POLITECNICO DI TORINO
Repository ISTITUZIONALE

SEU effect analysis in a open-source router via a distributed fault injection environment

Original

SEU effect analysis in a open-source router via a distributed fault injection environment / Benso, Alfredo; DI CARLO,
Stefano; DI NATALE, Giorgio; Prinetto, Paolo Ernesto. - STAMPA. - (2001), pp. 219-223. (Intervento presentato al
convegno Design, Automation and Test in Europe, Conference and Exhibition (DATE) tenutosi a Munich, DE nel 13-16
Mar. 2001) [10.1109/DATE.2001.915028].

Availability:
This version is available at: 11583/1416286 since:

Publisher:
IEEE Computer Society

Published
DOI:10.1109/DATE.2001.915028

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright

(Article begins on next page)

10 April 2024

Politecnico di Torino

SEU effect analysis in a open-
source router via a distributed
fault Injection environment

Authors: Benso A., Di Carlo S., Di Natale G., Prinetto P,

Published in the Proceedings of the Design, Automation and Test in Europe, Conference and
Exhibition (DATE), 13-16 Mar. 2001, Munich, DE.

N.B. This is a copy of the ACCEPTED version of the manuscript. The final
PUBLISHED manuscript is available on IEEE Xplore®:

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=915028

DOI: 10.1109/DATE.2001.915028

© 2000 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for resale
or redistribution to servers or lists, or reuse of any copyrighted component of this work in

other works.

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=915028
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=915028
http://dx.doi.org/10.1109/DATE.2001.915028
http://dx.doi.org/10.1109/DATE.2001.915028

SEU Effect Analysis in a Open-Source Router
via a Distributed Fault Injection Environment

Alfredo BENSO, Stefano D1 CARLO, Giorgio DI NATALE, Paolo PRINETTO

Politecnico di Torino
Dipartimento di Automatica e Informgtica
Corso Duca degli Abruzzi 24 - 1-10129, o, Italy

Email: { benso, dicarlo, dinatale, pri
http.//www. testgro@,po]

to.it

Abstract

The paper presents a detailed error analysis_an
classification of the behavior of an open-source ter,
when affected by Single Event Upsets (.

experimental results have been gather a
communication network, resorting to_an\ad-h ault
Injection system. The injector h ned to

istributed system.

dependability.

1. Introduction

The increased use of
that require very hig
and commonly acc

tems\ih applications
i, now widespread

multi-faceted variety of
simple voice transmission to the

ese services include video-conferencing,
vsing, VoIP, but there is a general feeling that the
new comrmunication systems will trigger the expansion of
many kinds of services that are today completely
unforeseen.

One of the crucial points of this revolution is
represented by the deployment of wide-band reliable
communication infrastructures. This appears to be as one
of the major challenges for the communication society.
The deployment of global communication systems that
ensure adequate levels of performance and dependability
in data communications is a conditio sine qua non for the
opening of the new scenarios of the future service society.

4 the authors Ao
fegions and te ¢lhste eper
o their impa s ehavi
& is needed.

S
The i of servi ssed~" through a
c unication networ e paired by the
nctioning that es— 11 failures of the
rdware/software_net in ucture components, as

s
well as from th one behavior/interaction of the
eMetwork to transfer the data.
omical point of view hardware
t always the most practical solution, the
e software techniques is an effective and
solution to develop high dependable

hniques, an analysis of the
ation system when faults occur

itical components inside a
the routing devices. In fact, a
1s components can affect an entire
etwork making impossible the

twork not strongly connected.
objective of this work is the study and the
classification of the behavior of an Open Source Router
when a SEU (Single Error Upset) affects it. The proposed
work aims at contributing to the definition of
methodologies for enhancing the quality of services that
are provided through network communication systems.

The realization of the study proposed in this paper
relies on a Fault Injection environment to inject faults
inside the memory of the router and to observe its
behavior in presence of a fault. Due to the distributed
nature of the target system, the Fault Injector must be
distributed as well, to collect results not only in the router
but also in the clients connected to the router.

The interest in Fault Injection techniques has lead to
many researches about its applicability, validity, and
possible applications. Many Fault Injection tools have
been developed in the context of different researches.
Messaline [1] has a design based on a formalized Fault
Injection methodology. The result is a flexible testbed

capable of simultaneously injecting multiple, pin-level
faults into different target systems to collect coverage,
latency, and error-propagation measurements. Fiat [2] and
Ferrari [3] use software-implemented injections to
emulate hardware faults. The Focus simulation
environment [4] conducts fault sensitivity experiments on
chip-level designs. Transient faults are injected through a
runtime modification of the circuit. Depend [5] is a
process-based simulator that provides a library of objects
to behaviorally model a system’s hardware component.
React [6] is a software testbed that abstracts
multiprocessor systems at the architectural level.

Despite the effectiveness of the previously listed tools,
they are designed especially to inject faults into hardware
systems. Our study requires a fault injection tool able to
target distributed software systems.

The paper is organized as follows: Section 2 defines the
network architecture, whereas Section 3 summarizes th
proposed fault model. Section 4 describes _th
implementation of the fault injector. Sections 5, 6 pre
the experimental results, whereas Section 7 exploits
conclusion.

2. The test case

2.1.

posed in this
e of the network
esults. Two opposite

udy,

0 be easily manageable and
r hand, it should be complex

e>requirements, we selected the network
shown in Figure 1.

Host Host
ROUTER

Host Host

Figure 1: Network Architecture

nt o

Despite its simplicity, the adopted architecture can
reflect a real situation. In fact, if each host is considered
not just as a single node of the network but as a complex
subnet, we obtain a real and common scenario in which a
certain number of different networks are connected
together via a router, as shown in Figure 2.

ROUTER

&

O,
@@e 2. Expanded Network\Architecture
ach host then canbe(fatherly/expanded, modeling the
i in Section 1.

bal networks me

tation

an Open-Source Router
runnifg the Linux Operating System
multiple network interfaces. The
a Linux system is the possibility to
ctly the router code and to use software fault
techniques instead of the hardware ones.

2.3. Traffic emulation

To be able to deal with worst cases, the UDP (User
Datagram Protocol) [8] will be used. UDP is a non-reliable
transport protocol, thus not capable of correcting routing
errors occurring in the transmitted packets.

As far as the transmitted data are concerned, each client
sends and receives packets to and from all the others
clients. As previously explained, the datagrams are sent
using the UDP protocol. The format of the payload is
shown in Figure 3.

32 bit

Source [P Address

Destination IP Address

Counter value

Data

Figure 3: Datagram Payload Format

The first two fields contain the source and the
destination address, respectively. The third field is a
counter: its starting value is selected randomly the first
time a datagram is sent, and then incremented each time a
new datagram is sent to the same client. In this way, each
client can check whether it received all the packets
addressed to it, or not. The last field contains a predefined
string, whose variable length is calculated as a function o
the values of the previous fields.

3. Fault Model

The adopted fault model fo jection

data memory location.
The question @

ade statlstlcal
ing in modern
nclusion that,

due to the high mil
frequencies, tod i
susceptible to
source. More

4. Fault Injector

To analyze the behavior of the network when a failure
occurs, a system able to insert fault inside the router
memory is needed.

A usual problem in setting up Fault Injection
environments is the definition of a significant fault
injection policy, in terms of where and when faults have to
be injected. Analyzing the router memory structure we
identified four different memory areas:

%

Network Packet
Code Segment
Routing Table

4. Local Data Segment.

Before entering implementation details, let’s make a
brief analysis of the potential effects of faults in these
different areas.

Errors detection in the network packets is a well know
problem in telecommunication community. All the
standard protocols used in the communication network
implement error detection and correction mechanisms.
Thus, an error sis in this area is not necess
ee areas are instead can te ets

W~

periments. In partieular, the Gode
bcal Data Se@lent well
eguence of the of-a—fault, one can

s of the router:

Y. in this case the fault
as“been overridden. These
ng because they don’t affect

he router still
is either still

works, but the packets are not routed
COFFi ese errors are most likely due to a fault
1’s Routing Table. Once again, this kind
of faults is not so critical since, due to their

§0, lost. To investigate anyhow this
described in section 2.3, we

ter has been implemented as a kernel daemon of the
Linux OS. The fault injection process is split into several
steps, summarized by the pseudo-code in Figure 4.

/*Identifythe memory portion (active memory)
where the faults have to be injected.*/
Select_memory();
For each byte in active memory

{
/*Select A bit in a random position.*/

Select bit();
/*Save the content of the
variables.*/

Save_status();

/* Flip the selected bit (SEU injection)*/

Bit flip();
/* The fault effects are looked for a time
window of 5 seconds.*/

Wait for 5 sec
/*If a crash does not occur,
saved safe state. */

Reload status();

}

environment

restore the

Figure 4: Fault Injector Pseudo Code

During the fault injection all the clients connected Table 1 summarizes the analysis of the injections in
transmit and receive a lot of datagrams, to verify the the Code Segment.
effects of the fault on the network behavior.

When a client receives a datagram, verifying its Produced error | Bytes Percentage
correctness, it can detect: No.-fszects 6,352 59,8%

* ecrrors due to packets loss, using the datagram Critical errors 1,168 11,0%

counter Partial crash 2,944 27,7%

* transmission error, checking the string length. Total crash 160 1,5%

System crashes can be detected by periodically Table 1: Analysis of the Code Segment
checking the router liveness from the clients. If the router
does not respond for a certain time period, the clients * Data Segment: the faults injected in the local

assume the server crashed. Then the router has to be
rebooted.

Whenever a packet is received, a log file is updated
storing the time of reception, the counter number, and the S

and all thespacke
correctness of the packet. After each experiment, all the
log files produced by the clients are analyzed to check for

e transmitted
] Variables: ro omctl
and, thereinafter, al ien

any possible transmission error.
packets
5. Experimental results —Very Criti ariableS: the router always
crashes
This section presents some statistical resu taj /
injecting SEU in the router memory. In pai ar,)a single Figure~6 he” geographical distribution of the

fault at a time has been inserted in inds of variables in the memory map,

bit of each byte of: summarizes the analysis of the Data

* Code Segment, whose s} -

* Local Data Segmient i 10ons: poking at the result shown in Figure 5 and Figure 6
initialized data (7\3 i ¢ ean establish a relatignship between the variable class
(BSS=Bel aclk Seg 3 and the behavior of-the system when that kind variable is

A preliminary ‘g i - corrupted. No Function Pointers can be

classified a: ariables, the Data Pointer as
Critical Varrab hereas\Simple Variables normally fall
in th n-Critical Variables.

* Simple variables” (integer,
indexes, accumulator, counte

* Data p Olmer. 'ﬁble}*ﬁ'ect Bytes Percentage
* Functions pointer. —
. n-Critical 7,001 76,3%
To assure the val imed results, each — 2
experiment has bee es. Critical — 211 2,3%
Analyzing the y the clients during the Very Critical 1,964 21.4%
injection exp clustered the behaviors Table 2: Analysis of the Data Segment
accordj ory regions:
. G aults injected in this area produce
erént system behaviors: 6. On-going work
—Wo-effects: the system still works properly
—CAitical error: the routing functionalities are Some software dependability techniques will be applied
interrupted, but the Operating System is still on the router code in order to enhance the dependability of
active. These kinds of error are not so critical, the router. The statistical study realized in this paper will
since it is possible to resume the router in a safe be used as a benchmark to evaluate the effectiveness of
state without rebooting the system (Forward these techniques.
Recovering [11][12])
—Crash: the system has to be rebooted. In this area, 7. Conclusions
we can further distingue between fotal crash (the
system stops running in all the experiments) and In this paper we presented a classification of a router
partial crash (the system stops in a subset of the behavior in presence of SEU. The proposed work consists
experiments, only). in the design and implementation of a network architecture

and of a distributed Fault Injection environment, able to

corrupt the router memory and to observe the fault effects
on the distributed system. The network was implemented
using an Open-Source router in order to allow direct
access to the source code and to use software fault
injection techniques.

To get a comprehensive fault behavior classification,
experiments were performed both in Data and Code
Segments.

8. Acknowledgement

The authors wish to thank Andrea Bardone who
implemented the fault injector environment and ran all the
injection experiments and Isaac Levendel (Corporate
Software Technology Center - Motorola, Inc) for his aid
and the innovative advice.

9. Refernces

[1] Arlat, J., Aguera, M., Amat, L., Crouzet, Y., Fal
Laprie, J.C., Martins, E and Powell D.: Fault nje
Dependablllty Valldatlon
Applications. IEEE Trans. Software Eng., %o

166-182, February 1990 @
/\ o

Initialized Data

[2] Segall, Z.: Fiat: Fault-Injection-Based Automated Testing
Environment. Proc. 22nd Int’l Symp. Fault-Tolerant
Comput., pp. 102-107, June 1988

[3] Kanawati, G.A., and Abraham, J.A.: FERRARI: A tool for
the validation of system dependability properties. Proc.
22nd Int. Symp. Fault Tolerant Comput., Boston, MA,
USA, July 1992, pp.336-345

[4] Choi, G.S., and Iyer, RK.: Focus: An Experimental
Environment for Fault Sensitivity Analysis. IEEE Trans.
Computers, Vol. 41, No. 12, Dec. 1992, pp.1515-1526

[5S] Goswami, K.K., and Iyer, R.K.: A Simulation-Based Study

of a Triple-Modular Redundant System Using Depend.

Proc. Fifth Conf. Fault-Tolerant Computi

IEEE Press, away, N.J., USA, 1991, pp.

alua i for Fault-Tolepan 0CEeSSor

teiture 1993 <Ann al i and

nabifity Symp., IEEE Pr way, N.J., USA,
1 .4 ».

[inux Web Site: http:// W@m.o

[FC 768 (UDP): htt,

http://tvdg10.phy.bnlhgoy

10] http://www. 1L,4(E;Nl\q\om mumal rd/ziegl/Ziegler.html

[11] Pradhan, t- ant Computer System Design,

I [UNEE SNEE |

0 Simple Variable B Data Pointer B Function Pointer

W Figure 5: Variable distribution in the router’s memory

Initialized Data
[T T

}‘ [T %

0 Non Critical Variables 0O Critical Variables

B Very Critical Variables

Figure 6: Fault effects on the router’s memory

