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Generalized Wiener-Hopf Equations for Wedge problems 
involving arbitrary linear media 

 
 

V. Daniele*              G. Lombardi* 
 

Abstract1 – This paper provides new functional equations in 
angular regions that turn useful to study wedge problems in 
presence of arbitrary linear media. The enforcement of the 
boundary conditions on these equations reduces the wedge 
problems to Generalized Wiener-Hopf (GWHE) equations that can 
be approached with standard solution techniques. This procedure 
is briefly illustrated in this paper. 

1 FUNCTIONAL EQUATIONS IN ANGULAR 
REGION 

 

 
Figure 1: Angular region ( 10 γϕ ≤≤ ) 

 
We consider time harmonic electromagnetic fields with 

a time dependence specified by the factor tje ω  which is 
omitted. The electromagnetic field is studied in the 
angular region indicated in figure 1 that is defined by the 
aperture angle 1γ , ( 10 γϕ ≤≤ ). This region is filled 
by an arbitrary homogeneous medium where the 
electromagnetic field is characterized by the following 
constitutive relations  

 
HµEζB
HξEεD
⋅+⋅=
⋅+⋅=

  (1) 

In equation (1) D, B are the induction fields; E, H are 
the electromagnetic fields and the dyadic 
electromagnetic parameters µζ,ξ,ε,  are known. 

Without loss of generality we assume the z dependence 
of the electromagnetic field E and H specified by the 
factor zj oe α−  which is omitted. Cartesian coordinates 
{x,y,z}, polar coordinates { z,,ϕρ } and oblique 
coordinates {u,v,z} are used to describe the problem in 
term of GWHE. 
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With reference to figure 1, the oblique Cartesian 
coordinates u and v are defined by (with γγ =1 ): 

 ,cotγyxu −=  
γsin

yv =  

  (2) 
 ,cosγvux +=  γsinvy =  

Through a very cumbersome procedure that is not 
reported here, we obtain the following representation (5) 
of the Laplace transform of the field (3-4). 

 

),(
),(
),(
),(

),(

vuH
vuH
vuE
vuE

vu

x

z

x

z

t =ψ  (3) 

 duvuev t
uj

t ),(),(~
0

ψηψ η∫
∞

=  (4) 

 

11
)(

44

11
)(

33

110

)(
22

110

)(
11

22

11

)(

)(

)(

)(

)0,(~
)0,(~),(~

14

13

12

11

2

1

dvveTvu

dvveTvu

dvveTvu

dvveTvu

evu

evuv

v

vv

v

vv

v vv

v vv

v
t

v
tt

τ
λ

τ
λ

τ
λ

τ
λ

λ

λ

ψ

ψ

ψ

ψ

ηψ

ηψηψ

∫
∫
∫
∫

∞ −−

∞ −−

−−

−−

−

−

⋅⋅−

+⋅⋅−

+⋅⋅

+⋅⋅+

+⋅+

+⋅=

 (5) 

The vector )(vτψ  represents the components of the 
electromagnetic field that are tangential to the 
boundaries defined by the half line γϕ =  or 0=u . 

It is defined by: 
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In equation (5) the four scalars 1λ , 2λ , 3λ , 4λ  

and the four vectors 1u , 2u , 3u  4u  are respectively 

the eigenvalues and the eigenvectors of a matrix eM  of 



order four that depends on η , ,ω  oα , γ  and on the 
components of the dyadic electromagnetic parameters 

µζ,ξ,ε,  of the medium. The expression of eM  was 
obtained by MATHEMATICA® and it is not reported 
here. 

The eigenvalues represent wave numbers and are 
related to plane waves that propagate in suitable 
directions in the arbitrary medium that fills the angular 
region. 

In a general linear passive medium two eigenvalues 
( 1λ , 2λ ) have positive real parts and two eigenvalues 

( 3λ , 4λ ) have negative real parts.  

In addition to the eigenvectors 1u , 2u , 3u  4u , 

equation (5) introduces also the reciprocal vectors 1v , 

2v , 3v  4v . These vectors satisfy the equations: 

 jiij uv δ=⋅ ,      4,3,2,1, =ji  (7a) 

or 

44332211

1000
0100
0010
0001

vuvuvuvu +++=  (7b) 

where jiδ  is the Kronecker symbol. 

The matrix T  (see equation 5) is a constant matrix 
that, like eM , depends on η , ,ω  oα ,γ  and on the 

material (dyadic electromagnetic parameters µζ,ξ,ε, ). 
Also T  has been obtained by using MATHEMATICA® 
and its components are not reported here.  

For v=0 equation (5) yields: 
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Multiplying equation (8) by ⋅jv (j=1,2,..4) and taking 
into account (7), we obtain the following four equations: 

 )0,(~)0,(~
11 ηψηψ tt vv ⋅=⋅  (9a) 

 )0,(~)0,(~
22 ηψηψ tt vv ⋅=⋅  (9b) 

 )(~)0,(~
333 λψηψ τ jTvv t −⋅⋅−=⋅  (9c) 

 )(~)0,(~
444 λψηψ τ jTvv t −⋅⋅−=⋅  (9d) 

where )(~ αψτ  is the Laplace transform: 

 dvve vj )()(~
0 τ

α
τ ψαψ ∫

∞
=  (10) 

Equations (9a) and (9b) do not give any new 
information. Conversely equations (9c) and (9d) provide 
two functional equations that relate suitable Laplace 
transforms of the electromagnetic field components that 
are tangential to the two boundaries 0=ϕ  (or v=0) and 

γϕ =  (or u=0). 
For arbitrary media the equations (9c) and (9d) are 

very complicated. Simpler equations are derived with 
homogeneous media where µε,  are scalars and ζξ,  

vanish. In this case the eigenvalues 1λ , 

2λ , 3λ , 4λ degenerate: jm−=−=−== 3321 λλλλ . 
Equations (9c) and (9d) become: 
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where: 

 ρϕρϕα ρα deEV j
zz ∫

∞

+ =
0

),(),(  (12a) 

 ρϕρϕα ρα deHI j
zz ∫

∞

+ =
0

),(),(  (12b) 

 ρϕρϕα ρα
ρρ deEV j∫

∞

+ =
0

),(),(  (12c) 
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ρρ deHI j∫

∞

+ =
0

),(),(  (12d) 

 22 ητξ −= o  (12e) 

 γητγη sincos 22 −+−= om  (12f) 

 22
oo αµεωτ −=  (12g) 

 22sincos mn o −=−−= τγηγξ  (12h) 

 

 



2 A SIMPLE APPLICATION 

  
Figure 2: PEC wedge with arbitrary aperture angle Φ  

 
The functional equations (9c) and (9d) yield a system 

of equations that provides a closed mathematical 
formulation of the wedge problems. As a simple 
application, we consider the case of a perfectly electric 
conducting (PEC) wedge excited by a E- polarized plane 
wave ( )0,0/ ==∂∂ oz α  (see figure 2) and immersed 
in a isotropic medium. By assuming the angular region 
defined by Φ≤≤ ϕ0 ( Φ=γ ) and taking into 
account the boundary condition 0),( =Φ−+ mVz , the 
equation (11a) becomes: 

),()0,()0,( Φ−−=− +++ mIIVz ρρ µωηµωηξ  (13) 

and (11b) may be ignored since the unknowns of this 
equation are vanishing.  

Similar considerations for the angular region 
0≤≤Φ− ϕ  yield the functional equation: 

),()0,()0,( Φ−−=+ +++ mIIVz ρρ µωηµωηξ  (14)  

Equation (13) and (14) provide a complete 
mathematical description of the problem. Notice that 
these equations involve the two functions )0,(η+zV  and 

)0,(ηρ+I , that are regular in η -upper half plane, and the 

two functions ),( Φ−+ mI ρ  and ),( Φ−−+ mI ρ , that are 

regular in m-lower half plane. Using (12f), π=Φ  
yields η=m ; (13) and (14) become a system of 
classical Wiener-Hopf equations that are well studied in 
the literature. Conversely, when π≠Φ  equations (13) 
and (14) constitute a system of two generalized Wiener-
Hopf equations (GWHE). 

This problem has been solved in [1] by extending the 
factorization technique developed for classical Wiener-
Hopf equations. 

 
 
 

3 SOME TECHNIQUES FOR SOLVING 
GENERALIZED W-H EQUATIONS 

Wedge problems present many homogeneous angular 
regions wherein the functional equations (9c) and (9d) 
hold. By enforcing the boundary conditions relative to 
the different angular regions, we obtain GWHE with the 
following form: 

 ∑
=

++ −−=
n

j
iijij mYXG

1

)]([)()( ηηη  (15) 

 (i=1,2,..,n) 
where the unknowns )(α+jX  and )(α+iY  are plus 
functions i.e functions regular in the half-plane 

0]Im[ ≥α . 
The presence of media where more types of waves 

propagate involves different )(ηim functions since they 
are related to different wave numbers. In simple but 
fundamental cases the )(ηim functions become only 
one: for example the simple problem presented in section 
2. 

It is remarkable that in presence of one wave number a 
suitable mapping reduces the GWHE to Classical W-H 
equations that can be solved with the classical 
factorization methods [1], [2]. In particular all the wedge 
problems, that have been solved in closed form by the 
Malyuzhinets-Sommerfeld method, yield matrix kernels 

)(ηijG  that can be factorized in closed forms since they 
are of the Daniele-Khrapkov form [2].  

No analytical solution techniques exist for problems 
involving different wave numbers: for instance, for 
dielectric wedges or impenetrable wedges immersed in 
anisotropic media. 

In the following subsections we shortly describe some 
techniques to obtain approximate solutions. 

3.1  Reduction of GWHE to Fredholm integral 
equation of second kind 

Using the theory developed for generalized Hilbert 
problem in chapter 4 of [3], we reduce equations (15) to 
the following not singular integral equation which is a 
Fredholm integral equation of the second kind 
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The )(ηG  is the matrix with entries )(ηijG  and 

),(~ uG η  is the matrix with entries ),(~ uGij η : 
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This procedure ensures that the problem is well posed 
and allows for the use of well known numerical schemes 
to get the solutions. 

3.2  The moment method for solving the GWHE 

 
An approximate but very general method for solving 

the GWHE equations is the moment method. The 
unknowns )(η+jX  are written in term of “expansion” 

functions )(ηj
r+Ψ  (r=1,2,..): 

 )()( ηη j
r

r

j
rj CX ++ Ψ= ∑  (18) 

Substituting (18) in equation (15) yields: 
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(i=1,2,..n) or 
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∑ ∑ ηη  (20) 

 (i=1,2,..n) 
 

We can obtain the eliminations of the minus variables 
][ ii mY −+  by using the Parseval theorem after the 

introduction of the “test” functions )( i
j
s m+Φ  (s=1,2,..):  

 0)()( =−⋅−Φ +

∞

∞− +∫ iiii
j
s dmmYm  (21) 

Consequently the projection of (20) on the set of test 
functions, eliminates ][ ii mY −+

 and yields the following 
equation for the unknowns j

rC : 

 0
1

=∑∑
=

n

j r

j
r

ij
srCM  (22) 

where: 

ii
j

riiji
j
s

ij
sr dmmmGmM )]([()]([()( ηη +

∞

∞− + Ψ⋅−Φ= ∫  (23) 

The homogeneous equations (22) hide the source 
terms. These terms can be explicitly written by 
considering the known geometrical optic contributions 
for the particular given problem. 

The successful application of the moment method 
depends on a suitable choice of the sets of expansion and 
testing functions. This choice must be accomplished on 
the basis of physical considerations.  

3.3  Use of rational approximant of the kernel )(ηijG  

The presence of a rational kernel )(ηijG  in (15) allows 
for a closed form solution of these equations. This 
property suggests the introduction of rational 
approximate kernels. 

Efficient solutions are obtained by rational 
approximate kernels when their definitions do not lose 
the physical properties and the mathematical consistence 
of the problem. 
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