
20 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Automatic March tests generation for static and dynamic faults in SRAMs / Benso, Alfredo; Bosio, Alberto; DI CARLO,
Stefano; DI NATALE, Giorgio; Prinetto, Paolo Ernesto. - STAMPA. - (2005), pp. 122-127. (Intervento presentato al
convegno IEEE 10th European Test Symposium (ETS) tenutosi a Tallin, EE nel 22-25 May 2005) [10.1109/ETS.2005.8].

Original

Automatic March tests generation for static and dynamic faults in SRAMs

Publisher:

Published
DOI:10.1109/ETS.2005.8

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1416292 since:

IEEE Computer Society

Automatic March Tests Generation for Static and Dynamic Faults in SRAMs

A. Benso, A. Bosio, S. Di Carlo, G. Di Natale, P. Prinetto
Dipartimento di Automatica e Informatica

Politecnico di Torino - Turin, Italy
E-mail:{alfredo.benso, alberto.bosio, stefano.dicarlo, giorgio.dinatale, paolo.prinetto}@polito.it

Abstract

New memory production modern technologies
introduce new classes of faults usually referred to as
Dynamic Memory Faults. Although some hand-made
March Tests to deal with these new faults have been
published, the problem of automatically generate March
Tests for Dynamic Faults has still to be addressed. In
this paper we propose a new approach to automatically
generate March Tests with minimal length for both
Static and Dynamic Faults. The proposed approach
resorts to a formal model to represent faulty behaviors
in a memory and to simplify the generation of the
corresponding tests.

1. Introduction

Silicon area is now so cheap and integration
technologies so advanced that one can embed in a
System-On-a-Chip (SOC) all the components and
functions that historically were placed on a hardware
board. Within SOCs, embedded memories are the
densest components, accounting for up to 90% of chips
area [1]. It is thus common finding, on a single chip,
tens of memories of different types, sizes, access
protocols and timing. Moreover they can recursively be
embedded in embedded cores. The challenge of testing
memories stems from the definition of realistic fault
models and the design of test algorithms with minimal
test application time [2].

Memory defects strongly depend on the target
technology. Every time a new technology is introduced
new defects appear and new fault models must be
defined. In the last years, the so called Static Faults
(SFs) (e.g., stuck-at faults, coupling faults …) [2] have
been the predominant fault type. They are characterized
by being sensitized by the execution of just a single
memory operation. New faulty behaviors occur in latest
technologies [3]. As an example, a write operation on a
memory cell, immediately followed by a read operation,
may cause the cell to flip. These behaviors cannot be
modeled as Static Faults, since they require more than
one operation to be sensitized. They are usually referred
to as Dynamic Faults (DFs). The set of possible DFs is
theoretically unlimited and wherever a new fault is

observed a new custom test algorithm has to be
generated.

Although the peculiar set of faults that can affects
SRAMs require ad-hoc testing strategies, their regular
structure allows adopting particularly simple algorithms,
the most popular one being March Tests [4]. Several
March Tests targeting different set of memory faults
have been proposed [2]. Most of them have been
generated by hand but, with the occurrence of new and
more complex DF models, the task of hand writing test
algorithms is becoming harder and it may lead to non
optimal results. To overcome this problem in the last
years several methodologies have been developed to
automatically generate March Tests. In this paper we
propose a new approach to automatically generate
March Tests targeting both static and dynamic memory
faults.

We successfully applied the proposed algorithm to an
extensive set of static and realistic dynamic faults,
obtaining both known and new March Tests, with a
computation time in order of few seconds. To prove
their correctness, all generated tests have been fault
simulated using an in-house developed memory fault
simulator [5]. Despite primarily targeting March Tests,
our generation process can deal with faults requiring
more complex test algorithms, as well.

The paper is structured as follows: Section 2 presents
a survey of previous works in the field of automatic
March Test generation and Section 3 introduces the
memory and the fault model. Section 4 details the steps
of the automatic March Test generation process, whereas
Section 5 presents experimental results. Section 6 finally
summarizes the main contributions and outlines future
research activities.

2. State of the Art

Several authors faced the problem of the automatic
generation of March Tests. [6] [7] present an algorithm
for March Test generation exploiting a transition tree.
The transition tree is generated in such a way that each
path from the root node to a leaf represents a March
Test. The March Test able to address the selected fault
list is searched into the tree. The main problem of this

Proceedings of the European Test Symposium (ETS’05)

1530-1877/05 $20.00 © 2005 IEEE

approach is that the transition tree is unbounded. In
order to limit the size of the tree, an upper bound on the
number of nodes in a path is used. This can cause a high
number of reiterations to find a solution making the
algorithm inefficient and time consuming. Furthermore,
this method performs an exhaustive search to find the
shortest path on the transition tree. As the size of the
transition tree increases, the algorithm becomes more
and more inefficient.

In [8] [9] the authors present a branch and bound
method that limits the search process to the parts of the
tree where a solution exists and therefore a solution is
found faster and more efficiently.

The approach presented in [10] generates a Primitive
March Test for each fault. Then, different PMTs are
combined to generate all possible March Tests by using
a set of combination rules. The main drawback is that
the rules used to compose the March Tests depend on
the fault models.

 [11] presents a completely different approach named
Test Algorithm Generation by Simulation (TAGS). The
proposed algorithm starts from an empty March Test and
adds new elements, such as March Elements or Memory
Operations. If the added elements do not improve the
coverage then they are dropped. The process is repeated
until the test reaches the fault coverage required or a test
length limit. No information on test generation time is
given.

 [12] proposes a generation process able to deal with
read disturbs faults and destructive read faults [13]. This
approach is affected by the same problems of [6] [7].

Our previous works [14][15] present a generation
algorithms able to deal with both classic static faults and
new user defined static faults. The memory is modelled
by using a graph called Test Pattern Graph (TPG). From
the TPG a sequence of operations with minimum length
is extracted by solving an instance of the Asymmetric
Travelling Salesman Problem [16]. The sequence of
operations is then translated into a March Test by
applying a set of rewrite rules. The main drawback is the
ATSP complexity (NP) that reduces the number of total
faults that can be included in the fault list. To our best
knowledge no Automatic Test Generations for Dynamic
Faults has so far been proposed.

3. Test Generation Methodology

Our test generation methodology relies on a formal
model representing the memory behaviour based on
directed graphs (see Section 3.1), and on the definition
of Functional Faults in terms of Fault Primitives (FPs)
(see Section3.2). FPs are translated to an “operational”
representation of the faulty behaviours, referred to as
Addressed FPs, or AFPs (see Section 3.3). AFPs are
represented on the graph modelling the memory as
additional arcs and the resulting graph is traversed to
generate the test (see Section 4). Although extracting the
final solution is an NP complete problem, an efficient
implementation has been found, profitably exploiting
pruning conditions imposed by the goal of primarily

generating March Tests. The overall generation
methodology is summarized in Figure 1.

Test Generation {
1.To define the Functional Faults in terms of FP’s
2.To build the digraph modelling the memory

(number of nodes is equal to 2# of involved cells)
3.To express the FP’s in terms of AFP’s
4.To expand the digraph according to AFP’s
5.To traverse the digraph to find the test

}
Figure 1. Automatic Test Generation Methodology

3.1. Memory Model

The March Test generation process starts from a
formal definition of the memory model. The problem of
modeling memory behaviors has already been faced in
[14] and [15] adopting a behavioral model based on
Finite State Machines (FSM). An n one-bit cells
memory is represented by a deterministic Mealy
Automata formally defined as follow:

M = (Q, X, Y, δ, λ) (1)
where:

• Q = {(0,1,-)n} is the set of possible memory
states;

• X = {ri, wi
d | 0≤ i≤ n-1, d∈(0,1)}∪{T} is the input

alphabet, composed by all the possible memory
operations:
− ri: a read operation performed on the cell i ;
− wi

d: a write operation of the value d with
d∈(0,1) performed on the cell i;

− T : a wait operation for a defined period of
time. This additional element is needed to deal
with Data Retention Faults [7]

• Y ∈ {0,1,-} is the output alphabet, composed of
the value ‘0’ or ‘1’ obtained by performing a read
operation. ‘-’ denotes the value obtained when a
write operation is performed;

• δ = Q × X→ Q is the state transition function;
• λ= Q × X→ Y is the output function.

We can represent (1) as a labeled directed graph:

 G = {V, E} (2)
where:

• V is the set of vertices: �V� = 2n and each vertex
represents one of the possible states of the
memory

• E is the set of edges: each edge represents one of
the possible memory operations that cause the
transition form a vertex u to a vertex v, labeled
with input and output alphabets.

Proceedings of the European Test Symposium (ETS’05)

1530-1877/05 $20.00 © 2005 IEEE

00

01

10

11

(w0
i, w0

j, T) / -
w1

i / -

w1
j / -

w1
i / -

w0
j / -

w0
i / -

w1
j / -w0

j / -

w0
i / -

(ri, rj) / 0
(w1

i, w0
j, T) / -

rj / 0
ri / 1

(w1
i, w1

j, T) / -
(ri, rj) / 1

(w0
i, w1

j, T) / -
rj / 1
ri / 0

Figure 2: Fault Free Memory G0

As an example, Figure 2 conventionally named G0.
In G0 the letters i and j are used to identify the first and
the second cell respectively. Hereinafter, we shall
assume i < j.

3.2. Fault Model

To represent memory faults we use the Fault
Primitive formalism introduced in [17] and here
summarized for sake of completeness. A Fault Primitive
FP is a 4-triplet representing the difference between an
expected (good) and the observed (faulty) memory
behavior [17]:

 < S ; I / F / R > (3)
where:

• S describes the Sensitizing Operations Sequence
(SOS), i.e., the shortest sequence of operations,
performed on the aggressor cells, needed to
sensitize the fault. S∈{op}m, m being the
minimum number of operations required to
sensitize the fault1. Each op, in turn, can be
represented as:

 c(iOd) (4)
where:

− c is the address of the memory cell. If omitted
means any cell of the memory;

− i is the initial value stored in the cell c, i ∈
{0,1};

− O is the performed operation on c, O ∈ {w,r};
− d is the value written in c in case of write

operation, d ∈ {0,1}.
• I is the value (state) stored in the victim cells

before applying S. When k victim cells are
involved, I ∈ {0,1}k;

• F is the value (state) stored in the victim cells
after applying S. When k victim cells are
involved, F∈ {0,1}k;

• R is the sequence of values read on the aggressor
cell when applying S. R ∈ {0,1,-}, R = ‘-‘ is used
when a write operation sensitizes the fault.

1 Functional Faults are usually classified as Static when m � 1 as
Dynamic elsewhere (see Section 3.3)

As an example, an Inversion Coupling Fault (CFin)
involving two memory cells in such a way that a
transition performed on the aggressor cell causes the
inversion of the value stored in the victim cell can be
described by the following two FPs:

FP1 = <0w1;0/1/-> and FP2 = <0w1;1/0/-> (5)

Definition 1: A Functional Fault model is a non-
empty set of fault primitives.

As pointed out in [17] and [3], the Static Fault Set,
has cardinality 48. On the other hand, the cardinality of
the Dynamic Fault Set (DFS) is infinite, the number of
SOSs being not upper limited. The DFS is usually split
in subsets, each including the DFs requiring the same
number of operations to be sensitized. As an example,
the 2-operations DFS includes 126 FPs. In the sequel of
the paper, for sake of readability, we shall deal with 2-
operations DFS only, even if the proposed approach can
deal with a generic p-operations DFS, as well.

3.3. Faulty Memory Model

The behavior of a faulty memory can be modeled by
extending the model defined in (2), adding a set of
additional edges, derived from the FPs definition.

In the FP notation, each FPi describes a faulty
behavior involving ki memory cells with ki = ai + vi

where ai is the number of aggressor cells and vi is the
number of victim cells. In the final model the number of
states Q, and thus the number of nodes V, will be

)max(2 ik with 0< i ≤ #FP.
As an example, the FPs defined in (5) involve two

cells, thus they require a 4 states memory model.
Since the FP notation not necessarily include the

address of both aggressor and victim memory cells, we
extend it by introducing the Addressed Fault Primitive
concept used to add the additional arcs on the memory
model.

Definition 2 : An Addressed Fault Primitive (AFP) is
a representation of a FP as a sequence of memory
operations specified with their target memory cells (0,1,
…,n-l), formalized as:

 AFP = (I,E,O) (6)
where:
• I = {(0,1)l | 0 ≤ l ≤k-1} is the initialization state;
• E= {(e)* | e∈X*} is the list of operations needed

to excite the faulty behavior; E correspond to the
SOS;

• X* = X ∪ {rl
d}, where rl

d is the operation needed
to observe the fault effect. The notation rl

d means
“read the content of the cell l and verify that its
value is equal to d”.

The AFP formalism strictly depends on both the
number k of memory cells involved in the fault and the
number n of memory cells used by the memory model
G. Since n not necessary corresponds to the number of

Proceedings of the European Test Symposium (ETS’05)

1530-1877/05 $20.00 © 2005 IEEE

memory cells involved in each FP, it may happen that
two or more AFPs have to be derived from a single FP.

 As an example, let’s consider the Transition Faults
[18] that involves one cell that fails to undergo a
transition (from 0 to 1). The FP modeling this fault is
<0w1/0/->. Suppose to have a fault free memory model
G0 with 2 cells (i.e., 4 states), the resulting AFP’s will
be: AFP1 = (00, wi

1, r
i
1), AFP2 = (00, wj

1, r
j
1), AFP3 =

(01, wi
1, r

i
1), AFP4 = (10, wj

1, r
j
1).

Moreover, when converting a FP modeling a two-cell
fault2 we have to consider both the case when the
address of the aggressor cell is grater than the address of
the victim cell and viceversa. For example the FP
<0w1,0/1/->, that involves two cells, is represented by
two AFP’s: AFP1 = (00, wi

1, r
j
0) and AFP2 = (00, wj

1, r
i
0).

In AFP1 the address of the aggressor cell is i (on the
memory model G0) and the address of the victim cell is j
(i < j), and viceversa in AFP2.

Each AFP is represented on the memory model as an
additional arc labelled with two elements:

• The operation that sensitize the fault that can be a
single read, a write operation (static fault) or a list
of two or more operations (dynamic fault);

• The operation used to observe the fault effect, that
can only be a read operation.

The resulting memory model is still represented as a
directed graph G (digraph) containing two categories of
arcs:

• Normal Arcs (NA), representing the behavior of
the fault free memory;

• Faulty Arcs (FA), representing the AFPs.

Let’s consider as an example the Inversion CF. It is
described by the following FPs: FP1 = <0w1 ,0/1/-> and
FP2 = <0w1, 1/0/->. Resorting to the AFPs notation FP1
and FP2 are rewritten as AFP1=(00,wi

1,r
j
0), AFP2=(00,

wj
1,r

i
0), AFP3=(01,wi

1,r
j
1), AFP4=(10,wj

1,r
i
1).

The resulting digraph is in Figure 3, where the four
bolded arcs represent the AFPs.

00

01

10

11

(w0
i, w0

j, T) / -
w1

i / -

w1
j / -

w1
i / -

w0
j / -

w0
i / -

w1
j / -w0

j / -

w0
i / -

(ri, rj) / 0
(w1

i, w0
j, T) / -

rj / 0
ri / 1

(w1
i, w1

j, T) / -
(ri, rj) / 1

(w0
i, w1

j, T) / -
rj / 1
ri / 0

w1
i,r0

j

w1
j,r0

i

w1
i,ri

j

w1
j,r1

i

Figure 3. CFin memory model G

2 A Fault that involves two memory cells

4. March Test Generation Algorithm

The March Test generation process starts from the
model introduced in Section 3.3 representing the
memory and all the possible FPs. The generation of a
test algorithm consists in finding a sequence of
operations able to sensitize and observe each FP in the
fault list, performing the set of possible memory
operations defined by the memory model.

 Looking at the memory model of Section 3.3 this
means we have to traverse each FA in order to find a
sequence of operations able to cover our fault list. In
addition, to obtain tests with minimum length the
sequence must be as shortest as possible; thus we have
to find constraints to reduce the length of our sequence
of operations. A possible constraints is to traverse each
FA exactly once.

Our problem is an instance of the Rural Postman
Problem [19] [21]. The RPP is the practical extension of
the well-known Chinese Postman Problem [16],
members of the wider field of the combinatorial
optimization (CO) problems. In a general instance of the
CPP, we have to find a minimum length closed walk that
traverses each edge of the graph at least once; whereas
in the rural postman problem only a subset of the edges
are required to be traversed at minimal cost. Finding an
optimal solution in a graph with both undirected and
directed edges is NP-Complete [19].

We introduced in Section 3.3 the directed graph G =
{V, E}, representing the memory model, where E can be
rewritten as: E = FA ∪ NA.

Our problem can be formalized as follows: given a
directed graph G = {V, E, FA} with V representing the
set of nodes, E representing the set of edges (memory
operations), and FA (⊆ E) representing the set of edges
to be traversed we have to find a walk, starting from a
given node (memory state), traversing each required
edge (FA) only once, and ending in a given node (open
path).

Note that the solution admits that the NAs can be
traversed more than once or never traversed. The
optimal solution should also minimize the number of
time that a generic NA is traversed.

4.1. Pruning conditions

Without introducing additional constraints, this
problem is not manageable in case of complex fault
lists. Nevertheless, the complexity can be significantly
reduced if we consider that the final test algorithm we
want to generate is a March Test. March algorithms
apply the operations in a specific way.

Definition 3 : A March Test is a sequence of March
Elements; each March Element is a sequence of memory
operations applied on every cell in a specific address
order (increasing, decreasing, random).

Definition 4 : The Initial (Final) State is the logical
values stored in the memory cells before (after) the
March Test application.

Proceedings of the European Test Symposium (ETS’05)

1530-1877/05 $20.00 © 2005 IEEE

These definitions allow us to introduce a set of
constraints in our problem that significantly reduce the
space of the possible solutions. The problem is now to
find a sequence of operations able to cover all the faults
in the fault list while respecting the March Test
constrains. Basically the March Test definition
introduces the following two constraints:

1. Final Memory State: since from the definition of
March Test, each sequence of operations must be
applied on all the cells of the memory, the only
possible final state for the memory is the one with
all the cells initialized to ‘0’ or all the cells
initialized to ‘1’.

2. March Element: a Sequence of Operations
SO in the final algorithm is valid if and only if all
the operations are performed on the same memory
cell i; otherwise the sequence causes a constraint
violation.

In some cases it is possible to obtain a set of
redundant AFPs modeling a single FP. A typical case is
when the memory model involves a number of cells
greater than the memory cells involved in the FP. As an
example if we consider the FP representing the
Transition Fault introduced in Section 3.3 we obtain
four AFPs. Since march element operations are applied
on each memory cell it is enough to consider just one of
the redundant AFPs. The model can be extended by
grouping AFPs into classes of equivalence.

Definition 6 :Two or more AFPs are equivalent if
only one of them is necessary to cover a given fault.

Definition 7 : The Address Specification of a valid
SO is the memory address on which the operations
composing the sequence are performed.

A valid SO can be directly translated into a March
Element by specifying its address order and by
removing the address specification. Considering the G0

memory model of Section 3.1 (i < j), the march element
address order is defined as follow:
• If the address specification of a valid SO is equal to i

then the address order will be ‘
’
• If the address specification of a valid SO is equal to j

then the address order will be ‘�’

An AFP is compatible with an exisiting valid SO if its
address specification is equal to the address of the
sequence.

If the address of an AFP is not unique, that AFP
cannot be covered by a March Test because the
sequence of sensitizing operations of the AFP cannot be
part of the same March Element.

The algorithm works on the graph representing the
memory model. It attempts to generate a set of March
Elements by building valid sequences of operations. It
mainly consists in finding a path on the graph able to
touch each faulty arc exactly once while respecting the
March Test constraints. The main steps of the algorithm
are summarized in Fig. 4.

1. Report (and remove) all the AFP which address is not unique
2. Repeat

a. Initialize the Sequence of Operations (SO=∅)
b. While (the next AFP is compatible with SO)

i. Put the AFP into the Sequence of Operations SO
ii. Delete the AFP and each AFP belonging to the same

equivalence class
c. If (The Sequence of Operations contains at least one AFP)

then

i. Apply the Sequence of Operations to each memory cell3

ii. If (new AFPs are covered) then delete the covered AFPs
and each AFP belonging to the same equivalence class
iii. Translate the Sequence of Operations into a March
Element by setting its address order
iv. Print the March Element

d. Else
i.Report that the AFP cannot be cover by the March Test

3. Until (AFP list is empty)

Figure 4: March Test Generation Algorithm

5. Experimental results

This section reports some experimental results
obtained by applying the proposed generation algorithm
to different fault lists. The algorithm has been
implemented in about 900 lines of C++ code, compiled
with gcc compiler. All the experiments are performed on
an ASUS, AMD 1500Mhz based Laptop with 512 MB of
RAM. Table 1 reports the March Tests generated for
different sets of target faults. We have been able to
generate most of the already published March Tests,
which have already been proved to be the best ones. In
addition we have been able to generate a new March
Test never published before. Table 2 reports the
complexity of the algorithms and the CPU time,
expressed in seconds, needed to generate the March
Tests. Finally, we applied our algorithm to the complete
set of two operations dynamic faults published in [17],
obtaining the 100n March Test of Figure 5. All
generated March Tests have been verified using a
memory fault simulator able to validate their correctness
w.r.t. the target fault list. The fault simulator has been
also used to check the non-redundancy of each
generated March Test [5].

{
1. M1:⇔(w1)
2. M2:�(r1r1r1w1r1w1r1r1w1w1r1w0r0r0r0w0r0w0r0r0w0w0r0w1)
3. M3:�(r1w0r0r0w1r1r1w1w0r0w0w1r1w0w1r1w0w0r0w1w0r0w1w1)
4. M4:
 (r1w0)
5. M5:� (r0r0r0w0r0w0r0r0w0w0r0w1r1r1r1w1r1w1r1r1w1w1r1w0)
6. M6:�(r0w0w1r1w1w0r0w1w0r0w1w1r1w0w1r1w0w0r0w1r1r1w0r0)
7. M7:⇔(r0)
}

Figure 5. 2-Operations DF March Test, CPU time
0.943s

3 E.g., if the address of the Sequence of Operations is i, now we

try to apply the same sequence to the cell j and so on …

Proceedings of the European Test Symposium (ETS’05)

1530-1877/05 $20.00 © 2005 IEEE

Type March Test Algorithm Fault List Ref.
Static MATS {
 w1 � r1 w0 � r0} SAF [4]
Static MATS+ {
 w1
 r1 w0 � r0 w1} SAF,ADF [2]
Static MATS++ {
 w0
 r0w1 � r1w0
 r0} SAF,TF,ADF [2]
Static March C- {
 w1
 r1 w0
 r0 w1 � r1 w0 � r0 w1 � r1} SAF,TF,ADF,CFid,CFinv [4]
Static CLI {
 w1
 r1 w0 w1 � r1 } CFinversion [14]
Static March SS {
w0
r0r0w0r0w1
r1r1w1r1w0 �r0r0w0r0w1�r1r1w1r1w0
r0} All static fault [20]
Dynamic RAW1 {
w1 �w1r1 �r1w0r0 �r0w0r0 �r0w1r1
 r1} Single Dynamic Faults [20]
Dynamic RAW {
w1�r1w1r1r1w0r0�r0w0r0r0w1r1
r1w1r1r1w0r0
r0w0r0r0w1r1
r1} dCFds,dCFdrd [20]
Dynamic unknown {
w1 �w0r0w1r1r1} Dynamic read fault

Table 1. Generated March Tests

March Test O(n) CPU Time (s)
MATS 4n 0.030
MATS+ 5n 0.028
MATS++ 6n 0.210
March C- 10n 0.204
CLI 5n 0.093
March SS 22n 0,201
RAW1 13n 0.212
RAW 26n 0.302
Unknown 6n 0.097

Table 2. March Tests Complexity

6. Conclusions

This paper presented a methodology to automatically
generate March Tests. A formal model has been used to
represent both known memory faults, and to possibly
add new user-defined faults. The methodology is able to
deal with both classic static faults and new complex
dynamic faults. With respect to previously presented
approaches our methodology allows generating non-
redundant March Tests in a very low computation time,
and without exhaustive searches. We have been able to
generate March Tests for the complete set of known
Static Faults and for most of the known dynamic faults
obtaining both already published and new test
algorithms. On going activities are focused on the
extension of the model to multi-port memory faults and
to linked fault models.

7. References
[1] International Technology Roadmap for Semiconductors,
“International technology roadmap for semiconductors 2004 Update”,
http://public.itrs.net/Home.htm, 2004
[2] A. J. van de Goor, “Testing Semiconductor Memories: theory and
practice”, Wiley, Chichester (UK), 1991
[3] S. Hamdioui, R. Wadsworth, J.D. Reyes, A.J. van de Goor,
“Importance of Dynamic Faults for new SRAM Technologies”, ETW
2003, 8th IEEE European Test Workshop, 2003, pp.29-34
[4] A. J. van de Goor, “Using March Tests to Test SRAMs”, IEEE
Design & Test of Computers, 1993 pp: 8–14.
[5] A. Benso,S. Di Carlo,G. Di Natale,P. Prinetto “Specification and
design of a new memory fault simulator”, ATS 2002, 11th IEEE Asian
Test Symposium,2002.pp.92–97.

[6] A.J. van de Goor, B. Smit, “Automatic verification of March
Tests”, MTDT 1993, IEEE International Workshop on Memory
Technology, Design and Testing, 1993.pp.131–136.
[7] A.J. van de Goor, B. Smit, “The automatic generation of March
Tests”, MTDT 1994, IEEE International Workshop on Memory
Technology Design and Testing,1994, pp.86 -91.
[8] S.M. Al-Harbi, S.K. Gupta, “An efficient methodology for
generating optimal and uniform March Tests”, VTS 2001, 19th IEEE
VLSI Test Symposium, 2001, pp. 231 -237
[9] S.M. Al-Harbi, S.K. Gupta, “Generating complete and optimal
March Tests for linked faults in memories”, VTS 2003, 21st IEEE
VLSI Test Symposium, 2003, pp. 254 -261.
[10] K. Zarrineh, S.J. Upadhyaya, S. Chakravarty, “A new framework
for generating optimal March Tests for memory arrays”, ITC 1998,
IEEE International Test Conference, 1998, pp.73 – 82.
 [11] K-L. Cheng, C-W. Wang, J-N. Lee, Y-F. Chou, C-T. Huang; C-
W. Wu, “Fault simulation and test algorithm generation for random
access memories”, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 2002 pp. 480 – 490.
[12] D. Niggemeyer, E.M. Rudnick, “Automatic Generation of
Diagnostic Memory Tests Based on Fault Decomposition and Output
Tracing”, IEEE Transactions on Computers, . 2004, pp. 1134–1146.
[13] R.D. Adams and E.S. Cooley, “Analysis of a Deceptive
Destructive Read Memory fault Model and Recommended Testing”,
NATW 1996. 5th IEEE North Atlantic Test Workshop, 1996
[14] A. Benso, S. Di Carlo, G. Di Natale, P. Prinetto, ”Memory read
faults: taxonomy and automatic test generation”, ATS 2001, 10th IEEE
Asian Test Symposium, 2001. pp. 157 – 163.
[15] A. Benso, S. Di Carlo, G. Di Natale, P. Prinetto “An optimal
algorithm for the automatic generation of March Tests”, DATE 2002,
IEEE Design, Automation and Test in Europe Conference and
Exhibition, 2002. pp. 938 – 939
[16] A. Gibbons, “Algorithmic Graph Theory”, Cambridge University
Press 1985.
[17] A. J. van de Goor, Z. Al-Ars, “Functional Memory Faults: A
Formal Notation and a Taxonomy”, VTS 2000, 18th IEEE VLSI Test
Symposium, 2000, pp. 281-289.
[18] R. Dekker, F. Beenker, L. Thijssen, “A Realistic Fault Model and
Test Algorithms for Satic Random Acces Memory”,IEEE Transaction
on Computer-Aided Design, 1990
[19] N.Christofides, V.Campos, A.Corberán, E.Mota “An Algorithm
for the Rural Postman Problem on a directed graph”, Mathematical
Programming Study,1986, pp.155-166
[20] S. Hamdioui, Z. Al-Ars, A J. van de Goor, “Testing Static and
Dynamic Faults in Random Access Memories”, VTS 02, 20th IEEE
VLSI Test Symposium, 2002. pp.395-400.
[21] W. L. Pearn, C. M. Liu,“Algorithms for the Chinese Postman
Problem on Mixed Networks”, Computers & Operations Research,
Volume: 22, 1995, pp. 479-489.

Proceedings of the European Test Symposium (ETS’05)

1530-1877/05 $20.00 © 2005 IEEE

