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Abstract

New memory production modern technologies 
introduce new classes of faults usually referred to as 
Dynamic Memory Faults. Although some hand-made 
March Tests to deal with these new faults have been 
published, the problem of automatically generate March 
Tests for Dynamic Faults has still to be addressed. In 
this paper we propose a new approach to automatically 
generate March Tests with minimal length for both 
Static and Dynamic Faults. The proposed approach 
resorts to a formal model to represent faulty behaviors 
in a memory and to simplify the generation of the 
corresponding tests. 

1. Introduction 

Silicon area is now so cheap and integration 
technologies so advanced that one can embed in a 
System-On-a-Chip (SOC) all the components and 
functions that historically were placed on a hardware 
board. Within SOCs, embedded memories are the 
densest components, accounting for up to 90% of chips 
area [1]. It is thus common finding, on a single chip, 
tens of memories of different types, sizes, access 
protocols and timing. Moreover they can recursively be 
embedded in embedded cores. The challenge of testing 
memories stems from the definition of realistic fault 
models and the design of test algorithms with minimal 
test application time [2]. 

Memory defects strongly depend on the target 
technology. Every time a new technology is introduced 
new defects appear and new fault models must be 
defined. In the last years, the so called Static Faults 
(SFs) (e.g., stuck-at faults, coupling faults …) [2] have 
been the predominant fault type. They are characterized 
by being sensitized by the execution of just a single 
memory operation. New faulty behaviors occur in latest 
technologies [3]. As an example, a write operation on a 
memory cell, immediately followed by a read operation, 
may cause the cell to flip. These behaviors cannot be 
modeled as Static Faults, since they require more than 
one operation to be sensitized. They are usually referred 
to as Dynamic Faults (DFs). The set of possible DFs is 
theoretically unlimited and wherever a new fault is 

observed a new custom test algorithm has to be 
generated. 

Although the peculiar set of faults that can affects 
SRAMs require ad-hoc testing strategies, their regular 
structure allows adopting particularly simple algorithms, 
the most popular one being March Tests [4]. Several 
March Tests targeting different set of memory faults 
have been proposed [2]. Most of them have been 
generated by hand but, with the occurrence of new and 
more complex DF models, the task of hand writing test 
algorithms is becoming harder and it may lead to non 
optimal results. To overcome this problem in the last 
years several methodologies have been developed to 
automatically generate March Tests. In this paper we 
propose a new approach to automatically generate 
March Tests targeting both static and dynamic memory 
faults.  

We successfully applied the proposed algorithm to an 
extensive set of static and realistic dynamic faults, 
obtaining both known and new March Tests, with a 
computation time in order of few seconds. To prove 
their correctness, all generated tests have been fault 
simulated using an in-house developed memory fault 
simulator [5]. Despite primarily targeting March Tests, 
our generation process can deal with faults requiring 
more complex test algorithms, as well.  

The paper is structured as follows: Section 2 presents 
a survey of previous works in the field of automatic 
March Test generation and Section 3 introduces the 
memory and the fault model. Section 4 details the steps 
of the automatic March Test generation process, whereas 
Section 5 presents experimental results. Section 6 finally 
summarizes the main contributions and outlines future 
research activities. 

2. State of the Art 

Several authors faced the problem of the automatic 
generation of March Tests. [6] [7] present an algorithm 
for March Test generation exploiting a transition tree. 
The transition tree is generated in such a way that each 
path from the root node to a leaf represents a March 
Test. The March Test able to address the selected fault 
list is searched into the tree. The main problem of this 
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approach is that the transition tree is unbounded. In 
order to limit the size of the tree, an upper bound on the 
number of nodes in a path is used. This can cause a high 
number of reiterations to find a solution making the 
algorithm inefficient and time consuming. Furthermore, 
this method performs an exhaustive search to find the 
shortest path on the transition tree. As the size of the 
transition tree increases, the algorithm becomes more 
and more inefficient.  

In [8] [9] the authors present a branch and bound 
method that limits the search process to the parts of the 
tree where a solution exists and therefore a solution is 
found faster and more efficiently.  

The approach presented in [10] generates a Primitive 
March Test for each fault. Then, different PMTs are 
combined to generate all possible March Tests by using 
a set of combination rules. The main drawback is that 
the rules used to compose the March Tests depend on 
the fault models. 

 [11] presents a completely different approach named 
Test Algorithm Generation by Simulation (TAGS). The 
proposed algorithm starts from an empty March Test and 
adds new elements, such as March Elements or Memory 
Operations. If the added elements do not improve the 
coverage then they are dropped. The process is repeated 
until the test reaches the fault coverage required or a test 
length limit. No information on test generation time is 
given.  

 [12] proposes a generation process able to deal with 
read disturbs faults and destructive read faults [13]. This 
approach is affected by the same problems of [6] [7]. 

Our previous works [14][15] present a generation 
algorithms able to deal with both classic static faults and 
new user defined static faults. The memory is modelled 
by using a graph called Test Pattern Graph (TPG). From 
the TPG a sequence of operations with minimum length 
is extracted by solving an instance of the Asymmetric 
Travelling Salesman Problem [16]. The sequence of 
operations is then translated into a March Test by 
applying a set of rewrite rules. The main drawback is the 
ATSP complexity (NP) that reduces the number of total 
faults that can be included in the fault list. To our best 
knowledge no Automatic Test Generations for Dynamic 
Faults has so far been proposed. 

3. Test Generation Methodology 

Our test generation methodology relies on a formal 
model representing the memory behaviour based on 
directed graphs (see Section 3.1), and on the definition 
of Functional Faults in terms of Fault Primitives (FPs) 
(see Section3.2). FPs are translated to an “operational”
representation of the faulty behaviours, referred to as 
Addressed FPs, or AFPs (see Section 3.3). AFPs are 
represented on the graph modelling the memory as 
additional arcs and the resulting graph is traversed to 
generate the test (see Section 4). Although extracting the 
final solution is an NP complete problem, an efficient 
implementation has been found, profitably exploiting 
pruning conditions imposed by the goal of primarily 

generating March Tests. The overall generation 
methodology is summarized in Figure 1. 

Test Generation {
1.To define the Functional Faults in terms of FP’s 
2.To build the digraph modelling the memory 

(number of nodes is equal to 2# of involved cells)
3.To express the FP’s in terms of AFP’s 
4.To expand the digraph according to AFP’s 
5.To traverse the digraph to find the test  

}
Figure 1. Automatic Test Generation Methodology 

3.1. Memory Model 

The March Test generation process starts from a 
formal definition of the memory model. The problem of 
modeling memory behaviors has already been faced in 
[14] and [15] adopting a behavioral model based on 
Finite State Machines (FSM). An n one-bit cells 
memory is represented by a deterministic Mealy 
Automata formally defined as follow: 

M = (Q, X, Y, δ, λ) (1) 
where: 

• Q = {(0,1,-)n} is the set of possible memory 
states; 

• X = {ri, wi
d | 0≤ i≤ n-1, d∈(0,1)}∪{T} is the input 

alphabet, composed by all the possible memory 
operations: 
− ri: a read operation performed on the cell i ;
− wi

d: a write operation of the value d with 
d∈(0,1) performed on the cell i;

− T : a wait operation for a defined period of 
time. This additional element is needed to deal 
with Data Retention Faults [7]

• Y ∈ {0,1,-} is the output alphabet, composed of 
the value ‘0’ or ‘1’ obtained by performing a read 
operation. ‘-’ denotes the value obtained when a 
write operation is performed;

• δ = Q × X→ Q is the state transition function;
• λ= Q × X→ Y is the output function.

We can represent (1) as a labeled directed graph: 

 G = {V, E} (2) 
where: 

• V is the set of vertices: �V� = 2n and each vertex 
represents one of the possible states of the 
memory 

• E is the set of edges: each edge represents one of 
the possible memory operations that cause the 
transition form a vertex u to a vertex v, labeled 
with input and output alphabets. 
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Figure 2: Fault Free Memory G0

As an example, Figure 2 conventionally named G0.
In G0 the letters i and j are used to identify the first and 
the second cell respectively. Hereinafter, we shall 
assume i < j.

3.2. Fault Model 

To represent memory faults we use the Fault 
Primitive formalism introduced in [17] and here 
summarized for sake of completeness. A Fault Primitive
FP is a 4-triplet representing the difference between an 
expected (good) and the observed (faulty) memory 
behavior [17]: 

 < S ; I / F / R > (3) 
where: 

• S describes the Sensitizing Operations Sequence 
(SOS), i.e., the shortest sequence of operations, 
performed on the aggressor cells, needed to 
sensitize the fault. S∈{op}m, m being the 
minimum number of operations required to 
sensitize the fault1. Each op, in turn, can be 
represented as: 

 c(iOd) (4) 
where: 

− c is the address of the memory cell. If omitted 
means any cell of the memory; 

− i is the initial value stored in the cell c, i ∈
{0,1}; 

− O is the performed operation on c, O ∈ {w,r}; 
− d is the value written in c in case of write 

operation, d ∈ {0,1}.
• I is the value (state) stored in the victim cells 

before applying S. When k victim cells are 
involved, I ∈ {0,1}k;

• F is the value (state) stored in the victim cells 
after applying S. When k victim cells are 
involved, F∈ {0,1}k;

• R is the sequence of values read on the aggressor 
cell when applying S. R ∈ {0,1,-}, R = ‘-‘ is used 
when a write operation sensitizes the fault. 

                                                          
1 Functional Faults are usually classified as Static when m � 1 as 
Dynamic elsewhere (see Section 3.3) 

As an example, an Inversion Coupling Fault (CFin)
involving two memory cells in such a way that a 
transition performed on the aggressor cell causes the 
inversion of the value stored in the victim cell can be 
described by the following two FPs:  

FP1 = <0w1;0/1/-> and FP2 = <0w1;1/0/-> (5) 

Definition 1: A Functional Fault model is a non-
empty set of fault primitives. 

As pointed out in [17] and [3], the Static Fault Set, 
has cardinality 48. On the other hand, the cardinality of 
the Dynamic Fault Set (DFS) is infinite, the number of 
SOSs being not upper limited. The DFS is usually split 
in subsets, each including the DFs requiring the same 
number of operations to be sensitized. As an example, 
the 2-operations DFS includes 126 FPs. In the sequel of 
the paper, for sake of readability, we shall deal with 2-
operations DFS only, even if the proposed approach can 
deal with a generic p-operations DFS, as well. 

3.3. Faulty Memory Model 

The behavior of a faulty memory can be modeled by 
extending the model defined in (2), adding a set of 
additional edges, derived from the FPs definition. 

In the FP notation, each FPi describes a faulty 
behavior involving ki memory cells with ki = ai + vi

where ai is the number of aggressor cells and vi is the 
number of victim cells. In the final model the number of 
states Q, and thus the number of nodes V, will be 

)max(2 ik  with 0< i ≤ #FP. 
As an example, the FPs defined in (5) involve two 

cells, thus they require a 4 states memory model.  
Since the FP notation not necessarily include the 

address of both aggressor and victim memory cells, we 
extend it by introducing the Addressed Fault Primitive
concept used to add the additional arcs on the memory 
model. 

Definition 2 : An Addressed Fault Primitive (AFP) is 
a representation of a FP as a sequence of memory 
operations specified with their target memory cells (0,1, 
…,n-l), formalized as: 

 AFP = (I,E,O) (6) 
where: 
• I = {(0,1)l  | 0 ≤ l ≤k-1} is the initialization state; 
• E= {(e)* | e∈X*} is the list of operations needed 

to excite the faulty behavior; E correspond to the 
SOS; 

• X* = X ∪ {rl
d}, where rl

d is the operation needed 
to observe the fault effect. The notation rl

d means 
“read the content of the cell l and verify that its 
value is equal to d”.

The AFP formalism strictly depends on both the 
number k of memory cells involved in the fault and the 
number n of memory cells used by the memory model 
G. Since n not necessary corresponds to the number of 
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memory cells involved in each FP, it may happen that 
two or more AFPs have to be derived from a single FP. 

 As an example, let’s consider the Transition Faults 
[18] that involves one cell that fails to undergo a 
transition (from 0 to 1). The FP modeling this fault is 
<0w1/0/->. Suppose to have a fault free memory model 
G0 with 2 cells (i.e., 4 states), the resulting AFP’s will 
be: AFP1 = (00, wi

1, r
i
1), AFP2 = (00, wj

1, r
j
1),  AFP3 = 

(01, wi
1, r

i
1), AFP4 = (10, wj

1, r
j
1). 

Moreover, when converting a FP modeling a two-cell 
fault2 we have to consider both the case when the 
address of the aggressor cell is grater than the address of 
the victim cell and viceversa. For example the FP 
<0w1,0/1/->, that involves two cells, is represented by 
two AFP’s: AFP1 = (00, wi

1, r
j
0) and AFP2 = (00, wj

1, r
i
0). 

In AFP1 the address of the aggressor cell is i (on the 
memory model G0) and the address of the victim cell is j
(i < j), and viceversa in AFP2.  

Each AFP is represented on the memory model as an 
additional arc labelled with two elements:  

• The operation that sensitize the fault that can be a 
single read, a write operation (static fault) or a list 
of two or more operations (dynamic fault);  

• The operation used to observe the fault effect, that 
can only be a read operation. 

The resulting memory model is still represented as a 
directed graph G (digraph) containing two categories of 
arcs: 

• Normal Arcs (NA), representing the behavior of 
the fault free memory; 

• Faulty Arcs (FA), representing the AFPs. 

Let’s consider as an example the Inversion CF. It is 
described by the following FPs: FP1 = <0w1 ,0/1/-> and 
FP2 = <0w1, 1/0/->. Resorting to the AFPs notation FP1 
and FP2 are rewritten as AFP1=(00,wi

1,r
j
0), AFP2=(00, 

wj
1,r

i
0), AFP3=(01,wi

1,r
j
1), AFP4=(10,wj

1,r
i
1).  

The resulting digraph is in Figure 3, where the four 
bolded arcs represent the AFPs. 
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Figure 3. CFin memory model G

                                                          
2 A Fault that involves two memory cells 

4. March Test Generation Algorithm 

The March Test generation process starts from the 
model introduced in Section 3.3 representing the 
memory and all the possible FPs. The generation of a 
test algorithm consists in finding a sequence of 
operations able to sensitize and observe each FP in the 
fault list, performing the set of possible memory 
operations defined by the memory model. 

 Looking at the memory model of Section 3.3 this 
means we have to traverse each FA in order to find a 
sequence of operations able to cover our fault list. In 
addition, to obtain tests with minimum length the 
sequence must be as shortest as possible; thus we have 
to find constraints to reduce the length of our sequence 
of operations. A possible constraints is to traverse each 
FA exactly once.  

Our problem is an instance of the Rural Postman 
Problem [19] [21]. The RPP is the practical extension of 
the well-known Chinese Postman Problem [16], 
members of the wider field of the combinatorial 
optimization (CO) problems. In a general instance of the 
CPP, we have to find a minimum length closed walk that 
traverses each edge of the graph at least once; whereas 
in the rural postman problem only a subset of the edges 
are required to be traversed at minimal cost. Finding an 
optimal solution in a graph with both undirected and
directed edges is NP-Complete [19].  

We introduced in Section 3.3 the directed graph G = 
{V, E}, representing the memory model, where E can be 
rewritten as: E = FA ∪ NA. 

Our problem can be formalized as follows: given a 
directed graph G = {V, E, FA} with V representing the 
set of nodes, E representing the set of edges (memory 
operations), and FA (⊆ E) representing the set of edges 
to be traversed we have to find a walk, starting from a 
given node (memory state), traversing each required 
edge (FA) only once, and ending in a given node (open 
path).  

Note that the solution admits that the NAs can be 
traversed more than once or never traversed. The 
optimal solution should also minimize the number of 
time that a generic NA is traversed. 

4.1. Pruning conditions 

Without introducing additional constraints, this 
problem is not manageable in case of complex fault 
lists. Nevertheless, the complexity can be significantly 
reduced if we consider that the final test algorithm we 
want to generate is a March Test. March algorithms 
apply the operations in a specific way.  

Definition 3 : A March Test is a sequence of March 
Elements; each March Element is a sequence of memory 
operations applied on every cell in a specific address 
order (increasing, decreasing, random).

Definition 4 : The Initial (Final) State is the logical 
values stored in the memory cells before (after) the 
March Test application.
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These definitions allow us to introduce a set of 
constraints in our problem that significantly reduce the 
space of the possible solutions. The problem is now to 
find a sequence of operations able to cover all the faults 
in the fault list while respecting the March Test 
constrains. Basically the March Test definition 
introduces the following two constraints: 

1. Final Memory State: since from the definition of 
March Test, each sequence of operations must be 
applied on all the cells of the memory, the only 
possible final state for the memory is the one with 
all the cells initialized to ‘0’ or all the cells 
initialized to ‘1’. 

2. March Element: a Sequence of  Operations     
SO  in the final algorithm is valid if and only if all 
the operations are performed on the same memory 
cell i; otherwise the sequence causes a constraint 
violation.  

In some cases it is possible to obtain a set of 
redundant AFPs modeling a single FP. A typical case is 
when the memory model involves a number of cells 
greater than the memory cells involved in the FP. As an 
example if we consider the FP representing the 
Transition Fault introduced in Section 3.3 we obtain 
four AFPs. Since march element operations are applied 
on each memory cell it is enough to consider just one of 
the redundant AFPs. The model can be extended by 
grouping AFPs into classes of equivalence. 

Definition 6 :Two or more AFPs are equivalent if 
only one of them is necessary to cover a given fault. 

Definition 7 : The Address Specification of a valid 
SO is the memory address on which the operations 
composing the sequence are performed. 

A valid SO can be directly translated into a March 
Element by specifying its address order and by 
removing the address specification. Considering the G0

memory model of Section 3.1 (i < j), the march element 
address order is defined as follow: 
• If the address specification of a valid SO is equal to i

then the address order will be ‘
’
• If the address specification of a valid SO is equal to j

then the address order will be ‘�’

An AFP is compatible with an exisiting valid SO if its 
address specification is equal to the address of the 
sequence.  

If the address of an AFP is not unique, that AFP 
cannot be covered by a March Test because the 
sequence of sensitizing operations of the AFP cannot be 
part of the same March Element. 

The algorithm works on the graph representing the 
memory model. It attempts to generate a set of March 
Elements by building valid sequences of operations. It 
mainly consists in finding a path on the graph able to 
touch each faulty arc exactly once while respecting the 
March Test constraints. The main steps of the algorithm 
are summarized in Fig. 4. 

1. Report (and remove) all the AFP which address is not unique 
2. Repeat  

a. Initialize the Sequence of Operations (SO=∅)
b. While (the next AFP is compatible with SO) 

i. Put the AFP into the Sequence of Operations SO 
ii. Delete the AFP and each AFP belonging to the same 

equivalence class 
c. If (The Sequence of Operations contains at least one AFP) 

then

i. Apply the Sequence of Operations to each memory cell3

ii. If (new AFPs are covered) then delete the covered AFPs 
and each AFP belonging to the same equivalence class  
iii. Translate the Sequence of Operations into a March 
Element by setting its address order 
iv. Print the March Element 

d. Else  
i.Report that the AFP cannot be cover by the March Test 

3. Until (AFP list is empty)

Figure 4: March Test Generation Algorithm 

5. Experimental results 

This section reports some experimental results 
obtained by applying the proposed generation algorithm 
to different fault lists. The algorithm has been 
implemented in about 900 lines of C++ code, compiled 
with gcc compiler. All the experiments are performed on 
an ASUS, AMD 1500Mhz based Laptop with 512 MB of 
RAM. Table 1 reports the March Tests generated for 
different sets of target faults. We have been able to 
generate most of the already published March Tests, 
which have already been proved to be the best ones. In 
addition we have been able to generate a new March 
Test never published before. Table 2 reports the 
complexity of the algorithms and the CPU time, 
expressed in seconds, needed to generate the March 
Tests. Finally, we applied our algorithm to the complete 
set of two operations dynamic faults published in [17], 
obtaining the 100n March Test of Figure 5. All 
generated March Tests have been verified using a 
memory fault simulator able to validate their correctness 
w.r.t. the target fault list. The fault simulator has been 
also used to check the non-redundancy of each 
generated March Test [5]. 

{
1. M1:⇔(w1) 
2. M2:�(r1r1r1w1r1w1r1r1w1w1r1w0r0r0r0w0r0w0r0r0w0w0r0w1)
3. M3:�(r1w0r0r0w1r1r1w1w0r0w0w1r1w0w1r1w0w0r0w1w0r0w1w1) 
4. M4:
 (r1w0) 
5. M5:� (r0r0r0w0r0w0r0r0w0w0r0w1r1r1r1w1r1w1r1r1w1w1r1w0) 
6. M6:�(r0w0w1r1w1w0r0w1w0r0w1w1r1w0w1r1w0w0r0w1r1r1w0r0) 
7. M7:⇔(r0) 
}

Figure 5.  2-Operations DF March Test, CPU time 
0.943s 

                                                          
3 E.g., if the address of the Sequence of Operations is i, now we 

try to apply the same sequence to the cell j and so on … 
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Type March Test Algorithm Fault List Ref. 
Static MATS {
 w1 � r1 w0 � r0} SAF [4] 
Static MATS+ {
 w1 
 r1 w0 � r0 w1} SAF,ADF [2] 
Static MATS++ {
 w0 
 r0w1 � r1w0 
 r0} SAF,TF,ADF [2] 
Static March C- {
 w1 
 r1 w0 
 r0 w1 � r1 w0 � r0 w1 � r1} SAF,TF,ADF,CFid,CFinv [4] 
Static CLI {
 w1 
 r1 w0 w1 � r1 } CFinversion [14] 
Static March SS {
w0 
r0r0w0r0w1 
r1r1w1r1w0 �r0r0w0r0w1�r1r1w1r1w0 
r0} All static fault [20] 
Dynamic RAW1 {
w1 �w1r1 �r1w0r0 �r0w0r0 �r0w1r1 
 r1} Single Dynamic Faults [20] 
Dynamic RAW {
w1�r1w1r1r1w0r0�r0w0r0r0w1r1
r1w1r1r1w0r0
r0w0r0r0w1r1
r1} dCFds,dCFdrd [20] 
Dynamic unknown {
w1 �w0r0w1r1r1} Dynamic read fault 

Table 1. Generated March Tests 

March Test O(n) CPU Time (s) 
MATS 4n 0.030 
MATS+ 5n 0.028 
MATS++ 6n 0.210 
March C- 10n 0.204 
CLI 5n 0.093 
March SS 22n 0,201 
RAW1 13n 0.212 
RAW 26n 0.302 
Unknown 6n 0.097 

Table 2. March Tests Complexity

6. Conclusions 

This paper presented a methodology to automatically 
generate March Tests. A formal model has been used to 
represent both known memory faults, and to possibly 
add new user-defined faults. The methodology is able to 
deal with both classic static faults and new complex 
dynamic faults. With respect to previously presented 
approaches our methodology allows generating non-
redundant March Tests in a very low computation time, 
and without exhaustive searches. We have been able to 
generate March Tests for the complete set of known 
Static Faults and for most of the known dynamic faults 
obtaining both already published and new test 
algorithms. On going activities are focused on the 
extension of the model to multi-port memory faults and 
to linked fault models. 
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