
20 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Implementation and Characterization of an Advanced Scheduler / Risso, FULVIO GIOVANNI OTTAVIO. - STAMPA. -
2093:(2001), pp. 85-97. (Intervento presentato al convegno Networking - ICN 2001, 1st International Conference on
Networking, Part I tenutosi a Colmar (France) nel July 9–13, 2001) [10.1007/3-540-47728-4_9].

Original

Implementation and Characterization of an Advanced Scheduler

Publisher:

Published
DOI:10.1007/3-540-47728-4_9

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1417039 since: 2021-10-10T19:14:24Z

Springer

Implementation and Characterization
of an Advanced Scheduler

Fulvio Risso

Dipartimento di Automatica e Informatica, Politecnico di Torino,
Corso Duca degli Abruzzi, 24, 10129 Torino (Italy)

risso@polito.it

Abstract. Decoupled-CBQ, a CBQ derived scheduler, has been proved being a
substantial improvement over CBQ. D-CBQ main advantages are a new set of rules
for distributing excess bandwidth and the ability to guarantee bandwidth and delay
in a separate way, whence the name “decoupled”. This paper aims at the
characterization of D-CBQ by means of an extended set of simulations and a real
implementation into the ALTQ framework.

1. Introduction

Class Based Queuing [1], (CBQ) and Hierarchical Fair Service Curve [2] (H-FSC)
represent an interesting solution to integrated networks that aim to provide hierarchical
link-sharing, tighter delay bounds and bandwidth guarantees. However the configuration
of HFSC is less intuitive from an Internet Service Provider point of view, therefore CBQ
is the most appealing advanced scheduler available today.

An in-depth analysis of CBQ, on the other hand, shows several problems; most of them
have been pointed out in [3] and [7]. This paper aims at the completion of [7] by
summarizing the D-CBQ characteristics, presenting the implementation issues, and
characterizing this new scheduler.

This paper is structured as follows. Section 2 summarizes D-CBQ characteristics;
Section 3 presents the simulations used to validate the prototype, while Section 4
discusses the efforts in implementing D-CBQ in a real router. Finally, Section 5 presents
some conclusive remarks.

2. Decoupled Class Based Queuing

The most important D-CBQ characteristics include new link-sharing guidelines, the
decoupling between bandwidth and delay and the excellent precision in respecting
bandwidth and delay.

1.1 New Link-Sharing Guidelines

New link-sharing guidelines require the definition of the new concept of the Bounded
Branch Subtree (BBS). All the bounded1 classes plus all the classes that are child of the
root class are called BBS-root. Each BBS-root generates a Bounded Branch Subtree that
includes the set of classes that share a BBS-root as common ancestor plus the BBS-root
itself. BBSs can be embedded; an example can be seen in Fig. 1

B
Bnd

B2
UnBnd

B1
UnBnd

Root
100%

A
UnBnd

A2
Bnd

A1
UnBnd

A1.1
UnBnd . . .

A2.N
UnBnd. . .

B1.M
UnBnd

B1.1
UnBnd . . .

B2.P
Bnd

B2.1
UnBnd . . .

Bounded Branch
SubTrees

BBS-root classes

Fig. 1. Bounded Branch Subtrees. Classes can be either unbounded (“UnBnd”) or bounded
(“Bnd”)

Each BBS acts as a new link-sharing hierarchy that is almost independent from the
others. A class may belong to several BBSs, therefore it can have several BBS-root
classes. Among these BBS-roots, the one with the lowest level in the link-sharing
hierarchy is called L-BBS-root. The BBS generated by the L-BBS-root is called L-BBS.

The distribution of the bandwidth is done by means of a two-step process that gives
precedence to unsatisfied leaf classes. According to the first rule, a leaf class is allowed to
transmit immediately if it is underlimit2 and its L-BBS-root is underlimit as well. This
prevents the L-BBS from consuming bandwidth reserved to other subtrees.

A second rule distributes excess bandwidth to the all the unbounded classes (according
to the L-BBS they belong) when no classes are allowed to send according to the first rule.
A class is allowed to get more bandwidth when it has a non-overlimit3 ancestor A4 at level

1 A bounded class is a class whose traffic that cannot exceed its allocated rate.
2 A class is underlimit if its throughput (averaged over a certain period) does not exceed its allocated

rate. See [1] for more details.
3 A class is non-overlimit when it does not exceed its rate, averaged over a certain period.

i and there are no unsatisfied classes in its L-BBS at levels lower than i. This guarantees
that the excess bandwidth is distributed inside the L-BBS; therefore an overlimit class is
allowed to transmit provided that there is still bandwidth available in its L-BBS.

First rule allows a leaf class that is underlimit and bounded (that is the suggested
configuration for real-time classes) to transmit without constraints, while an underlimit
and unbounded leaf class can be delayed when its L-BBS-root is overlimit. Bounded leaf
classes are never influenced by the behavior of other classes, while unbounded classes are.
This does not represent a problem because an unsatisfied class that is delayed will be
served as soon as its L-BBS-root becomes underlimit. Starvation does not occur and
underlimit leaf classes are always able to reach their target rate; however the time-interval
used to monitor their throughput must be larger than the time interval used to monitor
bounded leaf classes.

Unfortunately, these rules do not guarantee that any BBS-root never becomes
overlimit. An embedded L-BBS-root can be allowed to transmit (it is underlimit indeed),
making the higher-level BBS-root overlimit. It follows that even D-CBQ does not respect
perfectly the link-sharing structure; however this is the fee that has to be paid in order to
have some classes that are always able to send (provided that they are respectful of their
service rate). This fee is required to provide excellent support for guaranteed-bandwidth
classes that, on the other hand, are not allowed to send more than their guaranteed rate.

1.2 Decoupling Bandwidth and Delay

This feature requires that the excess bandwidth will be distributed independently of the
class priority. D-CBQ uses two distinct systems of cascading WRR schedulers; the first
one is activated when bandwidth is distributed according to the first link-sharing rule; the
second one distributes excess bandwidth and it is enabled when bandwidth is allocated
according to the second rule. First WRR uses priorities (i.e. it gives precedence to high
priority traffic) and it guarantees each class to be able to get its allocated rate; second
WRR does not take care of priorities and it selects classes according to their share.

This mechanism is rather simple but effective: network managers can assign each user
a specific value of bandwidth and delay and they will be certain that, whatever the priority
is, excess bandwidth will be distributed evenly to all the currently active sessions.

Suspending overlimit classes
It has been widely recognized that link-sharing rules and delay guarantees cannot be

met at the same time; therefore there are small time intervals in which one of them cannot
be guaranteed. The decoupling between bandwidth and delay has to be integrated with
new rules that determine when a class has to be suspended (because either it or one of its
parents is overlimit) and how long the suspension time will be.

4 The class must be able to borrow from ancestor A. Basically, A can be either the root class (in case
the L-BBS-root is unbounded) or a generic ancestor belonging to the L-BBS.

First answer is based on the new link-sharing guidelines: a class is suspended when is
not allowed to transmit according to the second rule. D-CBQ allows each class being
suspended, whereas CBQ allows suspension of leaf classes only. In this case D-CBQ
suspends the highest-level ancestor (i.e. the nearest to the root class) whom the class is
allowed to borrow from and that is overlimit. Since ancestor class is suspended, all
unbounded leaf classes that share this ancestor are no longer allowed to transmit. Bounded
classes, of course, are still allowed to transmit (first link-sharing guideline).

Second question (how long) is based on the observation that a class (or a subtree, in the
D-CBQ case) must be suspended for the time needed to be compliant to the allocated rate;
hence the suspension time will be the one of the class that is being suspended, that is the
ancestor class. It follows that the suspension time depends on the extradelay of the
ancestor class; therefore it depends on the bandwidth allocated to the intermediate class
instead of the one allocated to leaf classes. Generally speaking, suspension time depends
on the “upper overlimit ancestor” instead of the leaf class.

Router Sink

Real-time
traffic

2 Mbps link

CBQ
Data

traffic

Fig. 2. Test topology.

3. Simulation results

This Section presents some comparative results between CBQ (in the implementation
that comes with ns-2) and D-CBQ through the ns-2 simulator. Results have been
obtained by defining two different test suites; the first one devoted to bandwidth and link-
sharing properties and the second one devoted to the delay objectives5. Each test suite
consists in several tests; each one has a different class configuration (link-sharing
structure, borrow, priority) and it is structured in several simulations that have different
incoming traffic and different bandwidth allocated to each class.

D-CBQ (as well as CBQ) is, by nature, a non-work conserving algorithm although it
can be easily modified in order not to leave the output link idle when there are unbounded

5 Simulations measure the scheduling delay, i.e. the time between the arrival of the packet and the
time the scheduler finishes its transmission on the output link.

backlogged classes. For instance, results compare CBQ with two different versions of D-
CBQ, standard (described in Section 2) and efficient. Efficient D-CBQ (D-CBQe) looks
like a work-conserving algorithm and it adds a new rule to D-CBQ. When no classes are
allowed to transmit according to the link-sharing guidelines, D-CBQe sends a packet from
the first unbounded and backlogged class it encounters. Therefore it is not a pure work-
conserving algorithm because bounded classes are not able to exploit the output link
idleness.

The efficient mechanism inserts a small degree of unfairness into D-CBQ. To keep the
algorithm simple, the efficient process selects classes on a priority-based schedule; hence
high priority classes can get more bandwidth. Moreover D-CBQ internal variables are not
updated in case of a transmission due to this mechanism: the rational is that a class should
not be punished for the bandwidth consumed when no classes are allowed to transmit.

Simulations use a simple topology (Fig. 2) composed by a single scheduler and several
sources attached to it. Number of sources, their rate and their traffic pattern varies among
the simulations. Sessions under test use CBR and Poisson sources because of their
simplicity and their easiness to be controlled. Tests repeated using real sources (UDP/TCP
sessions simulating real traffic) do not show any difference compared to previous ones.

0

5000

10000

15000

20000

25000

0.05 0.1 0.15 0.2 0.25 0.3

Time (s)

D
at

a
T

ra
n

sf
er

re
d

(b
yt

es
)

D-CBQ

CBQ

Fig. 3. New Link-Sharing guidelines.

New Link-Sharing guidelines

This test shows that D-CBQ is able to guarantee each session a more predictable
service. Fig. 3 shows a typical trace in which both CBQ and D-CBQ are able to provide
the correct share over large-scale intervals. However this is not true over small scale:

triangle trace shows that CBQ often suspends the class (large amount of time between two
packets); this does not happen with D-CBQ.

Decoupling Bandwidth and Delay

D-CBQ has strong decoupling characteristics. For example Table 1 reports the results
obtained with a simple 1-level hierarchy (all classes are children of the root class). Priority
does not influence bandwidth in D-CBQ. In case of all classes competing for the
bandwidth (first two tests), they are able to obtain the assigned share. Moreover, last test
shows that CBQ assigns all the available bandwidth (not used by class B) to the high
priority class; D-CBQ allocates the excess bandwidth to all classes proportionally to their
share. The result is that D-CBQ looks more like a Weighted Fair Queuing than a Priority
Queuing schema from this point of view and it is able to force malicious users not to
exceed their allocated rate. Setting higher priorities (than means lower delays) in D-CBQ
is no longer a way to obtain more bandwidth.

Traffic (Kbps)Share Priority

In CBQ out D-CBQ out Theor.

Class A 1% LOW 100 55.25 21.46 20
Class B 99% LOW 2000 1944.77 1978.56 1980
Class A 1% HIGH 200 181.82 21.41 20
Class B 99% LOW 2000 1818.19 1978.61 1980
Class A 10% HIGH 2000 604.08 250.37 250
Class B 20% LOW --- --- --- ---
Class C 70% LOW 2000 1395.94 1749.65 1750

Table 1. Decoupling bandwidth and delay; all classes are allowed to borrow.

Quality indexes

Previous tests are not able to validate for certain the goodness of D-CBQ from other
points of view as well (delay, precision). Moreover, these tests have to be carried out
using several different configurations; therefore data need to be summarized in order to
display the results.

Comparison among different results is done using the following set of quality indexes:

∑∑
==

−
⋅=







 −
⋅=

N

i i

ii
N

i i

ii

D

DD

N
Q

D

DD

N
Q

1
*

*2

1
*

*
2 1

,
1

where Di
* is the expected test result (the theoretical value for link-sharing tests; the best

obtained delay in the current simulation for delay tests), Di is the actual result of the

simulation and N is the number of simulations. The quadratic quality index (Q2) highlights
tests in which the behavior is significantly different from the expected value; therefore it
is used to identify any idiosyncrasies between theoretical and real behavior. Vice versa,
linear index (|Q|) is the relative difference of the simulation results compared to the
theoretical ones and it can be used to show the precision of CBQ and D-CBQ against the
expected result. Best results are obtained when these indexes tend to zero.

Link-sharing test suite details

Main objective is to verify the ability to provide each class with its target bandwidth;
therefore sources (CBR) exceed the rate allocated to that class. The link-sharing test suite
is made up of 10 different tests that use three different class configurations (details in
Appendix I); each test aims at the evaluation of specific aspects of the algorithm.

A brief summary of the results (details can be found in [5]) is shown in Table 2: quality
index for CBQ is by far the worst of all. Results confirm that D-CBQ performs far better
than the original algorithm, particularly in tests with borrowing enabled and different
priorities among classes. |Q| shows that the difference between experimental results and
theoretical one is greatly reduced from the 14.1% of CBQ to the 1.7% of D-CBQ.

An interesting point is that the efficient version of D-CBQ performs worse than the
standard version. Efficient mode, in fact, inserts another trade-off between link utilization
and precision parameters. For instance, a class could not be allowed to transmit at its
target time when efficient mode is turned on because the scheduler could be busy
servicing another packet.

Quadratic Quality Index Linear Quality Index

Test CBQ D-CBQ D-CBQe CBQ D-CBQ D-CBQe

Test 1 0.3112 0.0111 0.0111 5.0110 0.8345 0.8345
Test 2 0.0000 0.0000 0.0000 0.0008 0.0008 0.0008
Test 3 0.2841 0.0646 0.0646 5.0140 2.0899 2.0899
Test 4 51.7934 0.0948 0.0948 30.5246 1.7590 1.7590
Test 5 0.2994 0.0721 0.0721 4.8157 2.2212 2.2212
Test 6 1091.2810 0.0886 0.0886 137.4755 1.6486 1.6486
Test 7 0.0008 0.0001 0.0001 0.2325 0.0671 0.0671
Test 8 0.0099 0.0001 0.0001 0.8036 0.0780 0.0780
Test 9 0.1672 0.0482 0.2211 3.5506 1.7568 2.7292

Test 10 0.3756 0.1706 0.3479 5.0937 2.5652 3.8744

Global 73.1666 0.0815 0.1784 14.0525 1.7387 2.3698

Table 2. Link-sharing test results (values * 100).

A small problem still remains: even D-CBQ is not able to transmit all the traffic when
input sources are transmitting at their maximum rate. This is due to internals

approximations. A good practice consists in a slight over-provisioning of the bandwidth
allocated to that class; an in-depth analysis of this phenomenon is left to future studies.

Delay test suite details

Delay test suite is made up of five tests that differ in the characteristics of the real-time
sources. Simulations use both CBR and Poisson traffic for real-time sources, and a set of
several VBR sessions for data traffic. Real-time sources transmit slightly less than the
bandwidth allocated to their class; vice versa data traffic exceeds its allocation in order to
make the output link congested. Three tests use a single CBR source for each session
(each test has a different packet size); the fourth uses three CBR sources with different
packet sizes (120, 240, 480 bytes) for each session, while the last uses Poisson sources.
Last two tests use a token-bucket limiter to regulate real-time sources and to control input
pattern (and source’s peak rate) with excellent accuracy. Twelve different simulations
with different link-sharing structure, priority and borrowing characteristics compose each
test.

This paper summarizes the results related to the maximum delay experienced by
packets and the delay experienced by the 99% of them (99-percentile). Results are given
only for the real-time traffic because best effort one exceeds its allocation; therefore delay
has no significance. Detailed analyses for delay bounds are left for future work [6]; here
only a brief summary is given.

Quadratic Quality Index Linear Quality Index

Test CBQ D-CBQ D-CBQe CBQ D-CBQ D-CBQe

CBR1 4.940 0.001 0.008 1.566 0.009 0.033
CBR2 158.514 0.000 0.010 8.236 0.000 0.034
CBR3 175.056 0.000 0.004 8.765 0.000 0.025

CBR-M 0.268 0.097 0.107 0.176 0.111 0.099
PS 0.000 0.138 0.127 0.003 0.201 0.168

Global 67.756 0.047 0.051 3.749 0.064 0.072

Table 3. Maximum delay tests: results (values * 100).

Starting from the maximum experimented delay, results (shown in Table 3) confirm
that D-CBQ outperforms CBQ in all tests. Packets flowing through CBQ have a
maximum delay that is far larger than the one experimented by D-CBQ. CBQ performs
better only in a few simulations and this is due to its different (and wrong) implementation
of the WRR mechanism6.

6 A detailed analysis of the CBQ code shows that it does not implement correctly the WRR
mechanism and it often sets a class allocation to zero arbitrarily instead of leaving it negative.

D-CBQ improvement concerning the 99-percentile delay bound (Table 4) is not so
evident such as in the maximum delay bound. D-CBQ, however, still guarantees smaller
delays: delays of the 99-percentile of the CBQ packets are 4 times larger than the D-CBQ
ones. Results in which CBQ outperforms D-CBQ (like PS) are due (again) to the different
WRR implementation.

Quadratic Quality Index Linear Quality Index

Test CBQ D-CBQ D-CBQe CBQ D-CBQ D-CBQe

CBR1 0.361 0.000 0.034 0.315 0.001 0.055
CBR2 0.036 0.002 0.016 0.080 0.013 0.049
CBR3 0.017 0.001 0.011 0.052 0.009 0.041

CBR-M 0.111 0.007 0.033 0.113 0.041 0.079
PS 0.000 0.071 0.083 0.005 0.118 0.125

Global 0.105 0.016 0.035 0.113 0.036 0.070

Table 4. 99-percentile delay tests: results (values * 100).

0%

20%

40%

60%

80%

100%

120%

0 4 8 12 16 20 24 28 32 36 40 44 48

Time intervals (ms)

P
ro

b
ab

ili
ty

(%
)

CBQ - no priority

CBQ - priority

D-CBQ - no priority

D-CBQ - priority

Fig. 4. A typical cumulative distribution of the delay in CBQ and D-CBQ.

Fig. 4 shows a typical distribution of the delay in CBQ and D-CBQ and it points out
that delay distribution for high priority classes is almost the same, even if CBQ has a
small percentage of packets that have significantly larger delays than D-CBQ.

D-CBQe performances are never better than D-CBQ. Even if the efficient part of the
algorithm affects unbounded classes only, this feature influences real-time classes (that

This operation has a non-negligible impact on classes with large packets compared to their
allocation: these classes do no longer need to wait several rounds before being able to transmit.
Some configurations take particular advantage of that, hence CBQ may show better delay bounds.

are usually bounded) as well because it forces sometimes real-time classes to wait longer
before transmitting a packet.

4. ALTQ implementation

ALTQ implementation is almost the same as the ns-2 one. The most important
difference is the inability to wake up a class exactly at its target time, since this would
require setting a new timer event each time a class is suspended. This might overload the
processing power of the machine; therefore the suspension time is approximated within
discrete intervals based on the kernel timer (set to 1KHz on our machines) available in the
BSD kernel. Other differences are related to real-word issues, for example the presence of
output interface buffers (virtually a FIFO queue after the CBQ scheduler) and the possible
mismatch between the theoretical wire speed and the real one (for instance, header
compression, link-layer headers and more may alter the real speed). First problem, pointed
out in [3], is of great importance and is largely reduced in ALTQ 3.0 (several interface
drivers have been modified). The second point does not have solutions at this moment and
it results on some mismatch between some theoretical values (for example the packet
departure time) and real ones.

ALTQ implementation has been validated using a subset of the test already used in ns-
2 and results confirm the goodness of D-CBQ as well as in the simulations. The most
important result, however, is that D-CBQ complexity is slightly more than CBQ one,
although in presence of un-optimized code. This is evident primarily in the borrow tests in
which D-CBQ has to check the status of the class’ ancestors.

Test Packet size (bytes) CBQ D-CBQ Difference

No Borrow 40 7080 6599 -6.8%
58 6992 6463 -7.6%

Borrow 40 6847 6186 -9.7%
58 6691 6140 -8.2%

Table 5. ALTQ tests snapshot: maximum throughput (packets per second) on a
Pentium 133 machine.

5. Conclusions

D-CBQ has been proved being a substantial improvement over CBQ. Its characteristics
allow the deployment of this scheduler on networks with advanced requirements
(hierarchical link-sharing, bandwidth guarantees, delay bounds).

Efficient D-CBQ has been shown being not worthy from the link-sharing and delay
point of view. However further analyses are needed in order to evaluate the advantages of
this algorithm on best effort traffic: we should expect some improvements in term of link
utilization and throughput for these classes.

Next step will be a better characterization of D-CBQ from the viewpoint of the delay in
order to give a mathematical indication of the maximum delay bound experimented by a
D-CBQ session.

Source code for ns-2 and ALTQ, together with test script, is online at the Author’s
website.

Acknowledgements

The author thanks Salvatore Iacono, Giordana Lisa and Kenjiro Cho for many
discussions about CBQ internals. Best thanks also to Ivan Ponzanelli and Lucio Mina for
their insightful help in testing and validating the prototypes, Panos Gevros, Mario Baldi
and Jon Crowcroft for their comments.

This work has been partially sponsored by Telecom Italia Lab, S.p.A., Torino (Italy).

Bibliography

[1] Sally Floyd and Van Jacobson, Link Sharing and Resource Management Models for
Packet Networks, IEEE/ACM Transaction on Networking, Vol. 3 No. 4, August
1995.

[2] Ion Stoica, Hui Zhang, T. S. Eugene Ng, A Hierarchical Fair Service Curve
Algorithm for Link-Sharing, Real-Time and Priority Service, in Proceedings of
SIGCOMM ‘97 September 1997.

[3] Fulvio Risso and Panos Gevros, Operational and Performance Issues of a CBQ
router, ACM Computer Communication Review, Vol. 29 No 5, October 1999.

[4] The VINT Project, UCB/LBNL/VINT Network Simulator - ns (version 2). Available
at http://www-mash.cs.berkeley.edu/ns/.

[5] Ivan Ponzanelli, Garanzie di servizio con schedulers di tipo Class Based Queuing,
Laurea Thesis, Politecnico di Torino, July 2000. In Italian.

[6] Fulvio Risso, Delay Guarantees in D-CBQ, Draft Paper, Politecnico di Torino, April
2001.

[7] Fulvio Risso, Decoupling Bandwidth and Delay Properties in Class Based Queuing,
in Proceedins of the Sixth IEEE Symposium on Computers and Communications
(ISCC 2001), July 2001

Appendix I

This appendix presents the details of the link-sharing and delay test suites.

Root
100%

Class2
Y%

Class1
X%

First link-sharing structure

Test 1: no borrow, single flow
Test 2: borrow, single flow
Test 3: no borrow, both flows, same priority
Test 4: borrow, both flows, same priority
Test 5: no borrow, both flows, different priorities
Test 6: borrow, both flows, different priorities

Root
100%

Class3
Z%

Class1
X%

Class2
Y%

Second link-sharing structure

Test 7: borrow, two flows, same priority
Test 8: borrow, two flows, different priorities

Agency
B

70%

Class4
40%

Class3
30%

Root
100%

Agency
A

30%

Class2
20%

Class1
10%

Third link-sharing structure

Test 9: different borrow, flows and priorities
configurations

Test 10: same as test 9; classes with
different packet sizes

Fig. 5. Link-sharing test suite: link-sharing structure.

The link-sharing test suite is made up of 10 different tests that use the three different
class configurations shown in Fig. 5. Each test aims at the evaluation of specific aspects of
the algorithm. In detail:

• Test 1: precision of the traffic carried by a single class, taken in isolation
• Test 2: ability to exploit all the link bandwidth by a single class, taken in

isolation
• Tests 3, 4: ability to share correctly the bandwidth among peer classes; tests have

been performed with and without borrowing
• Tests 5, 6: same as tests 3 and 4; classes have different priorities
• Tests 7, 8: ability to share the excess bandwidth correctly; classes can have either

equal or different priorities
• Tests 9,10: ability to respect the imposed bandwidth among classes with different

priorities, borrow configuration, incoming traffic; Test 10 repeats the same
simulations using different packet sizes among classes. Configuration details are
shown in Table 6, as well as the expected throughput of each class.

Delay test-suite is similar to the previous one: it consists in five link-sharing
hierarchies, with different class configuration and traffic. A summary of the test
characteristics is reported in Fig. 6.

Simulations Classes
A 1 2 B 3 4

1 Priority
Borrow/Traffic
Expected throughput

LOW
Y/---

LOW
Y/Y
200

LOW
Y/Y
400

LOW
Y/---

LOW
Y/N

LOW
Y/Y
1400

2 Priority
Borrow/Traffic
Expected throughput

LOW
N/---

LOW
N/Y
200

LOW
N/Y
400

LOW
Y/---

LOW
Y/N

LOW
Y/Y
1400

3 Priority
Borrow/Traffic
Expected throughput

LOW
N/---

LOW
N/Y
200

LOW
N/Y
400

LOW
Y/---

LO
Y/N

LOW
Y/N

4 Priority
Borrow/Traffic
Expected throughput

LOW
Y/---

LOW
Y/Y
200

LOW
Y/Y
400

LOW
Y/---

LOW

Y/Y 7

200

LOW
Y/Y
1200

5 Priority
Borrow/Traffic
Expected throughput

LOW
N/---

LOW
Y/Y
200

LOW
Y/Y
400

LOW
Y/---

LOW
Y/N

LOW
Y/Y
1400

6 Priority
Borrow/Traffic
Expected throughput

HIGH
Y/---

HIGH
Y/Y
200

HIGH
Y/Y
400

LOW
Y/---

LOW
Y/N

LOW
Y/Y
1400

7 Priority
Borrow/Traffic
Expected throughput

HIGH
Y/---

HIGH
Y/Y
200

LOW
Y/Y
400

HIGH
Y/---

LOW
Y/N

HIGH
Y/Y
1400

8 Priority
Borrow/Traffic
Expected throughput

HIGH
N/---

HIGH
Y/Y
200

HIGH
Y/Y
400

LOW
Y/---

LOW
Y/N

LOW
Y/Y
1400

9 Priority
Borrow/Traffic
Expected throughput

HIGH
N/---

HIGH
Y/Y
200

LOW
Y/Y
400

HIGH
Y/---

LOW
Y/N

HIGH
Y/Y
1400

Table 6. Details of tests 9 and 10 (throughput in Kbps).

Root
100%

Data
Y%

Real-Time
X%

Root
100%

Data5
Y%

Real-Time
X%

Data1
Y%

Data
82.5%

Data5
16.5%

Data1
16.5%

Root
100%

Real-Time
17.5%

RT5
3.5%

RT1
3.5%

. . .

Root
100%

Data5
16.5%

Data1
16.5%

. . .
Real-
Time5
3.5%

Real-
Time1
3.5%

. . .

.

AgencyB
50%

Data
32.5%

RT
17.5%

Root
100%

AgencyA
50%

Data
32.5%

RT
17.5%

RT5
3.5%

RT1
3.5% . . .

Data3
Z%

Data1
X% . . .

RT5
3.5%

RT1
3.5% . . .

Data3
Z%

Data1
X% . . .

1st Structure
2nd Structure 3rd Structure

4th Structure

5th Structure

Fig. 6. Delay tests: the link-sharing structure.

7 This test uses an on-off source, with 33% activity period.

