
20 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Analysis of a Method for Differential TCP Service / Gevros, P.; Risso, FULVIO GIOVANNI OTTAVIO; Kirstein, P.. -
(1999), pp. 1699-1708. (Intervento presentato al convegno Globecom 99).

Original

Analysis of a Method for Differential TCP Service

Publisher:

Published
DOI:

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1417038 since:

IEEE

Analysis of a Method for Differential TCP Service
Panos Gevros, Fulvio Risso and Peter Kirstein

Department of Computer Science,
University College London,

Gower Str. WC1E 6BT,
London, U.K.

phone +44 (0)20 7679 3666, fax +44 (0)20 7387 1397�
p.gevros, f.risso, kirstein � @cs.ucl.ac.uk

Abstract—Recently we have witnessed an increasing interest in pro-
viding differentiated Internet services, departing from the traditional
notion of fairness in the best effort service model. However research
efforts have almost exclusively focused on routers, by enhancing their
scheduling and queue management capabilities in order to treat flows
according to policies. There has been much less work on transport
level approaches to differentiated services. MulTCP [1], is the only
piece of work in this direction known to the authors. In this paper we
briefly describe the MulTCP modifications in TCP’s congestion control
mechanism, its implementation in a BSD networking stack and present
some experiences from a series of experiments over real networks com-
paring its performance when implemented on different TCP variants.
Our results were particularly interesting in the case of RED gateways.
We comment on the effectiveness and scalability of the differentiation
mechanism and conclude that in certain popular environments the pro-
posed method for transport level differentiation can be both feasible
and effective.

I. OVERVIEW

The Internet has long been changed from the network used
only by academics and researchers to an environment with
large and rapidly growing commercial interest. Users do real
business on it, consider it vital and are willing to pay more for
a better service. It is evident that a datagram network where
anyone is treated like anyone else does not scale from an eco-
nomic viewpoint; even if people value their traffic differently
their data are still treated the same way.

Although the bandwidth available is increasing and prices
are dropping, the traffic on the network is increasing at least
as fast; in the near future there will not be enough bandwidth
to satisfy everyone’s needs. It is expected, therefore, that the
Internet will have to live with congestion for some time. In
order to avoid ending up being what is called “the tragedy of
the commons’, some sort of control on the performance it de-
livers to its various users is clearly needed. The major chal-
lenge is finding scalable solutions, which can be deployed in-
crementally without major changes to the current infrastruc-
ture.

The commercialisation of the Internet is changing the
premise of resource allocation from the traditional “best ef-
fort” to one based on user profiles. Most customers want and
are willing to pay for preferential treatment of their traffic.

Thus the network providers could satisfy this need and gen-
erate additional revenue from the same investment in net-
work resources if the appropriate mechanisms and policies
were in place. Moreover part of the revenue would finance
the deployment of additional resources.

The “integrated services” was a first attempt in the IETF
to offer guaranteed end-to-end service based on reservations
using RSVP signalling and appropriate traffic control mod-
ules in the routers like Class Based Queueing and Weighted
Fair Queueing. However it soon became evident that this ap-
proach does not scale due to the per flow state required in the
routers in the core of the network. RSVP will not be an an-
swer to all the problems as originally it had been thought.

The problem of providing consistent service differentia-
tion with strictly quantifiable service levels across the In-
ternet is a very hard one. However it seems widely ac-
cepted that even statistically guaranteed service levels for
“premium” customers would suffice for differential pricing.

TCP is by far the most widely used transport protocol
accounting for over 80% of the total Internet traffic which
appears to be originating from large servers to the periph-
ery. TCP has window based congestion avoidance and con-
trol [2] based on the well proven principles of additive in-
crease and multiplicative decrease (AIMD) [3] ; it interprets
packet drops as congestion signals, ensuring stability and ef-
ficient resource utilisation. However as discussed in [4] the
TCP window mechanism does not generally achieve fair-
ness. Results published recently in [5], showed that rate con-
trol based on additive increase and multiplicative decrease
achieves proportional fairness. Moreover in a weight pro-
portional fair system where weights are the prices the users
pay per time unit, both the utility perceived by each user and
the total utility perceived by the network provider are max-
imised. This was acknowledged in MulTCP [1] which mod-
ifies the standard congestion control behaviour of TCP in an
attempt to emulate the behaviour of multiple concurrent TCP
connections using the same control loop.

The main contribution of this work is the performance
evaluation of a modified, intentionally more aggressive TCP

(MulTCP) in terms of average throughput in real networks
with both drop tail and Random Early Detection gateways.
For our study we used real TCP stacks and carried out ex-
periments both in the field and in a controlled testbed.

The paper is organised as follows; Section II provides an
essential brief overview of MulTCP (details can be found
in [1]) and discusses implementation issues. Section III de-
scribes the environment, the setup and the methodology of
our experiments. Section IV examines the impact of differ-
ent TCP flavours (Reno TCP and TCP SACK). Section V
presents the results obtained with router mechanisms like
WFQ, CBQ and RED. MulTCP problems and limitations are
reported in Section VI. Section VII suggests potential en-
vironments where such a mechanism could be successfully
deployed and finally Section VIII has discussion and conclu-
sions.

II. THE MULTCP ALGORITHM

Any reasonably long-lived TCP connection goes through
different phases; start up, experiencing losses and reach-
ing steady state. During slow start the congestion win-
dow (cwnd) of standard TCP is opened exponentially by
sending two packets for every received acknowledgement
(ACK): one for the ACK which says that a packet has left
the pipe (principle of conservation of packets) and one in or-
der to open the congestion window by one more packet in
an attempt to quickly find and utilise all the available band-
width [2].

Behaving like an aggregate of � virtual TCP connection
in the same control loop requires the connection to start by
sending � packets, � acknowledgements being received
and ��� packets being sent out after one round trip time.
This clearly results in large bursts that lead to losses and pre-
vent the connection from rapidly reaching steady state. To
deal with this problem, MulTCP sends 3 packets (instead of
�) for each received ACK until it opens its congestion win-
dow as far as � TCP connections would have done cumula-
tively1. Assuming that this happens after ��� RTTs, MulTCP
will have a congestion window of �
	�� and � TCPs will have
(in total) a congestion window of ��
���	�� so:

����� ����� �
����� ��� ����� �

MulTCP introduces a new threshold value during the slow
start phase that is �
	�� (variables multcp cwthresh and
wN in Figure 1). Below this value MulTCP’s congestion win-
dow is in rapid exponential increase (3 packets sent for each
ACK received); above this value it increases exponentially

�
We assume that the � TCPs perform slow start for the first time (i.e. not

after a timeout), so that the exponential increase phase is not limited by the
ssthresh value.

as standard TCP does during the slow start phase (2 pack-
ets sent for each ACK received) until it reaches ssthresh.
Above ssthresh the congestion window increases by one
packet per window of data (or ����! #" per packet) probing the
network for available bandwidth. MulTCP on the other hand
attempts to emulate � TCPs during its linear increase phase
by opening cwnd by ����! $" per packet, as shown in Figure 1.

A packet drop in a window of data is interpreted by any
conformant TCP as congestion indication and it normally
halves its congestion window and sets ssthresh to the
new cwnd value. In the � TCP connections case, only one
of the connections will halve its congestion window when a
packet is lost, so MulTCP will set cwnd and ssthresh to�&%!')(*� of the initial cwnd value. When there are multiple
losses in the same window of data and a timeout occurs, stan-
dard TCP sets ssthresh to half the value of the cwnd and
then reduces cwnd to one segment and goes in slow start.

A single MulTCP connection is more prone to timeout
when compared with � distinct TCP connections because
with the same number of losses distributed over � con-
nections, the probability that one of them will experience
enough of the losses to cause a timeout is smaller. After a
timeout MulTCP sets ssthresh to �&%!')(*� of cwnd value
instead of half, cwnd is set to 1 segment and performs its
own version of slow start. This is the only thing one can pos-
sibly do to make MulTCP resemble � TCPs2.

A. Implementation issues

We modified TCP in the FreeBSD kernel3 to allow assign-
ing a multiplicative factor to a TCP connection from user
space. We defined the TCP MULT socket option in the sock-
ets API and used the setsockopt() system call to set it.
An application can select the multiplicative factor from the
supported preconfigured range of values. The standard TCP
behaviour is used when the factor is not specified explicitly.

The MulTCP factor (the unsigned integer variable mult)
becomes an important attribute of the TCP connection and is
therefore kept in the TCP control block (struct tcpcb)
which also holds information about the connection state, the
associated local process and transmission-related parameters
like cwnd and ssthresh.

We have also introduced two tables of precomputed val-
ues needed for the MulTCP operation, indexed by the multi-
plicative factor � :+ multcp cwthresh[N] holds the number of seg-

ments up to which the congestion window can grow in-
creasing by 3 segments each time an ACK is received.+ multcp cwdecr[N] holds the ratio by which the
congestion window is decreased each time loss occurs.

,
Indeed after exiting slow start MulTCP will have the same congestion

window as � TCPs would have if one of them had performed slow start.-
FreeBSD-2.2.5-RELEASE, a 4.4 BSD derived Unix.

{
register u_int cw = tp->snd_cwnd;
register u_int N = tp->mult;
register u_int wN =

multcp_cwthresh[N] * tp->t_maxseg;
register u_int incr = tp->t_maxseg;

if (cw >= tp->snd_ssthresh)
/* linear increase,

N maxseg per window */
incr = N * incr * incr / cw;

else
/* congestion window < ss_thresh,

slow start */
if (cw < wN)

incr = 2 * incr;
tp->snd_cwnd = min(cw + incr, \

TCP_MAXWIN<<tp->snd_scale);
}

Fig. 1. Modified TCP slow start/congestion avoidance, from BSD TCP im-
plementation.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
0

100

200

300

400

500

600

cw
nd

 d
ec

re
as

e
(r

at
io

)

.

cw
nd

 th
es

ho
ld

 (
se

gm
en

ts
)

weight (N)

multcp_cwthresh

multcp_cwdecr

Fig. 2. Values of the cwnd decrease ratio and its threshold for various
MulTCP factors.

These values (Figure 2) can be viewed as a measure of how
responsive to congestion a MulTCP connection is and they
have been previously calculated to avoid expensive arith-
metic in the kernel.

III. EXPERIMENT SETUP

Experiments were done in a controlled network environ-
ment and over the wide area Internet. The controlled envi-
ronment experiments were done on the CAIRN [6] network
using a transatlantic ATM PVC between UCL and the NASA
Goddard Space Flight Center over which we had complete

TCP senders

/10325456578:9<;�= 0?>5@
A 8CB�D E F 456�7/C>3@�25456578:9<;�= 0G>5@

H @ 8CB�D E F 45657/I0525456578�9J; 0GK5@3@

GSFC router UCL router
L�M 4 E

L�M 4 EON

L�M 4 EJP

H @ 8CB�D E F 45657

Fig. 3. Topology in the experiments between UCL and NASA.

control. The Internet experiments were done between UCL
and the University of Pisa over the European academic IP
network.

Our goal was to determine to what extent an approach
based on modified TCP congestion control algorithm can
provide weighted proportional performance differentiation
between TCP flows. For our evaluation we used different
TCP implementations (Reno, SACK) and routers that imple-
mented drop-tail and Random Early Detection (RED) queue
management (in the controlled environment only). This
soft transport level approach to differentiated service has
also been compared with network level mechanisms (WFQ,
CBQ) for per flow guaranteed service (delay and through-
put), when these mechanisms were applied on a single hop
in the controlled environment case.

A. Controlled Environment and Internet Path

The topology used in the controlled environment experi-
ments is shown in Figure 3. Both the hosts and the routers
were PCs running the FreeBSD operating system. The
hosts had modified kernels for MulTCP (needed only at the
senders) and SACK (needed at both senders and receivers);
see [7] for SACK implementation details. The routers were
running ALTQ [8] kernels capable of Class Based Queue-
ing, Weighted Fair Queueing and RED. The links were all
ATM PVCs, rate limited to the appropriate bandwidth. The
link MTU on the senders was set to 1500 bytes for several
reasons; first to avoid influencing TCP performance by us-
ing large MSS size, because we wanted the results to be ap-
plicable to usual Internet paths where MSS is dominated by
the Ethernet MTU size (1500 bytes) and in order to make the
windowing behaviour more obvious than with the 9180 bytes
MTU of the ATM links (since the window in segments will
grow larger for the same size of the end-to-end pipe when the
segments are smaller).

The aim in the Internet experiments was to evaluate the
robustness of the MulTCP differentiation mechanism under
real world congestion conditions and to see how it com-
pared with standard TCP flows [9]. The routers in the ex-

periments between UCL and University of Pisa implemented
drop-tail queue management and the maximum segment size
was 1460 bytes; we had no control over the 16 hops path
which was verified to be symmetric.

B. Methodology

Each experiment involved initiating a number of TCP con-
nections between the senders and the receiver using ttcp.
The number of connections should be sufficiently large for
creating contention for buffer space and subsequently packet
drops at the bottleneck router. In the controlled environment
case usually there were twelve flows; in the Internet experi-
ments the number of connections was typically smaller (usu-
ally two to five), since creating congestion in the wide area
Internet path was not really an issue. The traffic was captured
using tcpdump near the receiver and the traces were anal-
ysed off-line to obtain the TCP sequence number over time
plots. Internet tests were performed several times during dif-
ferent times of day to eliminate bias due to specific network
conditions at the time of an experiment.

The duration of an experiment usually was in the order of
seconds so that it can be safely assumed that traffic condi-
tions on the path were relatively constant for the duration of
an experiment. However traffic conditions may vary across
different experiments; this was particularly true in the Inter-
net tests where different TCP throughput was observed in
different experiments. Therefore we argue that only qual-
itative comparisons of weighted differentiation should be
made across different experiments, without comparing abso-
lute throughput values which could vary widely. However
almost identical behaviour was observed when the same ex-
periment was repeated several times in the controlled envi-
ronment.

C. MulTCP and Differentiation Criteria

We explored the entire parameter space (1 to 10) for the
weight assigned to each TCP flow (multiplicative factor �)
but for reasons described in Section VI we focused on �Q�R�
aiming at a TCP with 100% gain in throughput, one which
would perform as the aggregate of two TCPs. From this
point on when the term MulTCP connection is used we will
assume a weight of two unless otherwise stated.

For TCP the primary differentiation metric is through-
put. Differentiation among various TCP flows needs to be
observed when all TCPs in the test are simultaneously ac-
tive, because when the first connection terminates the rest
compete for the freed up bandwidth and usually manage to
increase their throughput. This is not so important in the
Internet experiments because the bottleneck is shared by a
much larger number of TCP connections and the effects of
re-distributing freed-up bandwidth were not noticeable. In a
ideal proportionally fair system the bandwidth that becomes

available should be distributed between the remaining con-
nections according to their relative weights.

IV. TCP IMPLEMENTATION ISSUES

This section discusses MulTCP performance when imple-
mented on different TCP variants. Although MulTCP needs
to be implemented only on the sender host, its performance
is strongly influenced by the TCP implementations of both
sender and receiver. We examine TCP Reno and TCP with
Selective Acknowledgements (TCP SACK), since they use
quite different mechanisms for detecting and responding to
packet loss. Packet loss is the primary and usually the only
congestion signal available to TCP and this is the reason
for the coupling between error and congestion control. Fi-
nally, MulTCP performance with different kinds of receivers
(FreeBSD and Windows 95) is examined.

A. TCP Reno

TCP Reno, the de facto TCP standard, is known to have
performance problems during its recovery phase when multi-
ple losses occur in the same window. This happens because a
sender can only learn about a single packet loss per round trip
time due to the limited information carried by cumulative ac-
knowledgements. An aggressive sender might decide to re-
transmit packets early, but such retransmitted segments may
have already been received successfully. There is a trade off
between unnecessary retransmissions of segments that have
already being received and unnecessary delays in useful re-
transmissions of segments that were actually lost. Eventu-
ally multiple losses in the same window of data cannot be
recovered with fast retransmits; Reno TCP often has to wait
for the retransmit timer to expire and then go into slow start.
The timeouts are idle periods that have severe impact on TCP
throughput.

The problem is exacerbated with large windows such as
the MulTCP case. Assuming intuitively the same loss prob-
ability for each packet, it is more likely to experience ir-
recoverable losses when the window becomes larger. It has
long been realised that the performance of TCP with large
windows will remain handicapped until the SACK option is
added to TCP [10]. Indeed both the simulations in [1] and
the real network experiments in [9] showed a clear difference
when SACK is used with MulTCP.

Figure 4 shows typical traces of two competing Reno
TCPs from the experiments over the Internet path. Despite
the fact that in this trace MulTCP finishes first, this is obvi-
ously not what could be described as weighted proportional
differentiation. Both TCPs experience a number of timeouts
evident from the breaks in the continuity of the curves (pipe
breaks).

0

200

400

600

800

1000

1200

1400

0 10 20 30 40 50 60

se
gm

en
t (

14
60

 b
yt

es
)

time (sec)

N=1N=2

Fig. 4. TCP Reno traces from Internet experiments.

0

200

400

600

800

1000

1200

1400

0 5 10 15 20 25 30

se
gm

en
t (

14
60

 b
yt

es
)

time (sec)

N=2 N=1

Fig. 5. TCP SACK traces from Internet experiments.

B. TCP Selective Acknowledgements (SACK)

TCP with Selective Acknowledgements (SACK) has be-
come a Proposed Internet Standard Protocol [11]; it over-
comes TCP Reno’s problems with large windows. SACK
requires both sender and receiver modifications; the receiver
sends SACK packets to the sender reporting all segments that
have arrived successfully and are currently present in its re-
ceive queue4. The sender implements a selective retransmis-
sion strategy based on receiver’s SACK information [7].

The same experiments done with TCP Reno were repeated
with TCP SACK and the results are shown in Figure 5.
The number of timeouts is significantly smaller and MulTCP
throughput (intuitively the gradient of the curve) is almost
double.

Both Reno and SACK TCP traces shown above were ob-

S
SACK information is carried in OPTIONS field of the TCP header and

the 40 bytes available there allow for a maximum of 4 SACK blocks, each
block being two 32-bit sequence numbers denoting the Left and Right Edge
of Block respectively.

tained sufficiently close in time (within minutes), so that one
can assume that traffic conditions in the Internet path had
not changed dramatically. The experiment was repeated sev-
eral times and although there were quantitative differences
across the experiments the qualitative results were the same;
MulTCP with SACK was achieving approximately twice the
throughput of the standard TCP flow in the same experiment.

Although SACK improves things considerably it is still
not a panacea because of the limited number of SACK blocks
in each segment. According to RFC 2018 when a retransmit-
ted packet is lost again then even TCP SACK will have to
time out. The same happens when many acknowledgements
are lost. The congestion control decisions concerning error
recovery with Selective Acknowledgements is still an open
research issue.

C. Different Receivers

MulTCP has the advantage of requiring sender-only modi-
fications, however a connection’s performance is determined
to a great extent by the receiver’s behaviour. Therefore we
experimented with two receivers: a FreeBSD with SACK
and a Windows95 one. Our results showed that only the
multiplicative factor itself is not sufficient for providing con-
sistent weighted proportional throughput differentiation be-
tween different receivers, because there are other aspects of
a TCP implementation which affect the performance drasti-
cally.

In our experiments each client received two TCP flows:
a standard TCP and a MulTCP with weight �T�VU (Fig-
ure 6). The FreeBSD receiver has a large socket buffer size
which allows larger windows but it also means that it has to
wait until the socket buffer is filled up to a certain point be-
fore sending an ACK to the MulTCP sender (or the delayed
ACK timer expires). The Windows’95 TCP implementation
on the other hand does not appear to have this problem; ini-
tially it performs better but in the long run FreeBSD outper-
forms it.

V. ROUTER MECHANISMS AND NETWORK ISSUES

This Section examines the interaction of MulTCP with
RED gateways and compares it with the proportional fair-
ness obtained from router mechanisms (WFQ, CBQ) that are
expected to be deployed in future IP networks. Although the
scheduling and queue management disciplines are conceptu-
ally independent from the end-to-end flow control, they af-
fect the performance of TCP flows by providing “implicit”
or “explicit” feedback signals. These signals can be either
an increase in the Round Trip Time (due to queueing delays
that lead to poor TCP throughput) or packet drops (an im-
plicit congestion signal). Experiments were carried out in the
controlled environment using FreeBSD routers.

0

50000

100000

150000

200000

250000

300000

350000

0 1 2 3 4 5

da
ta

 tr
an

sf
er

re
d

(b
yt

es
)

W

time (s)

Win95 5-TCP receiver

Win95 1-TCP receiver

BSD 5-TCP receiver

BSD 1-TCP receiver

Fig. 6. MulTCP with Win95 and FreeBSD TCP receivers.

A. WFQ and CBQ

Network mechanisms like Weighted Fair Queueing and
Class Based Queueing [12], can be used for providing local
proportional fairness (i.e. on per hop basis) by appropriate
allocation of weights and/or connection admission control.

Figure 7 shows an ideal situation of weighted proportional
throughput differentiation, obtained using a WFQ scheduler
with per flow queueing and two weights for providing two
types of service to TCP flows. In the test six of the twelve
TCP connections were served by WFQ queues assigned a
weight of two while the weights of the other six queues were
set to one. When the “weight 2” TCPs finished (at around
time 37 sec) the “weight 1” TCPs saw an increase in their
throughput (knee in the curve) and the output link bandwidth
that became available was distributed fairly between them.

With CBQ we introduced two classes; the goal was to en-
sure that each TCP flow in the privileged class gets twice the
throughput of a TCP flow in the other class. This could be
achieved by appropriate link sharing (bandwidth assignment
between the classes) and connection admission control deci-
sions for the number of flows admitted in each class.

In Figure 8 the bottleneck link bandwidth was proportion-
ally allocated between the two classes and the same num-
ber of TCP flows was “admitted” in each class. The pro-
portional differentiation by a factor of two is evident. Alter-
natively if the link bandwidth is distributed evenly between
the two classes, then connection admission control is needed
to guarantee that the privileged class is proportionally popu-
lated compared to the other one. The results with CBQ look
different from the WFQ case because there is no per-flow
isolation and there are interactions between the flows aggre-
gated in each queue. Assuming that per flow queueing is ex-
pensive, the CBQ with the appropriate link sharing and ad-
mission control procedures provides a viable framework for
proportional differentiation.

0

200000

400000

600000

800000

1e+06

0 10 20 30 40 50 60

by
te

sX

time (sec)

Fig. 7. WFQ: proportional fairness on the bottleneck with per flow schedul-
ing and different weights.

0

200000

400000

600000

800000

1e+06

0 20 40 60 80 100 120

by
te

sX

time (sec)

Fig. 8. TCP throughput with two CBQ classes, 66% and 33% and the same
number of flows in each.

B. RED with flows from two classes of congestion control

Random Early Detection (RED) [13] is a queue manage-
ment mechanism that drops packets with a certain prob-
ability based on an exponentially weighted moving aver-
age (EWMA) of the queue length and some preconfigured
thresholds. Since drop probability does not depend on the in-
stantaneous queue length, small bursts can pass through un-
harmed and packets will be dropped only during periods of
sustained overload.

RED is meaningful in environments where the flows use
some sort of end-to-end congestion control based on conges-
tion signals provided by the gateways. We attempted to eval-
uate the effects of RED when standard TCP and MulTCP
were simultaneously active in the network. Our experi-
ments reveal that RED helped considerably towards con-
sistent weight proportional differentiation between the two
TCP families.

Figures 9 and 10 show the results with drop tail and RED

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8

th
ro

ug
hp

ut
 (

by
te

s/
s)

flow number (#)

MulTCP flows

TCP flows

Fig. 9. Throughput for TCP and MulTCP flows with drop tail router.

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8

th
ro

ug
hp

ut
 (

by
te

s/
s)

flow number (#)

MulTCP flows

TCP flows

Fig. 10. Throughput for TCP and MulTCP flows with RED routers.

routers. For each one of the 5 tests we plot two lines, one for
each family of flows (TCP flows 0-7, MulTCP flows 0-3) .
Each line connects the average throughput achieved by the
flows in each test (sorted in ascending order).

MulTCP, being by nature more bursty than standard TCP,
suffers multiple consecutive packet drops in the same win-
dow with conventional drop-tail routers and this reduces its
effectiveness. RED gateways on the other hand are not bi-
ased against bursty sources. Therefore MulTCP flows usu-
ally avoid timeouts because the gateway is inflicting scat-
tered random drops which can be recovered by using ei-
ther the fast retransmit/fast recovery [14] or the selective ac-
knowledgements mechanism.

The range of values for the MulTCP throughput was better
bounded in the RED case. MulTCP flows performed in sta-
tistical terms twice as well compared to the standard TCPs
(avoiding the phenomena of standard TCPs outperforming
MulTCPs as in Figure 9). In this work we did not address
in detail quantitative issues of statistical assurance. Table I

TABLE I

THROUGHPUT AVERAGES (KBYTES/S) FOR TCP AND MULTCP

FLOWS

Drop-tail RED RED
(8+4) (8+4) (6+6)

TCP 15.952 14.278 13.922

MulTCP 23.959 27.259 23.039

Gain 50.1% 90.9% 65.5%

summarises the average aggregate throughput for each fam-
ily (class) of flows and the gain of the MulTCP class over
the standard TCP class for different traffic mixes with RED
or drop-tail routers.

Ensuring the appropriate traffic mix, i.e how many flows
in each family, is of course very important. It is not reason-
able to expect having an arbitrary number of MulTCP flows
and a single TCP and still have all the MulTCPs getting twice
the throughput. The experiments showed that even with a
50% allocation the gain was not satisfactory; the smaller the
fraction of MulTCPs to the total number of flows the closer
to the ideal the gain was. In Table I, for one third of the flows
being MulTCP (8+4 allocation) the aggregate gain was 90%
with RED routers and 50% for drop-tail. This both empha-
sises RED’s importance and leaves significant margins for
improvement when the ratio of the MulTCP flows to the total
number of flows is lower.

VI. MULTCP PROBLEMS AND LIMITATIONS

MulTCP performance is more sensitive to TCP implemen-
tation aspects and to router mechanisms than the standard
TCP because it must address the additional goal of propor-
tional fairness. In this section we discuss the factors that mit-
igate MulTCP’s performance.

A. MSS and window sizes

MulTCP’s modified slow start is problematic when TCP’s
receiver window advertised from the client is not sufficiently
bigger than the maximum segment size (MSS) negotiated for
the connection. Assuming a connection with 8 Kbytes MSS
and 16 KBytes receive window (typical maximum window
size), the sender will not be able to send more than two
packets without receiving an ACK rendering the modified
slow start (three packets for each ACK) practically unus-
able. The maximum window size can also be a problem since
there are TCP stacks that do not implement the TCP Win-
dow Scaling Option [10] limiting the maximum window size
to 64 KBytes. Large MSS reduces MulTCP’s effectiveness
because the algorithm operates in segments and the window
will not be able to grow enough to ensure throughput differ-
entiation.

TABLE II

NUMBER OF BYTES SENT BEFORE ENTERING NORMAL SLOW START

MulTCP Bytes Bytes Bytes
factor MSS 536 MSS 1460 MSS 9140

1.5 2144 5840 36560

2 8576 23360 146240

2.5 19296 52560 329040

3 53600 146000 914000

B. Small Transfers

The nature of MulTCP’s modified slow start algorithm
does not make it amenable to several differentiation levels
for short transfers. MulTCP connections will be exhibiting
identical behaviour for a considerable length at startup so
that short (web like) transfers will finish long before any dif-
ferentiation based on weights is possible.

Table II shows how many bytes MulTCP connections with
various factors can send before entering the normal slow
start phase. The actual number depends on the Maximum
Segment Size because cwnd, although measured in bytes, is
based on MSS for its opening strategy. It can be seen, for ex-
ample, that there is no differentiation between MulTCPs of
weights 2 and above when there are less than 23 Kbytes to be
transfered with the most commonly used MSS of 1460 bytes.

Moreover the fixed overhead required by TCP to estab-
lish a connection (3-way handshake) cannot be avoided by
MulTCP. This is a considerable fraction of the overall trans-
fer time for short connections and diminishes the effective-
ness of MulTCP in short transfers.

C. Burstiness

MulTCP is admittedly more bursty than standard TCP
because for the same number of returning ACKs it sends
more back-to-back packets. Bursts are harmful because they
impose excessively high demands for buffer space in the
routers’ queues that moreover have to be satisfied within
very tight time limits and this can lead to packet drops and
overall service degradation. The burstier the traffic becomes
the higher the packet loss rate on a link for the same level
of link utilisation. Another ill effect of burstiness is the in-
creased jitter, variance in end-to-end delay times. Jitter af-
fects all the connections that share the same queue in the
router and it is important for real-time flows but usually has
smaller effect on elastic TCP-like traffic. Burstiness is a fact
of life and can be dealt with at the sender by pacing out pack-
ets with a certain rate.

In the Internet today all traffic flows coexist in the same
FIFO queues in the routers, therefore packet drops caused
by bursty connections that overflowed the buffer are inter-

preted as an indication to slow down indiscriminately by all
sources that happened to lose packets. This assumes that
these sources have some notion of flow control but does not
necessarily mean that they were the culprits of the conges-
tion incident in the first place.

When standard TCPs share the same bottleneck with
MulTCP connections, the first achieve less throughput than
in the case where all connections were standard TCPs, but
this after all is the idea behind MulTCP with the additional
feature that differentiation has to be proportional to a given
weight.

Moreover, MulTCP cannot cause congestion collapse; it
does have congestion control, admittedly more relaxed but
still in place, and is able to sufficiently reduce its rate in pres-
ence of congestion.

D. MulTCP weight

The simulation results reported in [1] showed that for �
between one and two the MulTCP flows get about � times
the throughput of standard TCP but this does not hold for
values above 2.5. In the Internet experiments however
MulTCP/Reno was problematic in general and could not
achieve consistent throughput differentiation.

With MulTCP/SACK the simulations showed that through-
put can increase proportionally with weights ranging up
to 10; again in practice the maximum weight proved to
be much lower. However the highest weight allowed for
MulTCP/SACK depends on the bandwidth delay product of
the end-to-end path; for paths with higher bandwidth delay
products the maximum usable weight should be higher. We
simply make a conjecture which we intend to investigate but
we have no data from different Internet paths to prove this at
present.

In all experiments we observed cases of MulTCP con-
nections performing overall better than TCP but the effec-
tive gain did not correspond to the assigned weight. The
behaviour was becoming increasingly unpredictable with
large number of flows and higher weight values, especially
in the Internet case. The inconsistency is obvious in Fig-
ure 11, where MulTCP with weight four performs better than
MulTCP with weight six.

Clearly differences inmultcp cwthresh (in segments)
cannot guarantee throughput differentiation because the re-
sulting cwnd values (in bytes) are unrealistic even for
paths with large bandwidth-delay products. Losses oc-
cur usually long before this threshold is reached and this
renders it practically unusable, making proportional differ-
entiation impossible for high � values. As the weight
� grows MulTCP connections become in fact equally
aggressive in their congestion window opening strategy
(multcp cwthresh) and almost equally unresponsive
to congestion (multcp cwdecr) regarding the ratio by

0

200

400

600

800

1000

0 10 20 30 40 50 60 70 80 90

se
gm

en
t (

14
60

 b
yt

es
)

time (sec)

N=1N=2N=4 N=6

Fig. 11. SACK MulTCP for various � s.

which the congestion window is decreased as result of loss.
Figure 2 shows the values of multcp cwthresh and
multcp cwdecr ratio for different weights � .

Exploring the weight range it has been found that � must
be less than 4, even with MulTCP/SACK, for consistent dif-
ferentiation. Fractional values of � in this range can also
be used; a 1.5 MulTCP does not have a natural equivalent in
terms of number of virtual TCPs but it implies a TCP with
50% increase in throughput compared with standard TCP.

E. RTT bias

When several TCP connections with various RTTs share
the same bottleneck link then severe unfairness can result
from the fact that the additive increase factor is the same
for connections of the same weight � (linear increase phase
in Figure 1) regardless of their RTT. This happens because
connections with the same weight increase their window by
the same number of segments (i.e one segment for standard
TCP) per RTT providing a faster increase of the sending rate
when the RTT is shorter. This is a well known problem in-
herent to TCP window management [4]. Moreover the RTT
bias can influence the effective gain of a MulTCP over an-
other with smaller weight and shorter RTT.

VII. CONTEXT OF DEPLOYMENT

MulTCP can be effective in a number of emerging pop-
ular environments. MulTCP is easy to deploy because it re-
quires sender-only modifications (although the receiver TCP
stack, with delayed ACKs for example, can influence per-
formance) and all the clients need is a contract with the net-
work provider. SACK proved to be essential and this needs
both sender and receiver modifications. However SACK is
already an Internet Proposed Standard and Microsoft Win-
dows98, probably the most widely TCP in end hosts today,
has the SACK option turned on by default.

A. Web caches

An environment where MulTCP can have an economic
importance is that of the web caches. When a cache receives
an HTTP request from a client, it sends the page back imme-
diately if the page is available locally, otherwise the cache
requests the page from another cache higher up in the hier-
archy or directly from the server itself.

The cache server will be able to detect from the client’s IP
address a certain user profile i.e. whether the user is eligi-
ble for MulTCP or standard TCP service and which weight
to be used (if several available). In this way the clients only
need a contract with their ISP, and the ISP guarantees that
statistically they get “faster downloads”. In case of a cache
miss, the proxy opens a new connection to a parent cache and
the new connection must be able to convey the user profile
semantics of the original client. This can be done either by
introducing a new TCP option that negotiates the MulTCP
weight to be used or by having the parent cache listening on
known “special” ports that correspond to certain service lev-
els.

Web caches could generally benefit from MulTCP and
leverage their service. Moreover usually they are not far
from their users which makes MulTCP behaviour more pre-
dictable and ISPs able to guarantee more accurately the TCP
service levels they provide to their clients. A potential draw-
back is that Web traffic involves short-lived flows although
this is expected to change with the deployment of HTTP 1.1
with persistent connections.

Having MulTCP-style capabilities on every Internet host
raises concerns about global Internet stability due to the in-
creased number of more aggressive and less congestion re-
sponsive flows. The counter-argument comes from UDP
which is available to all end hosts and can be much more
harmful than MulTCP in the hands of a malicious user, more-
over it is only limited by the bandwidth of the access line.
Nevertheless it makes more sense to keep mechanisms like
MulTCP in the servers where they can be centrally adminis-
tered; this restricts scalable transfer quality to the download
path only, but usually that is what most users care about.

B. Satellite links and other proxies

Other possible environments include satellite links that
usually have various types of proxies operating at their ends.
These links with the large bandwidth delay product are par-
ticularly suitable for the differentiation based on larger win-
dows.

Generally split connection proxies that are used as security
firewalls, encryption servers, mobile proxies for addressing
network heterogeneity, are places that are expected to gain in
importance in future IP networks and are also key points for
dealing with quality of service and deploying transport level
differentiation. From the economic viewpoint, providers

could be offering different levels of TCP service in exactly
the same fashion they provide different access speeds.

VIII. DISCUSSION AND CONCLUSIONS

Internet traffic is dominated by web transfers that origi-
nate from large servers that are few compared to the Inter-
net host population. This makes transport level approaches
to differentiated services a rather appealing concept; they are
easier to deploy, manage and they make minimal assump-
tions about the underlying network infrastructure. However
in order to be successful, like any other differentiated ser-
vices scheme, they must sufficiently address issues of spatial
granularity (i.e to which parts of the network) and levels of
service assurance.

Providing deterministic QoS guarantees (intserv) has
proved quite complex. The most recent approach (diffserv)
is to push complexity to the edges and focus on statistical ser-
vice assurance to flow aggregates that have previously been
policed at the edges. A transport level approach to service
differentiation applies the differentiation mechanism on key
nodes (hot spots) inside the network. This is enabled by re-
cent TCP enhancements that significantly improve perfor-
mance like SACK. This approach may also prove strategic
taking in mind the growing trend in using “agents”, proxies
and other active elements inside the network for various ser-
vices.

The motivation behind differentiated services is no doubt
differential pricing; its deployment is still an unresolved is-
sue basically because it is unclear who is going to make profit
out of the Internet services in order to be charged accord-
ingly. A simple solution is to provide relative quality so
that regardless of the amount of Internet traffic the user who
pays more should get more, without absolute guarantees for
a specified throughput. However the issue of “better service”
with respect to what, does not have a straightforward answer
and there are no indications that there is sufficient client de-
mand for this kind of service (i.e. just better).

Mechanisms like WFQ and CBQ can provide proportional
fairness on a link basis (per hop behaviours, PHBs) or in-
side a domain but service level agreements (SLAs) across
multiple domains is yet another thorny issue. However these
mechanisms are fairly static in nature and the weight of
each queue in the router will have to be dynamically ad-
justed depending the number of flows currently active in
each class. Alternatively dynamic Connection Admission
Control (CAC) could be used with fixed class allocations to
control the number of flows in each class.

Our work focused on an end-to-end approach. We mod-
ified the congestion control algorithm of TCP and tested
it both in a controlled environment and over real Inter-
net path, with different TCP flavours. Under real network
tests MulTCP proved to be less resilient than in the simu-

lations [1]. Our experiments showed that MulTCP is a soft
differentiation mechanism in the sense that it provides sta-
tistical assurance of proportional throughput differentiation
across an ensemble of TCP connections that share the same
bottleneck and have similar round trip times. It fits nicely
in certain popular environments and provides statistically as-
sured service without requiring support from network level
mechanisms. Thus it should be a useful mechanism to de-
ploy when coupled with differential pricing.

ACKNOWLEDGEMENTS

This work has been motivated and largely benefited from
discussions with Jon Crowcroft. It has been partially sup-
ported by Centro Studi E Laboratori di Telecomunicazione
(CSELT), Torino (Italy). We would also like to thank George
Uhl from the NASA GSFC and Luigi Rizzo from the Univer-
sity of Pisa for their help and cooperation.

REFERENCES

[1] Jon Crowcroft and Philippe Oechslin, “Differentiated End to End
Internet Services using a Weighted Proportional Fair Sharing TCP,”
ACM Computer Communication Review, vol. 28, no. 3, July 1998.

[2] Van Jacobson, “Congestion avoidance and control,” ACM Computer
Communication Review, vol. 18, no. 4, pp. 314–329, Aug. 1988.

[3] D. Chiu and R. Jain, “Analysis of the Increase and Decrease Algo-
rithms for Congestion Avoidance in Computer Networks,” Computer
Networks and ISDN Systems, vol. 17, no. 1, pp. 1–14, 1989.

[4] Sally Floyd, “Connections with Multiple Congested Gateways in
Packet-Switched Networks, Part 1–One-way Traffic,” ACM Com-
puter Communication Review, vol. 21, no. 5, Oct. 1991.

[5] Frank Kelly, Aman Maulloo, and David Tan, “Rate control for com-
munication networks: shadow prices, proportional fairness and stabil-
ity,” 1997, http://www.statslab.cam.ac.uk/frank/rate.html.

[6] “CAIRN: Collaborative Advanced Interagency Research Network,”
http://www.cairn.net/.

[7] Luigi Rizzo, “Issues in the implementation of selective acknowledge-
ments for TCP,” available at http://www.iet.unipi.it/ luigi/sack.diffs,
1996.

[8] “ALTQ: Alternate Queueing for FreeBSD,”
http://www.csl.sony.co.jp/person/kjc/software.html.

[9] Panos Gevros and Jon Crowcroft, “Experimental Results on Weighted
Proportional TCP Throughput Differentiation,” in Fourth Interna-
tional Workshop on High Performance Protocol Architectures (HIP-
PARCH ’98), University College London, June 1998.

[10] D. Borman, B. Braden, and V. Jacobson, “TCP extensions for high
performance,” Request for Comments (Proposed Standard) 1323, In-
ternet Engineering Task Force, May 1992.

[11] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP selective
acknowledgment options,” Request for Comments (Proposed Stan-
dard) 2018, Internet Engineering Task Force, Oct. 1996.

[12] Sally Floyd and Van Jacobson, “Link-sharing and Resource Manage-
ment Models for Packet Networks,” IEEE/ACM Transactions on Net-
working, vol. 3, no. 4, Aug. 1995.

[13] Sally Floyd and Van Jacobson, “Random Early Detection Gateways
for Congestion Avoidance,” IEEE/ACM Transactions on Networking,
vol. 1, no. 4, pp. 397–413, Aug. 1993.

[14] W. Stevens, “TCP Slow Start, Congestion Avoidance, Fast Retrans-
mit, and fast recovery algorithms,” Request for Comments (Proposed
Standard) 2001, Internet Engineering Task Force, Jan. 1997.

