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Abstract

This paper presents a new technique for the enforcement of pas-
sivity of linear macromodels. The proposed algorithm is appli-
cable to state-space realizations of the macromodels in case the
input-output transfer function is in admittance, impedance, hy-
brid, or scattering form. The core of the algorithm is the appli-
cation of first-order perturbation theory to the eigenvalues of an
associated Hamiltonian matrix. This allows both a precise defi-
nition of the frequency bands where passivity violations occur,
and the determination of a new set of state matrices leading to
passivity compensation. The main algorithm is very efficient in
the case of small passivity violations, so that first-order pertur-
bation is feasible. An application to passive macromodeling of
a package structure is presented.

Introduction

The research that motivates this work is focused on the genera-
tion of linear lumped macromodels for multiport interconnects.
Such macromodels are of paramount importance for the analy-
sis and design of any high-speed electronic system. In fact,the
Signal Integrity (SI) of such systems can only be assessed by
accurate system-level simulations including suitable models for
all the parts of the system that have some influence on the sig-
nals. Each of these models must be passive, otherwise serious
instabilities may occur during the simulations.

The standard procedure for the generation of lumped macro-
models is to derive some rational approximation of the transfer
matrix for the structure under investigation. Some techniques
are available for the direct generation of passive macromodels
(see, e.g., [4, 8]). These techniques require a circuit description
(possibly including transmission lines) of the structure.How-
ever, such description is not always available. Therefore,alter-
native approaches have been proposed for the identificationof
lumped macromodels starting from input-output port responses,
either in time or frequency domain (see, e.g., [5, 6]). Although
very accurate approximations can be generated even for quite
complex structures, the typical outcome of such methods is
are stable but possibly non-passive models. This paper intends
to propose a technique for the detection, characterization, and
compensation of such passivity violations.

Passivity may be defined in a loose sense as the inability of
a given structure to generate energy. The precise definitionof
passivity [1] requires that the transfer matrix under investiga-
tion be positive real (in case of hybrid representations of the
multiport) or bounded real (in case of scattering representa-
tions). The direct application of these definitions for testing
passivity, however, requires a frequency sweep since thesecon-
ditions need to be checked at any frequency. The results of
such tests, therefore, depend on an accurate sampling of the
frequency axis, which is not a trivial task. Erroneous results
may occur. For this reason, purely algebraic passivity tests are

highly desirable.
Fortunately, the Positive Real Lemma and the Bounded Real

Lemma provide an answer to this problem [3]. These results
provide a connection between the passivity definitions and var-
ious equivalent algebraic conditions. These conditions can be
expressed via feasibility of Linear Matrix Inequalities (LMI), or
via existence of solutions to equivalent Algebraic RiccatiEqua-
tions (ARE), or via the spectral properties of associated Hamil-
tonian matrices. For an excellent review and for a rich bibliog-
raphy on the subject we refer the reader to [3]. In this work,
we focus on the latter formulation using Hamiltonian matrices,
since a study of their spectral properties leads not only to apre-
cise criterion for passivity check, but also to a simple algorithm
for the passivity compensation in case some passivity violations
are detected. Both the passivity check and the compensational-
gorithms proposed in this paper are based on first-order spectral
perturbations of the associated Hamitonian matrices.

Preliminary and Notations
In this work, we concentrate on the characterization and com-
pensation of passivity of a given linear macromodel. Our start-
ing point will be a state-space realization of the macromodel,
ragardless of the particular macromodeling algorithm thatwas
used to derive it. Therefore, we consider a linear time-invariant
multiport systemM in state space form

M :

{

ẋ(t) = Ax(t) + Bu(t) ,
y(t) = Cx(t) + Du(t) .

(1)

where the dot denotes time differentiation. The number of ports
and the dynamic order will be denoted byp andn, respectively,
so that the state vectorx ∈ IRn, and the input and output vec-
tors u, y ∈ IRp. Two main multiport representations will be
discussed, namely the scattering and the hybrid representation.
In the former case, port input and output vectorsu, y will be
identified with either voltage, current, or power waves enter-
ing and exiting the system, respectively. In the latter case, they
will denote port voltages and currents. Note that we includein
the hybrid case both impedance (open-circuit) and admittance
(short-circuit) representations.

The input-output transfer matrix associated to (1) is

H(s) = D + C(sI − A)−1B , (2)

wheres is the Laplace variable. Throughout the following we
will assume that the system (1) is strictly stable, so that all
eigenvalues ofA, or equivalently the poles ofH(s) have a
strictly negative real part. In addition, we will postulateboth
controllability and observability [7] for the state-spacerealiza-
tion (1), which is thus assumed to be minimal. If this is not the
case, standard reduction techniques can be applied. Finally, no
assumptions on reciprocity will be made.



The characterization of passivity for the macromodel in (1)
depends on the type of representation being adopted. For the
particular case of hybrid representations, the transfer matrix
must be positive real [1]. Since we consider only the case of
strictly stable systems with no poles in the imaginary axis,the
passivity condition may be expressed by requiring that the Her-
mitian part of the transfer matrix must be nonnegative definite
on the imaginary axis, i.e.,

G(jω) = (H(jω) + HH(jω))/2 ≥ 0, ∀ω , (3)

where the superscriptH denotes the complex conjugate trans-
pose. This condition can be checked by ensuring that

λi(jω) ≥ 0, ∀λi(jω) ∈ λ(G(jω)) , ∀ω , (4)

where we denoted asλ(G) the set of all eigenvalues of ma-
trix G. In case of scattering representations, the transfer matrix
must be unitary bounded, i.e.,

I − HH(jω)H(jω) ≥ 0, ∀ω . (5)

This condition is equivalent to

max
i,ω

σi(jω) ≤ 1, ∀σi(jω) ∈ σ(H(jω)) , (6)

where we denoted asσ(H) the set of all singular values of
matrix H . We will denote the system aslocally passivefor
ω ∈ (ωa, ωb) if the above conditions are satisfied in this fre-
quency band.

Throughout this paper, we will assume that the passivity con-
ditions are strictly satisfied fors → ∞, i.e., we will postulate
strict asymptotic passivity. In the hybrid case such condition
reads

min{λ((D + DT )/2)} = lim
ω→∞

min{λ(G(jω))} > 0 . (7)

whereas in the scattering case we have

max{σ(D)} = lim
ω→∞

max{σ(H(jω))} < 1 . (8)

Characterization of passivity violations
The passivity of a multiport described by its transfer matrix (2)
can be characterized at various levels of detail. One may be in-
terested in a binary test answering the simple question whether
the multiport is passive or not. However, more refined charac-
terizations are possible. In particular, we will describe here an
algebraic procedure that allows to pinpoint very accurately the
frequency bands where passivity violations occur, i.e., where
either (4) or (6), according to the specific representation being
investigated, are not satisfied.

The following two theorems, which we report from [2] with-
out proof, motivate the introduction of Hamiltonian matrices for
passivity characterization.

Theorem 1 (Scattering representation). AssumeA has no
imaginary eigenvalues,γ > 0 is not a singular value ofD, and
ω0 ∈ IR. Then,γ ∈ σ(H(jω0)) if and only ifjω0 ∈ λ(Mγ),
where

Mγ =

(

A − BR−1DT C −γBR−1BT

γCT S−1C −AT + CT DR−1BT

)

,

(9)
andR = (DT D − γ2I) andS = (DDT − γ2I).
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Figure 1: Collective information gathered from the pro-
posed passivity characterization algorithms for a synthetic non-
passive system. Breakpoints, slopes, and bounds for singular
values are depicted with thick lines. The thin lines represent all
singular values plotted versus frequency.

Theorem 2 (Hybrid representations). AssumeA has no imag-
inary eigenvalues,δ > 0 is not an eigenvalue of(D + DT )/2,
and ω0 ∈ IR. Then,δ ∈ λ(G(jω0)) if and only if jω0 ∈
λ(N δ), where

N δ =

(

A + BQ−1C BQ−1BT

−CT Q−1C −AT − CT Q−1BT

)

, (10)

andQ = (2δI − D − DT ).

MatricesMγ andN δ are said to be Hamiltonian due to their
particular block structure. Note that these theorems allowto
compute the exact frequencies (if any) at which the singular
values of the eigenvalues cross or touch any given threshold.
These frequencies are the imaginary eigenvalues of the Hamil-
tonian matrices. Therefore, setting the threshold to the critical
level for passivity (i.e.,γ = 1 for scattering andδ = 0 for hy-
brid representations), allows to derive a simple algebraicproce-
dure for passivity characterization. We illustrate this procedure
using the scattering represenation, and we will only summarize
the results for the hybrid case.

Let us consider a non-passive system and collect the (posi-
tive imaginary parts of the) imaginary eigenvalues at the critical
levelγ = 1 in the set

Ω = {ωi > 0 : jωi ∈ λ(M 1)} . (11)

We remark that only the particular case of simple eigenvalues
will be herewith considered. The precise characterizationof the
frequency bands where passivity violations occur can be ob-
tained via application of perturbation theory to each eigenvalue
in the setΩ. More precisely, if we indicate withλ(γ)

i ∈ λ(Mγ)
the perturbation of some eigenvaluejωi for γ ' 1, we have the
following convergent power series representation

λ
(γ)
i = jωi + k′

i(γ − 1) + k′′
i (γ − 1)2 + . . . (12)

The first-order coefficientk′
i can be computed as [9]

k′
i =

wT
i M ′

1vi

wT
i vi

, (13)



wherewi, vi are the left and right eigenvectors ofM1 associ-
ated tojωi and

Mγ = M1 + (γ − 1)M ′

1 + . . . (14)

It can be easily veryfied that<{k′
i} = 0. Consequently, if the

singular values are plotted versus frequency (see Fig. 1 foran
example), the quantities

ξi =
1

={k′
i}

=
j wT

i vi

wT
i M ′

1vi

(15)

represent the slopes of the singular value curves at the crossing
pointsωi ∈ Ω. These observations can be summarized by the
following theorem, which gives a condition for the characteri-
zation of local passivity in the frequency bands determinedby
the breakpoints in the setΩ.

Theorem 3 (Scattering representation) LetΩ, defined as
in (11), collect the (positive imaginary parts of the) imaginary
eigenvalues of the Hamiltonian matrixMγ in (9) at the critical
level γ = 1, sorted in ascending order. Let all these imagi-
nary eigenvalues be simple. Finally, letξi be defined as in (15).
Then,H(jω) is locally passive forω ∈ (ωi−1, ωi) if and only
if

Λi =
∑

k≥i

sgn(ξk) = 0 , (16)

wheresgn(·) extracts the sign of its argument andω0 = 0.

Proof. The proof follows immediately from the above consid-
erations if the system is asymptotically passive. In fact, starting
from the largest element inΩ and moving towards decreasing
frequencies, each time a crossing (i.e., an element ofΩ) is found
with a negative slope, the number of singular values exceeding
the critical level increases by one. Conversely, when a cross-
ing is found with negative slope, this number decreases by one.
Therefore, the sum in (16) indicates exactly the number of sin-
gular values exceeding the critical level in the frequency band
(ωi−1, ωi). If this number equals zero, the system is locally
passive in(ωi−1, ωi). �

We give now the corresponding result for the case of hybrid
representations. The passivity characterization is summarized
in the following theorem, that we state without proof.

Theorem 4 (Hybrid representation) LetΩ, defined as in (11),
collect the (positive imaginary parts of the) imaginary eigenval-
ues of the Hamiltonian matrixN δ in (10) at the critical level
δ = 0, sorted in ascending order. Let all these imaginary eigen-
values be simple. Finally, letζi be defined as

ζi =
j wT

i vi

wT
i N ′

0vi

(17)

where
N δ = N 0 + δN ′

0 + . . . (18)

Then,H(jω) is locally passive forω ∈ (ωi−1, ωi) if and only
if

Λi =
∑

k≥i

sgn(ξk) = 0 , (19)

whereω0 = 0.

The information provided by Theorems 3 and 4 can be com-
plemented by a precise quantification of the passivity violation
in each frequency band. In particular, if(ωi−1, ωi) has been
detected to be a violation band, the bisection algorithm found
in [2] can be used to determine the maximum singular value (or
the minimum eiganvalue for hybrid representations) withinthis
band to any prescribed accuracy. The passivity characterization
information that can be extracted using the above tools are col-
lectively depicted in Fig. 1 for a synthetic non-passive system.

Enformcement of Passivity
In this section, we address the problem of finding a passive ap-
proximation to a given stable but non-passive macromodel. In
particular, we want to derive a new passive systemMp which
is “close” in some sense to the originalM. More precisely,
a new set of perturbed state matrices will be derived, with the
aim of minimizing the induced perturbation on the input-output
responses of the macromodel. As a particular case, we will per-
turb only the state matrixC by the amountdC, leaving the
other three matrices unchanged. In such case, if we denote
with dhij(t) the induced perturbation on the system impulse
responses, it can be easily veryfied that

p
∑

i,j=1

∫ ∞

0

|(dh)i,j(t)|
2 dt = tr

(

dC W dCT
)

, (20)

whereW is the controllability Gramian [7]. The latter can be
computed as the unique symmetric and positive definite solu-
tion of the Lyapunov equation

AW + WAT = −BBT . (21)

The perturbationdC to be determined will be constrained to
minimize the norm in (20).

We now derive suitable conditions on the perturbationdC

leading to the enforcement of passivity. As noted in previous
sections, this is equivalent to obtaining a new Hamiltonianma-
trix without imaginary eigenvalues. Therefore, the main algo-
rithm is aimed at displacing these eigenvalues by some con-
trolled amount in order to force them to move off the imaginary
axis. Let us consider the perturbed Hamiltonian matrix (in the
scattering case)

M1|p ' M1 + dM1 , (22)

obtained when||dC|| � ||C||, so that only first-order terms
can be considered. Suppose that an imaginary eigenvalue
jωi ∈ λ(M 1) is perturbed by a small amount into a new lo-
cationjωi,p. We have the following result

jωi,p − jωi '
wT

i dM1vi

wT
i vi

. (23)

A simple check shows that the above expression is linear in
the elements of the perturbation matrixdC. Therefore, this
condition can be restated as a standard underdetermined linear
least squares problem

Z c = r , (24)

where all the entries ofdC have been collected in the column
arrayc, and where arrayr collects the desired perturbations on
all imaginary eigenvalues.



Figure 2: Surface mount package structure with 14 pins (28
ports). Bonding wires and printed circuit board on which pack-
age is mounted are not shown.
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Figure 3: Passivity compensation for the package structureof
Fig. 2. The singular values are plotted versus frequency forthe
non-passive macromodel (left panel) and for the passive macro-
model (right panel).

We focus now on the determination of the new eigenvalue lo-
cations. We may refer to the example in Fig. 1 for illustration.
We want to obtain the effect of lowering the singular values
curves below the critical levelγ = 1. It is clear that this effect
can be achieved by moving each crossing point in the direction
pointed by its slope, i.e., eigenvalues with positive slopes are
moved towards higher frequencies, while eigenvalues with neg-
ative slopes are moved towards lower frequencies. The amount
of displacement for each eigenvalue should be determined inor-
der to satisfy the first-order assumptions. The solution of (24)
with the constraint (20) is iterated until the passivity is met and
no imaginary eigenvalues are found.

Example: package macromodeling
We illustrate the proposed passivity compensation algorithm
through an application to macromodeling of a commercial 14-
pin surface mount package, depicted in Fig. 2. The structurehas
p = 28 ports, half being defined between a corresponding pin
and the printed circuit board on which the package is mounted,
and half being defined between the bonding pad on the included
die and the reference plane below the die itself. The struc-
ture has been meshed and analyzed with a full-wave electro-
magnetic solver based on the Finite-Difference Time-Domain
(FDTD) method. The raw dataset obtained by FDTD is a set
of 28× 28 transient scattering responses due to Gaussian pulse
excitation having a 30 GHz frequency bandwidth. This set of
responses has been processed by a Vector Fitting algorithm [6]
in order to derive a rational macromodel. The resulting state-
space system is characterized by dynamic ordern = 180 and
results non-passive, with a singular value distribution depicted
in the left panel of Fig. 3 (the crossing points and the slopes
are not shown for clarity). A total number of 62 pairs of imagi-
nary eigenvalues of the Hamiltonian matrix were detected. Pas-
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Figure 4: Selected transient responses for the package structure
of Fig. 2.

sivity was achieved by the proposed algorithm in 50 iterations.
The resulting singular values distribution is depicted in the right
panel of Fig. 3. Some of the transient scattering responses of
the passive macromodel are compared in Fig. 4 to the original
responses obtained by the FDTD simulations, that were used
for the identification of the macromodel. We can see that the
passivity compensation did not degrade the accuracy in the ap-
proximation.
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