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Abstract: This paper describes a novel approach to traffic 
capture and analysis in high speed networks. A format for the 
representation of captured packets that (i) limits the amount of 
data stored and (ii) enables efficient processing is defined. Then, 
data mining techniques widely studied and deployed for 
extracting relevant information from extremely large data 
bases, are applied as a means to effectively process the 
significant amount of captured data.  
The paper provides a first evaluation of the proposed approach 
in terms of its ability of extracting relevant information and its 
computational complexity. Such evaluation is based on the first 
experiments run on the prototypal implementation of the 
proposed approach within the Analyzer traffic capturing and 
analysis tool. 

I. INTRODUCTION 

 ne of the most critical issues in keeping a network 
under control is capturing and analyzing its traffic. The 
complexity of these tasks is increasing as networks 

become faster and faster. 
Traffic capturing and analysis goes through the steps 

depicted in Figure 1, all of which are critical when operating 
at high data rates. Some equipment vendors, such as Endace 
[1], offer network interfaces specifically designed for 
supporting packet capture at high data rates (e.g., 10 Gbps), 
thereby facilitating the realization of the first step in Figure 1. 
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Figure 1. Basic steps in network traffic capture and analysis. 

The time required to receive a minimum size Ethernet 
frame at 10 Gbps speed is less than 70 ns, which leaves a few 
hundreds clock cycles to a multi-GHz processor for handling 
a captured packet. This makes the realization of the second 
step critical. However, the deployment of multi-processor 
machines that concurrently process multiple packets 
increases the time available for handling each packet. 

While ad-hoc solutions based on advanced hardware can 
mitigate the problems related to the first two steps in Figure 
1, no straightforward solution exists to reduce the criticalities 

of the following steps. For instance, a 10Gbps pipe carries 
more than 100 TBytes in the course of a day, which is a 
tremendous amount of data to be stored on a disk for 
subsequent processing. This results in two problems: on the 
one hand, the infrastructure needed to store such amount of 
data is sophisticated and costly and, on the other hand, 
locating relevant information within the saved data is 
computationally intense and time consuming. 

This work addresses the above problems, whose solutions 
are strictly related since the complexity of off-line data 
processing depends on the amount and format of such data. 
After having provided the current state of the art in 
significantly reducing the amount of data stored (Section II), 
we describe our approach, which consists of two strictly 
related parts. First, Section III defines a format to represent 
captured packets that (i) limits the amount of data stored and 
(ii ) enables efficient processing. Second, as explained in 
Section IV, data mining techniques [13] widely studied and 
deployed for extracting relevant information from extremely 
large data bases are applied to our problem. A prototypal 
implementation of the proposed approach has been integrated 
into the Analyzer traffic capturing and analysis tool [2]. 
Section V discusses the benefits and limitations expected 
from the deployment of the proposed approach, especially for 
what concerns the extraction of relevant information, which 
is still under evaluation. 

II. RELATED WORK 

Two methods are known in literature to reduce the amount 
of information about network traffic to be stored before 
further processing. 

Packet sampling [3] consists in capturing only a subset of 
the packets, e.g. one out of N. Although several studies 
demonstrate that statistical properties can be inferred from 
sampled traffic without any noticeable loss of information, 
this approach is not be effective when all packets must be 
analyzed. One example is the detection of network attacks 
that are usually based on a small number of packets 
exploiting a security bug (e.g. ping of death). 

The second method is based on the fact that each packet 
can be associated to a flow (e.g. a TCP connection). A flow 
can be defined as the set of packets that share the value of 
some fields in their headers (e.g. IP source and destination 
addresses, TCP source and destination ports, etc.), which can 
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be seen as the signature of the flow. Flow-based techniques 
use this signature as elementary unit for storing traffic 
information: the network administrator is no longer able to 
see complete packets, but this might not be necessary for 
most applications. However, this approach cannot be used in 
case the payload should be available for inspection, e.g. in 
case of applications that detect network attacks based on 
some data in the packet payload (e.g. a malformed URL). 

One of the most common flow-based technologies is Cisco 
Netflow [4] (currently being standardized under the umbrella 
of the IETF IPFIX working group [5]) in which a probe 
(usually running within a network device) analyzes traffic 
and creates a record for each flow. Flow records are then 
exported to a collector machine for further processing. A 
flow is usually exported when one of following conditions 
applies: 

• the flow ends (e.g. a TCP segment with the FIN or 
RST flags is captured); 

• the flow has been inactive for a certain period of time, 
i.e. no packets belonging to it have been observed for 
a given time (usually 15 sec); 

• the flow is still active, but a timeout (usually 30 min) 
is expired; this is useful for exporting long-lasting 
flows on a regular basis; 

• internal constraints (e.g. counters wrapping or low 
memory) compromise the probe functionality or 
accuracy; in this case, a flow may be forced to 
“expire” prematurely. 

The main advantage of this technology compared to 
similar proposals is the support offered by many other 
vendors, among which is notably included Cisco Systems. 
However it suffers several limitations [10], among others (1) 
the large number of events possibly triggering flow export 
(which increases the amount of required processing) and (2) 
records representing a variable time of flow life, which 
causes unnecessary complexity and inaccuracy for trace 
analysis. Furthermore, Netflow (and IPFIX) is suitable only 
for TCP/IP networks since it does not take into account either 
link-layer headers, or other protocol stacks. 

The Real-time Traffic Flow Measurement (RTFM) IETF 
working group [6] proposed another technology based on 
flow sampling in the past [7]. From many points of view, the 
RTFM proposal is more advanced than Netflow, among other 
reasons because processing in the probe can be partially 
customized. The Simple Ruleset Language [8] provides a 
method to customize both the flow definition and the actions 
(byte count, etc.) to be performed on each flow. Additionally, 
flows are bidirectional, making it easier to keep under control 
the two directions of a connection. Interaction between the 
probe and the flow collector is done through SNMP queries, 
therefore the probe must store flow records in memory until 
the collector asks for them. Unfortunately, router vendors did 
not support this proposal and the public-domain NeTraMet 
software [9] is the only implementation available. 

The sFlow technology [11] is a mixture between packet 

sampling and flow extraction. Packet sampling is deployed to 
achieve scalability and either sampled packets or the flow 
information related to it can be exported. This approach 
makes this technology suitable for a large set of 
environments because it allows both packet analysis 
(although limited to the first few hundred bytes of the packet) 
and flow analysis. The most important limitation is the lack 
of support from some of the key equipment vendors. 

A common problem among the presented technologies is 
the impossibility to customize the set of fields being stored 
for each flow, which is one of the key advantages of the 
approach presented in this paper. Other solutions, such as 
standards like RMON (the IETF’s remote network 
monitoring system) or applications like ntop [11][12], 
provide another way to measure network traffic. However, 
while they allow a network manager to determine traffic 
levels in network segments, total traffic loads to/from busy 
hosts, etc., they do not provide any flow measurement 
capability. 

III. DATA COLLECTION AND STORAGE 

Saving to disk each captured packet — or possibly just a 
snapshot of it — may be feasible in some cases, but it 
anyway requires a significant amount of resources. 
Therefore, such approach cannot be considered as the basis 
of generic traffic monitoring procedures. 

In any case, single packets are not necessarily relevant for 
many types of traffic analysis whose focus is on packet 
flows. Our approach is based on flow-based processing: a 
probe collecting data saves a given set of information related 
to each flow, rather than dumping to disk (part of) the 
content of each packet. As mentioned earlier, a flow is a set 
of packets that have the same values in a given set of fields; 
in our approach they are not necessarily IP source/destination 
address, source/destination port, and protocol type — widely 
used as transport flow identifiers in TCP/IP networks. Our 
flow definition mechanism is more general and several fields 
can be included in the set that best characterizes each flow. 
For instance, if the administrator is interested in the analysis 
of differentiated services traffic, the value of the DS field can 
be saved for each flow. Alternatively, if the administrator is 
interested only in the accounting based on the IP source 
address, this can be the only parameter identifying a flow. 
Due to the flexible architecture of the underlying dumping 
mechanism, the addition of a new field in the definition of 
flows does not preclude the possibility of extracting statistics 
on previously stored data that do not have such information. 
A difference between our approach and the RTFM one is that 
the former does not support netmasks (e.g. network 
130.192.0.0/16). The problem of using such a coarse flow 
definition is that there is no way to disaggregate data. For 
example,  the amount of traffic sent by each host cannot be 
known. 

The most relevant novelty of our approach is that the fields 
that are saved for each flow are completely customizable. For 



 
 

instance, the fields that are extracted by default in the current 
prototypal implementation of our solution are listed in Table 
1; however, any field present in any protocol header can be 
extracted. The flow identification process does not require all 
these fields to be present at the same time: for example, 
ARP-related fields are not present when analyzing IPv6 
flows. 

 
Protocol Field name (s) 
Ethernet Source and destination address 
Ethernet Protocol type 
VLAN Priority 
VLAN VLAN ID 
ARP Source and destination IP address 
IP / IPv6 Traffic class 
IP / IPv6 Protocol type / Next header 
IP / IPv6 Source and destination address 
ICMP / ICMPv6 Type 
TCP /UDP Source and destination port 

Table 1. Default list of fields extracted for each flow. 

For each packet the probe determines the flow the packet 
belongs to and updates a set of counters (e.g. number of 
bytes/packets, timestamps, etc.). The selected fields are 
extracted for each flow and periodically dumped to disk 
together with the value of the above counters. For instance, 
the NetLogger module of the Analyzer tool [2], a prototypal 
implementation of our approach, by default dumps the 
content of the flow cache every 2 minutes. A session lasting 
longer will be represented by several subsequent records. The 
time between subsequent dumps of the flow cache is called 
flushing interval. 

The complete dump of the flow cache every flushing 
interval is somewhat new among the flow-based technologies 
currently in use (NetFlow, sFlow). This solution uses more 
memory (expired flows reside still in memory) and disk (a 
long-lasting flow originates several flow records), but makes 
processing simple because the database contains a periodic 
and complete snapshot of the exiting flows. Therefore, real-
time statistics, such as the amount of TCP traffic over time, 
are simpler to obtain. 

The NetLogger module dumps flow information into a 
database to facilitate further information processing. The 
structure of the database is shown in Figure 2.  
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Figure 2. Structure of the database that stores network flows. 

In order to support a variable number of fields within each 

flow, data is organized in three tables: a transaction table that 
keeps invariant information related to each flow, an element 
table that holds, for each flow, the list of fields to be stored, 
and a Field Type table that lists all valid fields.  
Figure 3 shows a sample table. Although this structure is 
slightly more complex than the traditional one (one table with 
a fixed number of fields, and one record per flow), it has 
proved much more flexible. 
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Figure 3. Snapshot of records stored in the database. 

SQLite was selected as a database engine since, as shown by 
Table 2, it provides very fast access and its overhead is only 
5 times the time required to store data on a flat file (see Table 
3). Since this engine cannot be configured as a standalone 
database server, scalability might become a problem because 
of the impossibility to split the load between the network 
probe and the database server. In order to optimize record 
insertion time, the flow export process dumps data on disk in 
a flat file and subsequently data are imported in the database 
through a bulk insertion. This also offers the flexibility to use 
a different database engine if needed, at the expense of disk 
space and speed. 

Database Type Record/sec written on disk 
Access 2002 344 
MySQL 3.23.53 1023 
SQLite 2.8.0 11565 
Text File 69657 

Table 2. Number of records per seconds written on disk, using 
different archive formats on a dual Xeon 2. GHz,120GB HD . 

As shown in Table 3, the NetLogger module at the default 
flushing interval of 2 minutes features a 20 to 1 reduction in 
the disk space requirement when compared to saving each 
packet, unless indexes are created in order to speed up 
queries.  The resulting disk files can be further compressed 
by means of general-purpose compression utilities, such as 
gzip, thus obtaining disk-saving factors of more than 80:1. 
Obviously, as shown in Table 3, increasing the duration of 
the flushing interval further increases (even though mildly) 
the disk-saving factor. However, according to the figures 
shown in Table 3, a flushing interval larger than two minutes 
is not advisable since the database reduction is not significant 



 
 

while a longer sampling period makes computing traffic 
statistics harder. 

 
 Flushing Interval 
Database Type 2 min 3 min 4 min 
Access 2002 17:1 18:1 19:1 
SQLite 2.8.0 19:1 20:1 20:1 
SQLite 2.8.0 with indexes 10:1 10:1 11:1 
Text file 29:1 31:1 32:1 

Table 3. Disk space saving with different archive formats and 
sampling intervals. 

The Netlogger module includes a graphical interface 
(shown in Figure 4) that allows extracting traffic statistics out 
of the flow database through specific SQL queries. Extracted 
information includes both general statistics (protocol 
distribution, generated traffic ordered by source, and more) 
and field-specific information (e.g. traffic sent by host X). In 
order to allow users to get results in a couple of clicks and 
without any knowledge of the SQL language, a list of 
predefined queries is provided. Being such list specified in a 
configuration XML file (read by the user interface), it can be 
customized. Although the speed in executing the query 
depends on the complexity of the query itself, most 
commonly used information can be obtained in a couple of 
seconds on a regular PC (e.g. Pentium IV 2.4 MHz). The 
system cannot provide real-time network data (e.g., statistics) 
because samples corresponding to the current flushing 
interval (default two minutes) are not in the database — the 
captured flows have still to be exported by the probe. 
However, this is not an issue for many monitoring and 
analysis applications. 

 

 

Figure 4. Extracting traffic statistics from the NetLogger database. 

IV. MINING RELEVANT INFORMATION 

A set of standard statistics (e.g. the protocol distribution, 
the amount of traffic sent by every host, etc.) can be easily 
obtained from the data stored as described above. However, 
even though the proposed approach results in significantly 

less information than a raw packet dump would produce, 
locating added-value information (e.g., locating an ongoing 
security attack) might be extremely cumbersome, if at all 
possible, for the network administrator. 

We have been experimenting the application of data 
mining techniques to large databases structured as described 
in the previous section, wherein each sample of a flow is 
represented by a record. In particular, our prototypal 
NetMiner module, integrated in Analyzer, implements data 
mining techniques for the extraction of Frequent Itemsets and 
Association Rules [13]. 

An Itemset is a set of elements – (record field, value) pairs 
in the database – characterized by a given value in one or 
more fields (e.g., IP source address and TCP source port). An 
Itemset is considered Frequent if its cardinality exceeds a 
given threshold with respect to the total number of samples. 
For example, the set {host_dest=X, port_dest=Y} is a 
Frequent Itemset if there are more than Z% (e.g. 5%) samples 
in the database containing the set. 

Association Rules are extracted from frequent itemsets and 
show correlations among (contained) itemsets. For instance, 
if a host S is active mostly as a web server, the association 
rule: 

 
IP dest_address = S  → TCP dest_port = 80 

 
shows that there is a high probability that the flows destined 
to the server (characterized by the value S in the IP 
destination address field) contain 80 (the default TCP port for 
a web server) in the TCP destination port field. 

Data mining techniques are not widely used for network 
operation and management. Most research is related to 
intrusion detection systems (IDS). Lee, in [14] proposes an 
IDS built combining various data mining techniques, thus 
reducing the need to manually analyze and encode intrusion 
patterns. Portnoy, in [15], proposed a method to build an IDS 
based on clustering and anomaly detection. This method aims 
at dividing network traffic into clusters and then separate 
clusters containing normal traffic from clusters that 
represents intrusions, without requiring a “normal data set” to 
train the system. However, the assumptions on which the 
method is based are not realistic, thus making it of limited 
use in practice. The most important problem of IDS based on 
data-mining techniques is the false positive rate, which may 
well be around 1%. For instance, a false positive rate of 1% 
with the assumption of 1 intrusion every 10,000 normal 
transactions, results in a false alarm ratio above 99%, which 
makes these methods unusable without additional techniques 
for false alarm reduction. 

We believe that data mining techniques can be deployed 
much more effectively in other fields where the false 
positives are not an issue. In the work presented in this paper 
the output of the data mining process is used to create a 
snapshot of the network: which hosts act as servers, which 
ones are clients, which ones are routers, and so on. The 



 
 

network administrator can use the snapshot produced by the 
NetMiner module to check if hosts behave as expected; in 
addition, NetMiner can highlight changes in the network by 
comparing in snapshots taken at different times. 

V. CONCLUDING REMARKS 

While the data collection and storage approach proposed 
in Section III and its implementation in the NetLogger 
module can be considered stable, the data mining approach 
and its support by the NetMiner module still need a more 
detailed evaluation and field trial. Even though tests 
conducted with the tool on our University campus network 
(encompassing about 6,000 end-systems) provided some 
insight in the benefits and shortcomings of the proposed 
approach, much more can be learned through a more 
extensive deployment in various environments and by 
various users.  

Among the results of the preliminary tests is the ability to 
effectively locate peer-to-peer applications. It is important for 
network administrators to be able to locate and monitor the 
traffic generated by these applications that are usually 
installed and controlled directly by network users. However, 
this is not easy with traditional traffic monitoring and 
analysis methods for two reasons. First, often peer-to-peer 
applications are not among the top network speakers (i.e., 
they do not generate much traffic), thus they cannot be 
identified by looking for large amount of data being 
transferred. Second, they use random ports, therefore they 
cannot be located by looking for traffic originated from or 
destined to specific ports. Conversely, the proposed data 
mining based approach easily locates them by singling out 
association rules between hosts and the ports they use. 

On the down side, our experience with the approach shows 
that the interpretation of results of the data mining process is 
far from being straightforward. This is mainly due to the 
large amount of information returned by data mining 
techniques that the network administrator is required to go 
through. For example, it is not uncommon that hundreds of 
thousands association rules be identified on a traffic trace. 
The problem of sifting through them is emphasized by the 
fact that the network administrator is not — and should not 
become — a data mining expert. Thus, our work on the 
NetMiner module has focused on providing a user interface 
that, being designed specifically for network analysis 
applications, facilitates the network administrator in 
browsing through the results provided by the data mining 
process. More work is being done to improve this aspect of 
the tool. 

More investigation and new results are expected on an 
important by-product of the proposed approach: using the 
outcome of the data mining process as an extremely compact 
representation of captured network traffic. In fact, the size of 
the output of the proposed data mining techniques can be 
more than 50 times smaller than the database on which they 
are applied (described in Section III). Consequently, it would 

be interesting to demonstrate that most of the relevant 
information that can be inferred from the original traffic 
dump can also be inferred from the output of the data mining 
process. In this case, the former could be discarded and only 
the latter archived for later reference, thus dramatically 
reducing the resource requirement for keeping historical 
traces of network traffic. 
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