Comparison of different joining techniques in a crashworthiness perspective

Original

Availability:
This version is available at: 11583/1412194 since:

Publisher:
Publications Office of the European Union

Published
DOI:

Terms of use:
openAccess
This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright

(Article begins on next page)
Comparison of different joining techniques in a crashworthiness perspective

Massimiliano Avalle – Politecnico di Torino
Pierfranco Mauri – Henkel Loctite Italia
Contents

- Comparison of joining techniques
 - Joining technique for car body construction
 - Mechanical testing
 - Results and discussion
- Design of crash structures with different joining techniques
 - Experimental results from crash boxes
 - Redesign of crash box with adhesive bonding
 - Comparison of the results
Why using alternative joining solutions?

- Adhesive bonding helps increasing stiffness
- During polymerisation other fixing system is needed
- Adhesive bad compatibility with spot-welds
- Adhesive and other mechanical fasteners can join different materials
- Repairing possible
Joints testing

- Spot-weld strength
 - Static
 - Fatigue
 - Dynamic/Impact

- Loading conditions
KS2 specimen

- Formerly used by Hahn et al. for fatigue
- Material **ZST340**
- Samples from **DAIMLERCHRYSLER** for **European Vehicle Passive Safety Network**
Testing system

Details of the 30° loading system

- Double sliding frame
- Connections with spherical joints
- Piezoelectric load-cells (during dynamic tests)
- Inclined grips (0°-90°)
Testing apparatus

- Universal hydraulic material testing equipment DARTEC HA100
 - 100 kN max
 - 100 mm/s \(v_{\text{max}}\)
 - Load measured with a strain-gage load-cell
 - Stroke measured with LVDT

- Drop-tower
 - Height 12 m
 - Mass 60-120 kg
 - 300 kN max
 - 13 m/s \(v_{\text{max}}\)
 - Equipped for impact testing (in compression)
 - Equipped with tensile test grip
 - Load measured with piezoelectric load-cells
 - Stroke measured with an optical encoder
Spot-welds
Experimental results

- Load & stroke measurement
- Number of loading speed: 3
 - Low-speed: 0.01 mm/s
 - Medium-speed: 80 mm/s
 - High-speed (impact): 5.5×10^3 mm/s
- Load-curve characteristic
 - Failure surface is derived from maximum load as a function of the loading angle
Spot-weld results
Low speed

- Apparatus: DARTEC HA100
- Loading speed: 0.01 mm/s
Spot-weld results
Medium speed

- Apparatus: DARTEC HA100
- Loading speed: 80 mm/s (=0.08 m/s)
Spot-weld results
High speed

- Apparatus: DARTEC HA100
- Loading speed: 5.5 m/s
Spot-welds
Low speed samples
Spot-welds
High speed samples
Analysis of the results

- Joint strength is analysed as a function of the loading angle:
- An elliptic limit curve is assumed:

\[
\left(\frac{T}{T_{\text{max}}} \right)^2 + \left(\frac{N}{N_{\text{max}}} \right)^2 = 1
\]

- A different limit curve is obtained for each loading speed
Spot-weld strength vs. loading

- Limit curve as a function of the loading angle

\[
F = \frac{T_{\text{max}}}{\cos \alpha \sqrt{1 + \tan^2 \alpha (T_{\text{max}} / N_{\text{max}})^2}}
\]

- Graph showing maximum load vs. loading angle for different speeds:
 - 0.01 mm/s
 - 80 mm/s
 - 5.5\times10^3 \text{ mm/s}
Spot-weld strength vs. loading components

\[
\left(\frac{T}{T_{\text{max}}} \right)^2 + \left(\frac{N}{N_{\text{max}}} \right)^2 = 1
\]
Failure surfaces

Peel (90°) Shear (0°) Peel (90°) Shear (0°)

Static (0.01 mm/s) Dynamic (5 m/s)
Alternative joining systems for automotive constructions

- Riveting
- Self-riveting, punch riveting, Henrob joint
- Clinching
- Adhesive bonding

punch riveting Clinching
Clinching compared to spot-welds (1/2)

1. Round die, \varnothing 5mm
2. Round die, \varnothing 8mm
3a. Rectangular die, w. 4mm, shear 90°
3b. Rectangular die, w. 4mm, shear 0°
4. Spot Weld, Standard spec. minimum, \varnothing 3 & 4mm

Material: Mild Steel (approx. 300 N/mm²)

Copyright © 2001 ATTEXOR
Clinch Systems SA
Clinching compared to spot-welds (2/2)

Mondino, I., Properzi, M., Giunti, T., Calderale, P.M., “La fatica di giunzioni meccaniche per strutture veicolistiche innovative” (Fatigue of mechanics joints for innovative car body structures) Proceedins XXVIII AIAS Conf., 1999
KS2 specimen

- Formerly used by Hahn et al. for fatigue
- Material DC04
- Samples from Bollhoff

European Vehicle Passive Safety Network
Clinching and Bonding Experimental plan

- KS2 specimen loaded at different angles
 - Clinched 21 samples
 - Bonded LOCTITE Hysol® 9466 21 samples
 - Clinched+bonded 22 samples
- Loading speed: quasi-static 0.01 mm/s
- Bonding procedure
 - Sanding (paper sand P80)
 - Degreasing (LOCTITE® 7063) and bonding
 - Polymerisation: 90 minutes @ 100°C
Clinched and bonded KS2 specimen

Clinched

Clinched+bonded
Clinched & clinched+bonded samples

Clinched+bonded, 0°
Clinched+bonded, 30°
Clinched+bonded, 60°
Clinched+bonded, 90°

Clinched, 0°
Clinched, 30°
Clinched, 60°
Clinched, 90°
Clinching Test results

- Apparatus: DARTEC HA100
- Loading speed: 0.01 mm/s
Bonding Test results

- Apparatus: DARTEC HA100
- Loading speed: 0.01 mm/s
Clinching+bonding Test results

- Apparatus: DARTEC HA100
- Loading speed: 0.01 mm/s
Clinched and bonded joint strength vs. loading

Limit curve vs. Loading angle

\[F = \frac{T_{\text{max}}}{\cos \alpha \sqrt{1 + \tan^2 \alpha \left(\frac{T_{\text{max}}}{N_{\text{max}}}\right)^2}} \]
Clinched and bonded joint strength vs. load components

\[\left(\frac{T}{T_{\text{max}}} \right)^2 + \left(\frac{N}{N_{\text{max}}} \right)^2 = 1 \]
Clinched and bonded joint energy vs. loading angle

- Failure energy vs. Loading angle

![Graph showing the relationship between failure energy and loading angle for Clinched, Bonded, and Clinched+bonded joint types.](image)
Different joining solutions: conclusions

- Joining by clinching is effective and a good alternative to spot-weld.
- The use of adhesive strongly increase strength and energy absorption capability.
- Clinching can be use to make bonding operations easier: the pieces are kept in place up to complete polymerisation.
- Clinching in addiction to bonding offers additional safety as an extreme protection in the case of adhesive premature failure.
Behaviour of crash boxes with alternative joining solutions

- Is it possible to substitute spot-welds with other joining systems directly in the common constructive solutions?
- Crash behaviour can be improved?
Bonded crash-box production

- Cleaning and surface preparation with sand paper
- Degreasing with Loctite 7063
- Activation with Loctite 7388
- Application of Loctite 330 adhesive
- NDT ultrasonic inspection

- Cleaning and surface preparation with sand paper
- Chemical degrease
- Mixing of components and application of CIBA araldite adhesive
- NDT ultrasonic inspection
Ultrasonic NDT inspection

NDT procedure by Rossetto & Goglio (ref. XXIX AIAS et al.)
Stress analysis of the bonded flanges

![Stress Analysis Diagram](image)

- **Position (mm)**
- **Equivalent stress (MPa)**

- **Adhesive layer thickness 0.2 mm**
- **Adhesive layer thickness 0.4 mm**

- **Coordinate y [mm]**
- **Von Mises equivalent stress [MPa]**

European Vehicle Passive Safety Network
Improvements by filleting

Position (mm)

Equivalent stress (MPa)
Quasi-static crushing
Spot-welded crash-box
Quasi-static crushing

Adhesively bonded crash-box
Quasi-static crushing Comparisons (1/2)

European Vehicle Passive Safety Network
LOCTITE 330 adhesive

<table>
<thead>
<tr>
<th></th>
<th>Mean load (kN)</th>
<th>Max load (kN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>11.62</td>
<td>28.57</td>
</tr>
<tr>
<td>B3</td>
<td>10.80</td>
<td>27.62</td>
</tr>
<tr>
<td>B5</td>
<td>11.79</td>
<td>41.75</td>
</tr>
<tr>
<td>mean value</td>
<td>11.40</td>
<td>32.65</td>
</tr>
<tr>
<td>stand. dev.</td>
<td>0.53</td>
<td>7.90</td>
</tr>
</tbody>
</table>

Spot-weld

<table>
<thead>
<tr>
<th></th>
<th>Mean load (kN)</th>
<th>Max load (kN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>8.09</td>
<td>20.92</td>
</tr>
<tr>
<td>N2</td>
<td>7.92</td>
<td>21.92</td>
</tr>
<tr>
<td>N3</td>
<td>7.57</td>
<td>21.41</td>
</tr>
<tr>
<td>mean value</td>
<td>7.86</td>
<td>21.42</td>
</tr>
<tr>
<td>stand. dev.</td>
<td>0.26</td>
<td>0.50</td>
</tr>
</tbody>
</table>
Alternative solutions for improved bonded box (1/2)

- Made with an Ω elements bonded to a flat plate (top-hat section)

- New shape with two Ω elements one (smaller) inserted into the other
Alternative solutions for improved bonded box (2/2)

- Bonding flanges as simple substitution of spot-welds
- Made with two Ω elements (double hat section)

- Double U section
- Can be obtained by joining two identical U elements
Components characteristics

- Crash-boxes length 300 mm
- Sheet thickness 0.8 mm
- Material DC04 (ex FeP04)
- LOCTITE 330 adhesive

procedure:

- cleaning and sanding (sand-paper P100)
- Application of “cleaner” 7063 and activator 7388
- Polymerisation for at least 3 days
Quasi-static tests
Load and energy curves

- C shape: 2 folds followed by global instability and debonding
- other sections: regular folding some debonding (except D shape)
Quasi-static tests

- C shape: 2 folds followed by global instability and debonding
- other sections: regular folding some debonding (except D shape)
Medium-speed tests
Load and energy curves

C shape: 2 folds followed by global instability and debonding
other sections: regular folding some debonding (except D shape)
Medium-speed tests

- C shape: 2 folds followed by global instability and debonding
- Other sections: regular folding some debonding (except D shape)
Impact tests (6 m/s)
Load and energy curves

- A, B, C shapes: irregular debonding in the crushed part
- D shape: no debonding
Impact tests (6 m/s)

- A, B, C shapes: irregular debonding in the crushed part
- D shape: no debonding
Impact tests (9 m/s)
Load and energy curves

- A, B, C shapes: irregular debonding in the crushed part
- D shape: complete regular folding, no debonding at all
Impact tests (9 m/s)

- A, B, C shapes: irregular debonding in the crushed part
- D shape: complete regular folding, no debonding at all
Comparison of the different shapes: low speed

Quasi-static and medium-speed tests

- **A, B shapes**: maximum load in the average (≈30 kN), good energy absorption characteristics (2÷2.7 kJ)
- **C shape**: high maximum load (35 kN), low energy absorption (1.6-0.7 kJ), complete debonding and global instability
- **D shape**: lowest maximum load (24-28 kN), good energy absorption (1.6-1.8 kJ), regular folding
Comparison of the different shapes: high speed

- **C shape:** high maximum load (53-63 kN), low compression (50-104 mm);
- **B shape:** low maximum load (39 kN) and crushing (57-115 mm);
- **A shape:** average maximum load (38-51 kN), high crushing (111-184 mm)
- **D shape:** quite low maximum load (39-44 kN), high crushing (83-181 mm), *regular folding*

> C shape: high maximum load (53-63 kN), low compression (50-104 mm);
> B shape: low maximum load (39 kN) and crushing (57-115 mm);
> A shape: average maximum load (38-51 kN), high crushing (111-184 mm)
> D shape: quite low maximum load (39-44 kN), high crushing (83-181 mm), *regular folding*
Conclusions

- Similar results both from low and medium speed and impact tests

- Adhesive bonding is a good solution also for energy absorption during crash

- Sensitive improvements by means of suitable (but simple) geometrical modification of more common shapes used for spot-welded structures:
 - C shape: bonded sections normal to sides → bad design
 - D shape: bonded sections parallel to sides → optimal design