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Abstract highly desirable.

This paper presents a new technique for the enforcemensef pa Fortunately, the Positive Real Lemma and the Bounded Real
sivity of linear macromodels. The proposed algorithm isliapp Lemma provide an answer to this problem [3]. These results
cable to state-space realizations of the macromodels snthas Provide a connection between the passivity definitions are v
input-output transfer function is in admittance, impedarity-  ious equivalent algebraic conditions. These conditioms
brid, or scattering form. The core of the algorithm is thelapp expressed via feasibility of Linear Matrix Inequalities\L), or
cation of first-order perturbation theory to the eigenvalofean  Via existence of solutions to equivalent Algebraic Ric&aua-
associated Hamiltonian matrix. This allows both a precife d tions (ARE), or via the spectral properties of associatechita
nition of the frequency bands where passivity violationsusc tonian matrices. For an excellent review and for a rich bipli
and the determination of a new set of state matrices leadingfi@phy on the subject we refer the reader to [3]. In this work,
passivity compensation. The main algorithm is very effitien We focus on the latter formulation using Hamiltonian masic
the case of small passivity violations, so that first-ordetyr- ~ Since a study of their spectral properties leads not onlyea
bation is feasible. An application to passive macromodggdih ~ Cise criterion for passivity check, but also to a simple &t

a package structure is presented. for the passivity compensation in case some passivity titola
are detected. Both the passivity check and the compensstion
Introduction gorithms proposed in this paper are based on first-ordetrshec

The research that motivates this work is focused on the geneperturbations of the associated Hamitonian matrices.
tion of linear lumped macromodels for multiport intercootse
Such macromodels are of paramount importance for the ana

sis and design of any high-speed electronic system. Intfaet, . ¢ Vit of 2 i i del O
Signal Integrity (SI) of such systems can only be assessed E;?”S""t_'on 0 passivity of a given Inéar macromodet. utsta
Ing point will be a state-space realization of the macrorhode

accurate system-level simulations including suitable et®ftbr dl fth cul deli lorithm
all the parts of the system that have some influence on the s[ggardiess of the particular macromodeling algorithm ¢
ﬁed to derive it. Therefore, we consider a linear time-iiave

nals. Each of these models must be passive, otherwise seri ) :
instabilities may occur during the simulations. multiport systemiM in state space form
The standard procedure for the generation of lumped macro- &(t) = Ax(t)+ Bu(t)
models is to derive some rational approximation of the fiems M: { y(t) = Calt)+ D’U,(t)v. (1)
matrix for the structure under investigation. Some teches

are available for the direct generation of passive macr@isod here the dot denotes time differentiation. The number dspo
(see, e.g., [4, 8]). These techniques require a circuitrd®#8Im  and the dynamic order will be denoted pyndn, respectively,
(possibly including transmission lines) of the structukow-  5g that the state vectar € IR", and the input and output vec-
ever, such description is not always available. Therefter- g u, y € IRP. Two main multiport representations will be
native approaches have been proposed for the identificationgiscyssed, namely the scattering and the hybrid repre&enta
lumped macromodels starting from input-output portresgsn | the former case, port input and output vectarsy will be
either in time or frequency domain (see, e.g., [5, 6]). Althb  jdentified with either voltage, current, or power waves ente
very accurate approximations can be generated even fa quiig and exiting the system, respectively. In the latter ctszy
complex structures, the typical outcome of such methods || denote port voltages and currents. Note that we inciade

are stable but possibly non-passive models. This paperdste the hybrid case both impedance (open-circuit) and adnaiétan
to propose a technique for the detection, characterizadiod  (short-circuit) representations.

compensation of such passivity violations.

Passivity may be defined in a loose sense as the inability of
a given structure to generate energy. The precise defirofion H(s)=D+C(sI - A)™'B, (2)
passivity [1] requires that the transfer matrix under iti¢ges
tion be positive real (in case of hybrid representationshef t wheres is the Laplace variable. Throughout the following we
multiport) or bounded real (in case of scattering representwill assume that the system (1) is strictly stable, so thht al
tions). The direct application of these definitions for itegt eigenvalues ofA, or equivalently the poles oH (s) have a
passivity, however, requires a frequency sweep since ttwse strictly negative real part. In addition, we will postuldieth
ditions need to be checked at any frequency. The results adntrollability and observability [7] for the state-spaealiza-
such tests, therefore, depend on an accurate sampling of thw (1), which is thus assumed to be minimal. If this is nat th
frequency axis, which is not a trivial task. Erroneous ressul case, standard reduction techniques can be applied. ¥inall
may occur. For this reason, purely algebraic passivitystagt  assumptions on reciprocity will be made.

|3r_eliminary and Notations
|¥1 this work, we concentrate on the characterization and-com

The input-output transfer matrix associated to (1) is



The characterization of passivity for the macromodel in (1) Characterization of passivity violations
depends on the type of representation being adopted. For the ‘ ‘ ‘
particular case of hybrid representations, the transferixna
must be positive real [1]. Since we consider only the case of
strictly stable systems with no poles in the imaginary atkis,
passivity condition may be expressed by requiring that tee H
mitian part of the transfer matrix must be nonnegative defini
on the imaginary axis, i.e.,

G(jw) = (H(jw) + H" (jw))/2>0, Yw,  (3)

o
©
T

o
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Singular values

o
S
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where the superscrigt denotes the complex conjugate trans- 0.2
pose. This condition can be checked by ensuring that

Ai(jw) >0, VAi(jw) € M(G(jw)), Yw, (4) % 05 1 15 2

Normalized frequency
where we denoted as(G) the set of all eigenvalues of ma-
trix G.. In case of scattering representations, the transferxnatfrigure 1: Collective information gathered from the pro-
must be unitary bounded, i.e., posed passivity characterization algorithms for a syintHmetn-
passive system. Breakpoints, slopes, and bounds for singul

Hy - .
I-H"(ju)H(jw) 20, Vw. (®)  values are depicted with thick lines. The thin lines repneaé
This condition is equivalent to singular values plotted versus frequency.
maxo;(jw) <1, Voi(jw) € o(H(jw)), (6) _Theore_m 2 (Hybrid repr_esentation_s). Assumehas noTimag—
dw inary eigenvaluesj > 0 is not an eigenvalue fD + D" )/2,

where we denoted as(H) the set of all singular values of andwo € . Then,d € A(G(jwo)) if and only if jwy &

matrix H. We will denote the system decally passivefor (V) where

w € (wq,wp) if the above conditions are satisfied in this fre- N A+ BQ'C BQ 'B” 0

quency band. _ N = ( _C'Q-'c —AT —CTQ'B” ) ., (10)
Throughoutthis paper, we will assume that the passivity con

ditions are strictly satisfied for — oo, i.e., we will postulate andQ = (261 — D — D™).

strict asymptotic passivityIn the hybrid case such condition _ ) o _
reads MatricesM , andN 5 are said to be Hamiltonian due to their

_ T’ ' . ' particular block structure. Note that these theorems atlmw
min{A((D + D7)/2)} = lim min{A(G(jw))} >0. (7)  compute the exact frequencies (if any) at which the singular
values of the eigenvalues cross or touch any given threshold

whereas in the scattering case we have These frequencies are the imaginary eigenvalues of the lHami

max{o(D)} = lim max{c(H (jw))} <1. (8) tonian matric_es_. Therefore, setting the_ threshold to thieal
w00 level for passivity (i.e.;y = 1 for scattering and = 0 for hy-
Characterization of passivity violations brid representations), allows to derive a simple algelpeice-

The passivity of a multiport described by its transfer ma(®) dure for passivity characterizati_on. We iIIustrqte thieqﬁqure

can be characterized at various levels of detail. One mag-be HSing the scattering represenation, and we will only sunzear
terested in a binary test answering the simple questionhenet the results for the hybrid case.

the multiport is passive or not. However, more refined charac Let us consider a non-passive system and collect the (posi-
terizations are possible. In particular, we will descrileechan tive imaginary parts of the) imaginary eigenvalues at titecet
algebraic procedure that allows to pinpoint very accuyated levely = 1in the set

frequency bands where passivity violations occur, i.e.engh Q .

. i i ) ={wi>0: jw, € \(My)}. 11
either (4) or (6), according to the specific representatieindp {w jwi € A(M)} (11)
investigated, are not satisfied. We remark that only the particular case of simple eigenwlue

The following two theorems, which we report from [2] with- will be herewith considered. The precise characterizatighe
out proof, motivate the introduction of Hamiltonian mag&sdor  frequency bands where passivity violations occur can be ob-
passivity characterization. tained via application of perturbation theory to each eigére
in the se2. More precisely, if we indicate Withzm € NM,)
the perturbation of some eigenvaljie; for v ~ 1, we have the
following convergent power series representation

Theorem 1 (Scattering representation). Assumk has no
imaginary eigenvalues; > 0 is not a singular value oD, and
wo € IR. Thenyy € o(H (jwy)) if and only if jwy € A(M ),
where M =+ Ky - D+ R (v =12+ (12)
A-BR 'D'C —vBR'BT , .

= The first-order coefficient! can be computed as [9

M, < vc's'c ~-AT"+Cc"DR'BT )" ‘ P o]

9 k= wiTMllvi (13)
andR = (D" D —~4%I)andS = (DD” — ~2I). T Wl



wherew;, v; are the left and right eigenvectors bf; associ- The information provided by Theorems 3 and 4 can be com-

ated tojw; and plemented by a precise quantification of the passivity viota
, in each frequency band. In particular,(ib;_1,w;) has been
M,=M;+(y-1)M"+... (14)  detected to be a violation band, the bisection algorithrmébu

in [2] can be used to determine the maximum singular value (or
the minimum eiganvalue for hybrid representations) withis
band to any prescribed accuracy. The passivity charaatarz
information that can be extracted using the above tools@lre ¢

It can be easily veryfied that{k;} = 0. Consequently, if the
singular values are plotted versus frequency (see Fig. arfor
example), the quantities

1 jwlv; lectively depicted in Fig. 1 for a synthetic non-passivaasys
;= = L 15 -
¢ S{kl}  wlM’ v, (15) Enformcement of Passivity

In this section, we address the problem of finding a passive ap
roximation to a given stable but non-passive macromodel. |
articular, we want to derive a new passive systety which

is “close” in some sense to the origind. More precisely,

a new set of perturbed state matrices will be derived, wigh th

aim of minimizing the induced perturbation on the inputyuit

Theorem 3 (Scattering representation) Le®, defined as '€SPonses of the macromodel. As a particular case, we wiill pe

in (11), collect the (positive imaginary parts of the) imaasy turb only the state matribC' by the amoundC, leaving the

eigenvalues of the Hamiltonian matih , in (9) at the critical  Other three matrices unchanged. In such case, if we denote
levely = 1, sorted in ascending order. Let all these imagi-W'th dh;;(t) the induced perturbation on the system impulse

nary eigenvalues be simple. Finally, letbe defined as in (15). '€SPonses, it can be easily veryfied that

represent the slopes of the singular value curves at thsiomps
pointsw; € Q. These observations can be summarized by t
following theorem, which gives a condition for the charaicte
zation of local passivity in the frequency bands determimgd
the breakpoints in the séx.

Then,H (jw) is locally passive fow € (w;—1,w;) if and only P oo
it 3 / (@), (Ot = 1 (dOW aC") . (20)
A= sen(é) =0, (16) irj=1""
k2i whereW is the controllability Gramian [7]. The latter can be
wheresgn(-) extracts the sign of its argument ang = 0. computed as the unique symmetric and positive definite solu-

. _ _ tion of the Lyapunov equation
Proof. The proof follows immediately from the above consid-

erations if the system is asymptotically passive. In faeartsg AW + WA" = -BB". (21)
from the largest element it and moving towards decreasing
frequencies, each time a crossing (i.e., an elemefj of found
with a negative slope, the number of singular values exogedi ) . " .
the critical level increases by one. Conversely, when aseroae!(\j/?n m:(\;v tﬂgrgr?fsféteﬁfntcg?dgso;\s/i ton Z]sen%?ggriaangiou
ing is found with negative slope, this number decreases by on 9 p Y- P

Therefore, the sum in (16) indicates exactly the numberrof si tsr(i-:‘::;\(/)i?hs(;ut?liiwlz eig:'rvaé?né::\)/:ﬁgn'_T_g;gfivrveHﬁ:g'lrf;ml
gular values exceeding the critical level in the frequenagd ginary eig | ' goa

(wi_1,cn). If this number equals zero, the system is local rithm is aimed at displacing these eigenvalues by some con-
pals_si\}e Lir(w ) ' ){rolled amount in order to force them to move off the imagynar
i—1,W5)-

. . axis. Let us consider the perturbed Hamiltonian matrix lfie t
We give now the corresponding result for the case of hybr@ P it

. o o . cattering case
representations. The passivity characterization is suiaet 9 )
in the following theorem, that we state without proof. M, |p ~ M, +dM,, (22)

The perturbatiordC' to be determined will be constrained to
minimize the normin (20).

Theorem 4 (Hybrid representation) Lef, defined as in (11), obtained wherj|dC|| < ||C]||, so that only first-order terms
collect the (positive imaginary parts of the) imaginaryazigal- can be considered. Suppose that an imaginary eigenvalue
ues of the Hamiltonian matri®V s in (10) at the critical level jw; € A(M) is perturbed by a small amount into a new lo-

§ = 0, sorted in ascending order. Let all these imaginary eigencationjw; ,. We have the following result

values be simple. Finally, l&t be defined as

) ) wldMv;
o Jwip — Jwi = — . (23)
i = AN i . i o i
w; N'ov; A simple check shows that the above expression is linear in
where the elements of the perturbation matebC. Therefore, this
Ns=No+6N+... (18) condition can be restated as a standard underdetermirezd lin

. , ] least squares problem
Then,H (jw) is locally passive fow € (w;—1,w;) if and only
if Zc=r, (24)

A= Z sgn(&r) = 0, (19)  where all the entries afC have been collected in the column
ke arraye, and where array collects the desired perturbations on
wherewy = 0. all imaginary eigenvalues.
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Figure 2: Surface mount package structure with 14 pins (28
ports). Bonding wires and printed circuit board on whichlpac
age is mounted are not shown.
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Figure 4: Selected transient responses for the packageistu
of Fig. 2.

sivity was achieved by the proposed algorithm in 50 iteregio
The resulting singular values distribution is depictechiatight
panel of Fig. 3. Some of the transient scattering respornses o
] o . the passive macromodel are compared in Fig. 4 to the original
Figure 3: Passivity compensation for the package strudtire responses obtained by the FDTD simulations, that were used
Fig. 2. The singular values are plotted versus frequencihr o the identification of the macromodel. We can see that the

non-passive macromodel (left panel) and for the passiveanac y,ssivity compensation did not degrade the accuracy inphe a
model (right panel). proximation.
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