list of fields extracted for each flow.

For each packet the probe determines the flow the packet
belongs to and updates a set of counters (e.g. number of
bytes/packets, timestamps, etc.). The selected fields are
extracted for each flow and periodically dumped to disk
together with the value of the above counters. For instance,
the NetLogger module of the Analyzer tool [2], a prototypal
implementation of our approach, by default dumps the
content of the flow cache every 2 minutes. A session lasting
longer will be represented by several subsequent records. The
time between subsequent dumps of the flow cache is called
flushing interval.

The complete dump of the flow cache every flushing
interval is somewhat new among the flow-based technologies
currently in use (NetFlow, sFlow). This solution uses more
memory (expired flows reside still in memory) and disk (a
long-lasting flow originates several flow records), but makes
processing simple because the database contains a periodic
and complete snapshot of the exiting flows. Therefore, real-
time statistics, such as the amount of TCP traffic over time,
are simpler to obtain.

The NetLogger module dumps flow information into a
database to facilitate further information processing. The
structure of the database is shown in Figure 2.

Num_Elements

Packets_Count

Bytes_Count

Last_Seen

First_Seen

End_Time

Start_Time

Interface_ID

ID

Transactions

Num_Elements

Packets_Count

Bytes_Count

Last_Seen

First_Seen

End_Time

Start_Time

Interface_ID

ID

Transactions

Value

Field_ID

Trans_ID

ID

Elements

Value

Field_ID

Trans_ID

ID

Elements

Field

Protocol

ID

Field_Type

Field

Protocol

ID

Field_Type
1

N
N

1

Figure 2. Structure of the database that stores network flows.

In order to support a variable number of fields within each

flow, data is organized in three tables: a transaction table that
keeps invariant information related to each flow, an element
table that holds, for each flow, the list of fields to be stored,
and a Field Type table that lists all valid fields.
Figure 3 shows a sample table. Although this structure is
slightly more complex than the traditional one (one table with
a fixed number of fields, and one record per flow), it has
proved much more flexible.

srcIP3

...

2

1

ID

...

Ethernet

Ethernet

Protocol

...

dst

src

Field

srcIP3

...

2

1

ID

...

Ethernet

Ethernet

Protocol

...

dst

src

Field

0A0A0A0A313

............

2

1

Field_ID

2

1

ID

1

1

Trans_ID

0003E318EA70

00E063137E04

Value

0A0A0A0A313

............

2

1

Field_ID

2

1

ID

1

1

Trans_ID

0003E318EA70

00E063137E04

Value

10:12:59

10:13:58

Last_Seen

6280

11988

Bytes_Count

7

19

Packets_Count

1

1

Interface_ID

10:14:00

10:12:00

Start_Time

............

10:12:51

10:12:01

First_Seen

2

1

ID

10:13:59

10:13:59

End_Time

2

3

Num_Elements

10:12:59

10:13:58

Last_Seen

6280

11988

Bytes_Count

7

19

Packets_Count

1

1

Interface_ID

10:14:00

10:12:00

Start_Time

............

10:12:51

10:12:01

First_Seen

2

1

ID

10:13:59

10:13:59

End_Time

2

3

Num_Elements

Transactions table

Elements table

Field Types table

Figure 3. Snapshot of records stored in the database.

SQLite was selected as a database engine since, as shown by
Table 2, it provides very fast access and its overhead is only
5 times the time required to store data on a flat file (see Table
3). Since this engine cannot be configured as a standalone
database server, scalability might become a problem because
of the impossibility to split the load between the network
probe and the database server. In order to optimize record
insertion time, the flow export process dumps data on disk in
a flat file and subsequently data are imported in the database
through a bulk insertion. This also offers the flexibility to use
a different database engine if needed, at the expense of disk
space and speed.

Database Type Record/sec written on disk
Access 2002 344
MySQL 3.23.53 1023
SQLite 2.8.0 11565
Text File 69657

Table 2. Number of records per seconds written on disk, using
different archive formats on a dual Xeon 2. GHz,120GB HD .

As shown in Table 3, the NetLogger module at the default
flushing interval of 2 minutes features a 20 to 1 reduction in
the disk space requirement when compared to saving each
packet, unless indexes are created in order to speed up
queries. The resulting disk files can be further compressed
by means of general-purpose compression utilities, such as
gzip, thus obtaining disk-saving factors of more than 80:1.
Obviously, as shown in Table 3, increasing the duration of
the flushing interval further increases (even though mildly)
the disk-saving factor. However, according to the figures
shown in Table 3, a flushing interval larger than two minutes
is not advisable since the database reduction is not significant

while a longer sampling period makes computing traffic
statistics harder.

 Flushing Interval
Database Type 2 min 3 min 4 min
Access 2002 17:1 18:1 19:1
SQLite 2.8.0 19:1 20:1 20:1
SQLite 2.8.0 with indexes 10:1 10:1 11:1
Text file 29:1 31:1 32:1

Table 3. Disk space saving with different archive formats and
sampling intervals.

The Netlogger module includes a graphical interface
(shown in Figure 4) that allows extracting traffic statistics out
of the flow database through specific SQL queries. Extracted
information includes both general statistics (protocol
distribution, generated traffic ordered by source, and more)
and field-specific information (e.g. traffic sent by host X). In
order to allow users to get results in a couple of clicks and
without any knowledge of the SQL language, a list of
predefined queries is provided. Being such list specified in a
configuration XML file (read by the user interface), it can be
customized. Although the speed in executing the query
depends on the complexity of the query itself, most
commonly used information can be obtained in a couple of
seconds on a regular PC (e.g. Pentium IV 2.4 MHz). The
system cannot provide real-time network data (e.g., statistics)
because samples corresponding to the current flushing
interval (default two minutes) are not in the database — the
captured flows have still to be exported by the probe.
However, this is not an issue for many monitoring and
analysis applications.

Figure 4. Extracting traffic statistics from the NetLogger database.

IV. MINING RELEVANT INFORMATION

A set of standard statistics (e.g. the protocol distribution,
the amount of traffic sent by every host, etc.) can be easily
obtained from the data stored as described above. However,
even though the proposed approach results in significantly

less information than a raw packet dump would produce,
locating added-value information (e.g., locating an ongoing
security attack) might be extremely cumbersome, if at all
possible, for the network administrator.

We have been experimenting the application of data
mining techniques to large databases structured as described
in the previous section, wherein each sample of a flow is
represented by a record. In particular, our prototypal
NetMiner module, integrated in Analyzer, implements data
mining techniques for the extraction of Frequent Itemsets and
Association Rules [13].

An Itemset is a set of elements – (record field, value) pairs
in the database – characterized by a given value in one or
more fields (e.g., IP source address and TCP source port). An
Itemset is considered Frequent if its cardinality exceeds a
given threshold with respect to the total number of samples.
For example, the set {host_dest=X, port_dest=Y} is a
Frequent Itemset if there are more than Z% (e.g. 5%) samples
in the database containing the set.

Association Rules are extracted from frequent itemsets and
show correlations among (contained) itemsets. For instance,
if a host S is active mostly as a web server, the association
rule:

IP dest_address = S → TCP dest_port = 80

shows that there is a high probability that the flows destined
to the server (characterized by the value S in the IP
destination address field) contain 80 (the default TCP port for
a web server) in the TCP destination port field.

Data mining techniques are not widely used for network
operation and management. Most research is related to
intrusion detection systems (IDS). Lee, in [14] proposes an
IDS built combining various data mining techniques, thus
reducing the need to manually analyze and encode intrusion
patterns. Portnoy, in [15], proposed a method to build an IDS
based on clustering and anomaly detection. This method aims
at dividing network traffic into clusters and then separate
clusters containing normal traffic from clusters that
represents intrusions, without requiring a “normal data set” to
train the system. However, the assumptions on which the
method is based are not realistic, thus making it of limited
use in practice. The most important problem of IDS based on
data-mining techniques is the false positive rate, which may
well be around 1%. For instance, a false positive rate of 1%
with the assumption of 1 intrusion every 10,000 normal
transactions, results in a false alarm ratio above 99%, which
makes these methods unusable without additional techniques
for false alarm reduction.

We believe that data mining techniques can be deployed
much more effectively in other fields where the false
positives are not an issue. In the work presented in this paper
the output of the data mining process is used to create a
snapshot of the network: which hosts act as servers, which
ones are clients, which ones are routers, and so on. The

network administrator can use the snapshot produced by the
NetMiner module to check if hosts behave as expected; in
addition, NetMiner can highlight changes in the network by
comparing in snapshots taken at different times.

V. CONCLUDING REMARKS

While the data collection and storage approach proposed
in Section III and its implementation in the NetLogger
module can be considered stable, the data mining approach
and its support by the NetMiner module still need a more
detailed evaluation and field trial. Even though tests
conducted with the tool on our University campus network
(encompassing about 6,000 end-systems) provided some
insight in the benefits and shortcomings of the proposed
approach, much more can be learned through a more
extensive deployment in various environments and by
various users.

Among the results of the preliminary tests is the ability to
effectively locate peer-to-peer applications. It is important for
network administrators to be able to locate and monitor the
traffic generated by these applications that are usually
installed and controlled directly by network users. However,
this is not easy with traditional traffic monitoring and
analysis methods for two reasons. First, often peer-to-peer
applications are not among the top network speakers (i.e.,
they do not generate much traffic), thus they cannot be
identified by looking for large amount of data being
transferred. Second, they use random ports, therefore they
cannot be located by looking for traffic originated from or
destined to specific ports. Conversely, the proposed data
mining based approach easily locates them by singling out
association rules between hosts and the ports they use.

On the down side, our experience with the approach shows
that the interpretation of results of the data mining process is
far from being straightforward. This is mainly due to the
large amount of information returned by data mining
techniques that the network administrator is required to go
through. For example, it is not uncommon that hundreds of
thousands association rules be identified on a traffic trace.
The problem of sifting through them is emphasized by the
fact that the network administrator is not — and should not
become — a data mining expert. Thus, our work on the
NetMiner module has focused on providing a user interface
that, being designed specifically for network analysis
applications, facilitates the network administrator in
browsing through the results provided by the data mining
process. More work is being done to improve this aspect of
the tool.

More investigation and new results are expected on an
important by-product of the proposed approach: using the
outcome of the data mining process as an extremely compact
representation of captured network traffic. In fact, the size of
the output of the proposed data mining techniques can be
more than 50 times smaller than the database on which they
are applied (described in Section III). Consequently, it would

be interesting to demonstrate that most of the relevant
information that can be inferred from the original traffic
dump can also be inferred from the output of the data mining
process. In this case, the former could be discarded and only
the latter archived for later reference, thus dramatically
reducing the resource requirement for keeping historical
traces of network traffic.

ACKNOWLEDGMENTS

The authors wish to thank Alessandro Cerutti and Pierluigi
Giverso for their valuable work on the implementation of the
NetLogger and NetMiner modules.

REFERENCES

[1] Endace Measurement Systems, web site at
http://www.endace.com.

[2] The NetGroup at Politecnico di Torino, Analyzer 3.0 alpha.
Analyzer web site, http://analyzer.polito.it/30alpha/.

[3] K. C. Claffy, G. C. Polyzos, H. W. Braun, Application of
Sampling Methodologies to Network Traffic Characterization,
Proceedings of SIGCOMM 1993, pages 194-203.

[4] Cisco Systems, Cisco IOS Netflow. Technical documentation
available at
http://www.cisco.com/warp/public/732/Tech/nmp/netflow/.

[5] Internet Engineering Task Force, IP Flow Information Export
(IPFIX) Working Group; home page at
http://www.ietf.org/html.charters/ipfix-charter.html.

[6] Internet Engineering Task Force, Realtime Traffic Flow
Measurement (RTFM) Working Group; home page at
http://www.ietf.org/html.charters/rtfm-charter.html.

[7] N. Brownlee, C. Mills, G. Ruth, Traffic Flow Measurement:
Architecture, RFC 2722, IETF Network Working Group,
October 1999.

[8] N. Brownlee, SRL: A Language for Describing Traffic Flows
and Specifying Actions for Flow Groups, RFC 2723, IETF
Network Working Group, October 1999.

[9] N. Brownlee, Using NeTraMet for Production Traffic
Measurement, Proceedings of the 2001 IEEE/IFIP International
Symposium on Integrated Network Management, May 2001,
Pages 213-226.

[10] C. Estan, K. Keys, D. Moore, G. Varghese, Building a Better
NetFlow, Proceedings of SIGCOMM 2004, August 2004.

[11] P. Phaal, S. Panchen, N. McKee, InMon Corporation's sFlow:
A Method for Monitoring Traffic in Switched and Routed
Networks, RFC 3176, IETF Network Working Group,
September 2001.ntop, web site at http://www.ntop.org

[12] L. Deri, S. Suin, Effective Traffic Measurement using ntop,
IEEE Communications Magazine, pages 138-145, May 2000.

[13] J. Han, M. Kamber, Data mining: concepts and techniques,
Morgan Kaufmann, 2001.

[14] W. Lee, S. Stolfo, A Framework for Constructing Features and
Models for Intrusion Detection Systems, ACM Transactions on
Information and System Security, Volume 3, Number 4,
November 2000, pg 227-261.

[15] L. Portnoy, E. Eskin, S. Stolfo, Intrusion detection with
unlabeled data using clustering, Proceedings of the ACM
Workshop on Data Mining Applied to Security (DMSA 2001).

