
10 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

SEU effect analysis in a open-source router via a distributed fault injection environment / Benso, Alfredo; DI CARLO,
Stefano; DI NATALE, Giorgio; Prinetto, Paolo Ernesto. - STAMPA. - (2001), pp. 219-223. (Intervento presentato al
convegno Design, Automation and Test in Europe, Conference and Exhibition (DATE) tenutosi a Munich, DE nel 13-16
Mar. 2001) [10.1109/DATE.2001.915028].

Original

SEU effect analysis in a open-source router via a distributed fault injection environment

Publisher:

Published
DOI:10.1109/DATE.2001.915028

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1416286 since:

IEEE Computer Society

SEU Effect Analysis in a Open-Source Router
via a Distributed Fault Injection Environment

Alfred0 BENSO, Stefan0 DI CARLO, Giorgio DI NATALE, Paolo PRINETTO
Politecnico di Torino

Dipartimento di Automatica e Informatica
Corso Duca degli Abruui 24 - I-10129, Torino, Italy

Email: { benso, dicarlo, dinatale, prinetto)@polito.it
http://www. restnrouu.polito. it

Abstract

The paper presents a detailed error analysis and
classification of the behavior of an open-source router,
when affected by Single Event Upsets (SEUs). The
experimental results have been gathered on a real
communication network, resorting to an ad-hoc Fault
Injection system. The injector has been designed to
corrupt the router during its normal service and to analyze
the SEU injection effects on the overall distributed system.

The performed experiments allowed the authors to
identify the most critical memory regions and to cluster the
router variables according to their impact on system
dependability.

1. Introduction

The increased use of computer systems in applications
that require very high dependability is now widespread
and commonly accepted.

We are nowadays entering a world of global
communications, in which a multi-faceted variety of
services, ranging from the simple voice transmission to the
real-time exchange of enormous volumes of data, is
offered to a potentially huge number of customers.

Examples of these services include video-conferencing,
Web browsing, VolP, but there is a general feeling that the
new communication systems will trigger the expansion of
many kinds of services that are today completely
unforeseen.

One of the crucial points of this revolution is
represented by the deployment of wide-band reliable
communication infrastructures. This appears to be as one
of the major challenges for the communication society.
The deployment of global communication systems that
ensure adequate levels of performance and dependability
in data communications is a conditio sine qua non for the
opening of the new scenarios of the future service society.

The quality of services accessed through a
communication network may be impaired by the
malfunctioning that arises from failures of the
hardwarekoftware network infrastructure components, as
well as from the erroneous behaviorhnteraction of the
applications that use the network to transfer the data.

Since from an economical point of view hardware
redundancy is not always the most practical solution, the
use of dependable software techniques is an effective and
low-cost solution to develop high dependable
communication systems. In order to target the best
dependable software techniques, an analysis of the
behavior of the communication system when faults occur
is needed.

Some of the most critical components inside a
communication network are the routing devices. In fact, a
failure in one of this components can affect an entire
subset of the network making impossible the
communication between two points especially inside
network not strongly connected.

The objective of this work is the study and the
classification of the behavior of an Open Source Router
when a SEV (Single Error Upset) affects it. The proposed
work aims at contributing to the definition of
methodologies for enhancing the quality of services that
are provided through network communication systems.

The realization of the study proposed in this paper
relies on a Fault Injection environment to inject faults
inside the memory of the router and to observe its
behavior in presence of a fault. Due to the distributed
nature of the target system, the Fault Injector must be
distributed as well, to collect results not only in the router
but also in the clients connected to the router.

The interest in Fault Injection techniques has lead to
many researches about its applicability, validity, and
possible applications. Many Fault Injection tools have
been developed in the context of different researches.
Messaline [I] has a design based on a formalized Fault
Injection methodology. The result is a flexible testbed

219
i530-1591/01$10.00 0 2001 IEEE

http://www

capable of simultaneously injecting multiple, pin-level
faults into different target systems to collect coverage,
latency, and error-propagation measurements. Fiar [2] and
Ferruri [3] use software-implemented injections to
emulate hardware faults. The Focus simulation
environment [4] conducts fault sensitivity experiments on
chip-level designs. Transient faults are injected through a
runtime modification of the circuit. Depend [5] is a
process-based simulator that provides a library of objects
to behaviorally model a system’s hardware component.
Reacr [6] is a software testbed that abstracts
multiprocessor systems at the architectural level.

Despite the effectiveness of the previously listed tools,
they are designed especially to inject faults into hardware
systems. Our study requires a fault injection tool able to
target distributed software systems.

The paper is organized as follows: Section 2 defines the
network architecture, whereas Section 3 summarizes the
proposed fault model. Section 4 describes the
implementation of the fault injector. Sections 5 , 6 present
the experimental results, whereas Section 7 exploits some
conclusion.

2. The test case

To set up a significant experiment, the following
problems have to be faced:

a

a

a

2.1.

selection of a “significant” network architecture,
selection of a proper router implementation.
selection of suitable traffic on the network in terms
of both protocols and data.

Network architecture

One of the key points of the study proposed in this
paper is the definition of the architecture of the network
used to gather experimental results. Two opposite
constraints need to be fulfilled. On one hand, the network
should be simple enough to be easily manageable and
controllable. On the other hand, i t should be complex
enough to reflect the characteristics of a real network.
Trading-off these requirements, we selected the network
architecture shown in Figure 1.

ROUTER
Host ,

Figure 1 : Network Architecture

Despite its simplicity, the adopted architecture can
reflect a real situation. In fact, if each host is considered
not just as a single node of the network but as a complex
subnet, we obtain a real and common scenario in which a
certain number of different networks are connected
together via a router, as shown in Figure 2 .

Q Q

.,

Figure 2: Expanded Network Architecture

Each host then can be fatherly expanded, modeling the
global networks mentioned in Section 1 .

2.2. Router implementation

Looking at the proposed architecture, the key role of
the router easily comes up. A fault in the router can totally
isolate some portions of the network.

Concerning the router implementation, the use of
commercial devices is not feasible due to the usage of
proprietary software, which makes necessary the use of
expensive and complex hardware Fault Injector.

Thus we opted for an Open-Source Router implemented
on a PC running the Linux Operating System [7] .
equipped with multiple network interfaces. The advantage
of using a Linux system is the possibility to access directly
the router code and to use software fault injection
techniques instead of the hardware ones.

2.3. Traffic emulation

To be able to deal with worst cases, the UDP (User
Datagram Protocol) [8] will be used. UDP is a non-reliable
transport protocol, thus not capable of correcting routing
errors occurring in the transmitted packets.

As far as the transmitted data are concerned, each client
sends and receives packets to and from all the others
clients. As previously explained, the datagrams are sent
using the UDP protocol. The format of the payload is
shown in Figure 3.

220

32 bit

I Source 1P Address I
Destination IP Address

Counter value

Data

Figure 3: Datagram Payload Format

The first two fields contain the source and the
destination address, respectively. The third field is a
counter: its starting value is selected randomly the first
time a datagram is sent, and then incremented each time a
new datagram is sent to the same client. In this way, each
client can check whether it received all the packets
addressed to it, or not. The last field contains a predefined
string, whose variable length is calculated as a function of
the values of the previous fields.

3. Fault Model

The adopted fault model for the fault injection
experiments is the transient fault Single Error Upset
(SEU), consisting in temporally flipping one bit in one
data memory location.

The question of how much this fault model represents
real pathologies induced by the Occurrence of real defects
is crucial. Several software-implemented fault injection
studies are dedicated to the analysis of the relationship
between fault injected by software and physical faults. In
particular, both NASA [9] and IBM [lo] made statistical
studies about the most common error occurring in modem
digital circuits. These studies lead to the conclusion that,
due to the high miniaturization and the high work
frequencies, today circuits are becoming more and more
susceptible to the effect of ionizing radiation and noise
source. Moreover, [9] and [103 reported SEU be one of the
main observed effects.

The effectiveness of the used fault model is increased
when dealing with space applications, where routers need
to be installed on satellites, where the probability of SEU
is very high.

4. Fault Injector

To analyze the behavior of the network when a failure
occurs, a system able to insert fault inside the router
memory is needed.

A usual problem in setting up Fault Injection
environments is the definition of a significant fault
injection policy, in terms of where and when faults have to
be injected. Analyzing the router memory structure we
identified four different memory areas:

I . Network Packet
2. Code Segment
3. Routing Table
4. Local Data Segment.

Before entering implementation details, let’s make a
brief analysis of the potential effects of faults in these
different areas.

Errors detection in the network packets is a well know
problem in telecommunication community. All the
standard protocols used in the communication network
implement error detection and correction mechanisms.
Thus, an error analysis in this area is not necessary.

All the others three areas are instead candidate targets
for the fault injection experiments. In particular, the Code
Segment and Local Data Segment need to be well
analyzed.

As a consequence of the injection of a fault, one can
expect the following three main behaviors of the router:

The router still works properly: in this case the fault
is either still latent or it has been overridden. These
faults are not interesting because they don’t affect the
router behavior.
The router still works, but the packets are not routed
correctly: these errors are most likely due to a fault
in the router’s Routing Table. Once again, this kind
of faults is not so critical since, due to their
occurrence, packets are either routed on longer paths
or, in the worst case, lost. To investigate anyhow this
class of faults, as described in section 2.3, we
adopted the UDP Protocol that, being a non-reliable
protocol, is not able to correct routing errors.
The router crashes; this is the worst situation due to
the isolation of some network areas and to the
consequent high recovery time.

l

To fulfill the above-mentioned constraints, the Fault
Injector has been implemented as a kernel daemon of the
Linux OS. The fault injection process is split into several
steps, summarized by the pseudo-code in Figure 4.

/*Identifythe memory portion (a c t i v e memory)
where the faults have to be injected.*/
Select-memory08
Foe each byte i n activa-memory

/+Select A bit in a random position:/

/*Save the content of the environment
variables.*/

f

S a l a c t - b i t 0 8

Save - s ta tus08
/ * Fllp the selected bit (S E U injection)*/
B i t - f l i D O 1

/ * The fault effects are looked for a time
window of 5 seconds.*/

/*If a crash does not occur, restore the
saved safe state. * /

R e l o a d - s t a t u s o ;

Wait fox 5 mec

Figure 4: Fault Injector Pseudo Code

221

During the fault injection all the clients connected
transmit and receive a lot of datagrams, to verify the
effects of the fault on the network behavior.

When a client receives a datagram, verifying its
correctness, i t can detect:

errors due to packets loss, using the datagram
counter
transmission error, checking the string length.

System crashes can be detected by periodically
checking the router liveness from the clients. If the router
does not respond for a certain time period, 1.he clients
assume the server crashed. Then the router has to be
rebooted.

Whenever a packet is received, a log file is updated
storing the time of reception, the counter number, and the
correctness of the packet. After each experiment, all the
log files produced by the clients are analyzed to check for
any possible transmission error.

5. Experimental results

This section presents some statistical result obtained
injecting SEU in the router memory. In particular, a single
fault at a time has been inserted into a randomly selected
bit of each byte of

Code Segment, whose size is 10,624 bytes
Local Data Segment, which is split into two regions:
initialized data (7,3 16 bytes) and not-initialized data
(BSS=Below Stack Segment, 1,860 bytes).

A preliminary analysis of the memory was made and
the router's internal variables (Figure 5) classified as:

Simple variables (integer, char, float), used as

8 Data pointer
Functions pointer.

To assure the validity of the obtained results, each
experiment has been repeated four times.

Analyzing the log files created by the clients during the
injection experiments, we clustered the behaviors
according to the target memory regions:

Code Segment: faults injected in this area produce
three different system behaviors:

indexes, accumulator, counter, etc.

-No-effects: the system still works properly
-Critical error: the routing functionalities are

interrupted, but the Operating System is still
active. These kinds of error are not so critical,
since it is possible to resume the router in a safe
state without rebooting the system (Forward
Recovering [1 I] [121)

-Crash: the system has to be rebooted. In this area,
we can further distingue between total crash (the
system stops running in all the experiments) and
partial crash (the system stops in a subset of the
experiments, only).

Table 1 summarizes the analysis of the injections in
the Code Segment.

No-effects
Critical errors
Partial crash
Total crash

Table 1: Analysis of the Code Segment

Data Segment: the faults injected in the local
variables of the router produce the following
behaviors:

-Non-Critical Variables: the system still works
properly and all the packets exchanged are
correctly transmitted

-Critical Variables: the router sometime crashes
and, thereinafter, all the clients do not receive any
packets

-Very Critical Variables: the router always crashes.

Figure 6 shows the geographical distribution of the
three different kinds of variables in the: memory map,
whereas Table 2 summarizes the analysis of the Data
Segment.

Looking at the result shown in Figure 5 and Figure 6
one can establish a relationship between the variable class
and the behavior of the system when that kind variable is
corrupted. Normally the Function Pointers can be
classified as Very Critical Variables, the Data Pointer as
Critical Variables whereas Simple Variabl'es normally fall
in the category of Non-Critical Variables.

'

, - - J - 1

Table 2: Analysis of the Data Segment

6. On-going work

Some software dependability techniques will be applied
on the router code in order to enhance the dependability of
the router. The statistical study realized in this paper will
be used as a benchmark to evaluate the effectiveness of
these techniques.

7. Conclusions

In this paper we presented a classification of a router
behavior in presence of SEU. The proposed work consists
in the design and implementation of a network architecture
and of a distributed Fault Injection environment, able to
corrupt the router memory and to observe [.he fault effects

222

on the distributed system. The network was implemented
using an Open-Source router in order to allow direct
access to the source code and to use software fault
injection techniques.

To get a comprehensive fault behavior classification,
experiments were performed both in Data and Code
Segments.

8. Acknowledgement

The authors wish to thank Andrea Bardone who
implemented the fault injector environment and ran all the
injection experiments.

Refernces

Arlat, J.. Aguera, M., Amat, L., Crouzet, Y.. Fabre, J.C.,
Laprie, J.C., Martins, E., and Powell, D.: Fault Injection for
Dependability Validation: A Methodology and Some
Applications. IEEE Trans. Software Eng., vol. 16, no. 2, pp.
166-182, February 1990
Segall, 2.: Fiat: Fault-Injection-Based Automated Testing
Environment. Proc. 22nd Int’l Symp. Fault-Tolerant
Comput., pp. 102-107, June 1988

Kanawati, G.A., and Abraham, J.A.: FERRARI: A tool for
the validation of system dependability properties. Proc.
22nd Int. Symp. Fault Tolerant Comput., Boston, MA,

Choi, G.S., and Iyer, R.K.: Focus: An Experimental
Environment for Fault Sensitivity Analysis. IEEE Trans.
Computers, Vol. 41, No. 12, Dec. 1992, pp.1515-1526
Goswami, K.K., and Iyer, R.K.: A Simulation-Based Study
of a Triple-Modular Redundant System Using Depend.
Proc. Fifth Int’l Conf. Fault-Tolerant Computing Systems,
IEEE Press, Picataway, N.J., USA, 199 1, pp. 300-3 1 1
Clark, J.A., and Pradhan, D.K.: React: A Synthesis and
Evaluation Tool for Fault-Tolerant Multiprocessor
Architecture. Proc. 1993 Annual Reliability and
Maintainability Symp., IEEE Press, Picataway, N.J., USA,
1993, pp. 428-435
Linux Web Site: httd/www.linux.ord
RFC 768 (UDP): htto://www.faas.ordrfc/rfc768.ht~

USA, July 1992, pp.336-345

[9] httD.//tvdrlO ohy.hnl rov/seutest.html
[IO] httn: / /www.resrarc .h . ih”/ ioum~~rd/~iee~~r~lcr .html
[I I] Pradhan, D.K Fault-Tolerant Computer System Design,

[121 Jalote, P. Fault-Tolerancc in Distributed Systems. Prentice
Prentice Hall YTR 1995.

Hdl PTR 1993

--Simple Variable Data Pointer I Function Pointer

Figure 5 : Variable distribution in the router’s memory

---- , r - I I , , , I , 7 7
B S S ..

N o n Critical V a r i a b l e s T Critical V a r i a b l e s I V e r y Critical Variables
Figure 6: Fault effects on the router’s memory

223

