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1 Introdu
tion

Flow �elds in high speed regimes exhibit strong sho
k waves and sharp boundary

layers (BL). Their numeri
al predi
tion is generally obtained with some of the

several upwind methods that have been proposed in the literature over the past

twenty years. Though sho
k waves are 
omputed with a satisfa
tory numeri
al


apturing, the des
ription of shear 
ows, su
h as boundary layers, 
an su�er

of severe short
omings. These problems have widely experimented more than a

de
ade ago for 
ertain upwind methods and, more re
ently, for others. In the

following we dis
uss this matter and fo
us attention on the motivations for su
h

numeri
al de�
ien
ies.

2 A Signi�
ant Problem and Some Numeri
al

Experiments

We 
onsider a simple but signi�
ant problem: the high speed 
ow over a 
at plate

in the laminar regime. Downstrean of the front region of strong intera
tion, just

behind the leading edge of the plate, the 
ow �eld stru
ture is 
hara
terized by

the vis
ous region of the BL, 
losely to the wall. An outer oblique sho
k wave,

indu
ed by the BL obstru
tion, propagates higher over the plate. Inside the BL,

the velo
ity presents, along the normal to the plate, severe variations, as well

as do the density or the temperature. On the 
ontrary, the pressure is very uni-

form, sin
e the streamlines run almost parallel ea
h other. The di�usive 
uxes

(typi
al of the N-S eqs.) play a dominant role inside the BL, by generating the


orre
t physi
al dissipation and di�usion. On the 
ontrary, the 
onve
tive 
uxes

(typi
al of the Euler eqs.) should be almost ina
tive and must avoid any spurious

inje
tion of numeri
al (therefore arti�
ial) dissipation, even in the presen
e of

strong variations of the density and the velo
ity. However,we �nd that not all

the upwind methods give the 
orre
t estimate of the 
onve
tive 
uxes and, de-

pending on the upwind method, the thi
kness of the BL 
an result anomalously

thi
ker be
ause of the additional numeri
al dissipation or the pressure distribu-

tion inside the BL 
an show questionable os
illations.

In order to investigate the e�e
ts due to the di�erent upwind methods, we have


omputed the 
at plate 
ow �eld with a simple 
ode based on the time-dependent
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integration of the laws of 
onservation (laminar N-S), a �nite volumes dis
retiza-

tion on a properly stret
hed stru
tured grid and the plain �rst order s
heme. The

di�usive 
uxes at the interfa
e between two adja
ent volumes are evaluated with

a 
entered approximation and the 
onve
tive 
uxes are estimated with several

upwind methods that appear in the literature; the �rst order s
heme is adopted

to emphasize the features of ea
h upwind method.

We 
lassify in groups the upwind methods that we 
onsider in the following

numeri
al experiments: (a) 
ux-di�eren
e splitting methods (FDS), with the

approximate solvers shown in [15℄ (FDSROE) and [11℄ (FDSPAN, a mirror im-

age of the solver proposed in [10℄), (b) 
ux-ve
tor splitting methods (FVS) in

the version reported in [16℄ (FVSSW), [19℄ (FVSVL) and [12℄ (FVSEFM), (
)

the method HLL (or HLLE) proposed in [5℄ and [3℄, (d) the AUSM methods

presented in [7℄ (AUSM-VEL), [8℄ (AUSM-M) and [9℄ (AUSM+), and (e) meth-

ods, FDS mimes, initially di�erent from the FDS ones, that tend to mimi
 them

through some implementations and are dis
ussed in [1℄ (HUS, based on FVS),[3℄

(HLLEM, based on HLL), [17℄ (HLLC, also based on HLL), [20℄ [21℄ (AUSMD

and AUSMV).

We have performed numeri
al experiments with the above methods by pre-

di
tiong the 
ow �eld of the 
at plate problem 
hara
terized by the follow-

ing data: length of the plate L = 1:0m and upstream 
onditions M

1

= 5:0,

Re

1

L

= 62; 000m

�1

, T

1

= 72:2K, T

w

= 300K and Pr = 0:72. The results,

presented as pressure (p=p

1

) distribution on the normal to the plate, at the

distan
e x = 0; 89m from the leading edge, are 
ompared with a referen
e so-

lution obtained with a 
ode that is based on FDSPAN, a

urate ENO s
heme

and a mu
h �ner grid, and has been 
he
ked against test-
ases reported in the

literature.

The FDS predi
tions by FDSROE and FDSPAN, almost 
oin
ident, appear su-

perimposed in Fig.1. The sho
k wave and the expansion fan are not so sharp as

they should be, due to the poor a

ura
y of the �rst order s
heme and the rough

grid. Nonetheless, the overall predi
tion is good. The sho
k lo
ation and the

pressure value at the wall are 
orre
t: these are indi
ations that the numeri
al

dissipation has been kept low.

The results obtained with the FVS methods are di�erent. Those from FVSSW

and FVSVL are shown in Fig.2 and those from FVSEFM and HLL appear in

Fig.3. The sharpness of the 
aptured oblique sho
k is very good for FVSVL and

HLL, not so mu
h for FVSSW and FVSEFM, but the most important fa
t is

that its lo
ation is too far from the wall and the pressure level there is de�nitely

overestimated. These results are due to a remarkable numeri
al dissipation in-

je
ted in the BL.

The results given by the three version of AUSM are reported in Fig.4. The ver-

sions, AUSM-VEL and AUSM-M, almost 
oin
ident ex
ept at the wall, give a

sharp 
apturing of the oblique sho
k, whereas AUSM+ shows a thi
ker 
aptur-

ing zone. The pressure level at the wall seems to have been well predi
ted, a

sign that the numeri
al dissipation is minimal. However, a questionable result

is represented by the pressure os
illation inside the BL, in the proximity of the
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wall. Su
h an os
illation shows up 
learly for AUSM-VEL, but also, though with

smaller amplitude, in AUSM-M and AUSM+, as it 
ould be seen in enlarged

s
ale of the abs
issa (Fig.5) or by in
reasing the Reynolds number.

The results obtained with FDS mimes methods are very 
lose to the FDS ones.

We do not report any result from them, but we remark that these methods fully

reprodu
e the FDS features.

The remarkable dis
repan
ies among the numeri
al predi
tions in a trivial 
uid-

dynami
 
ase require a 
riti
al interpretation of the algorithms that are di
tated

by the di�erent upwind methods.

3 A Criti
al Analysis on Upwind Methods

We borrow here the odd-even de
oupling problem suggested in [13℄ in the inves-

tigation of numeri
al instabilities typi
al of some upwind methods in 
ows with

strong sho
ks, and we extend that analysis to a more general 
ase and to the

many 
onsidered upwind methods.

The present analysis starts from the Euler eqs. (upwinding refers to the 
onve
-

tive 
uxes) in the 2D (x; y) problem, written in the linearized form about the

uniform parallel 
ow 
hara
terized by �

0

= 1:0, u

0

6= 0, v

0

= 0, p

0

= 1:0 (u and

v are the velo
ity 
omponents along x and y). For ea
h upwind method we de-

velop the algorithm within the frame of the above linearization and we estimate

the 
ux on any interfa
e between two adja
ent volumes. The 
ow is assumed

uniform along x and variations 
an only o

ur on the transversal dire
tion y.

Initial 
onditions are imposed with alternate perturbations along y: �

0

= 1� �̂

0

,

u

0

= u

0

� û

0

, v

0

= 0, p

0

= 1� p̂

0

, where the signs + and � hold alternatively in

the 
ells in the y dire
tion. Then, the �rst order s
heme is 
onstru
ted and the

integration in time is 
arried out on the basis of the initial 
onditions (�

0

, u

0

,

v

0

, p

0

). Finally, it is possible to obtain simple re
ursive formulas that determine

the 
ow properties at any integration step K +1, starting at the step K. These

formulas are reported in Tab.1. The label MOC refers to the FDS approa
h as

originally proposed in [4℄ and founded on the method of 
hara
teristi
s. The for-

mulas provide the evolution in time of the perturbations of density (�̂), velo
ity

(û) and pressure (p̂).

In order to interpret the results shown in the Figs.1-4, we assume initial pertur-

bations of density and velo
ity (�̂

0

6= 0, û

0

6= 0) and uniform pressure (p̂

0

= 0),

a situation somewhat similar to a BL. The 
orre
t solution of the Euler eqs.

requires the preservation of the initial 
onditions. It is now interesting to see

how the di�erent upwind s
hemes rea
t in this problem.

The FDS methods (MOC, FDSROE, FDSPAN) give the 
orre
t answer: at any

K (and for K ! 1), we have �̂

1

= �̂

K

= �̂

0

and û

1

= û

K

= û

0

. Therefore,

we expe
t that, in the 
at plate problem, the FDS methods do not rea
t to

the density and velo
ity pro�les generated by the only di�usive terms of the

N-S equations and that the 
onve
tive terms do not add any in
orre
t dissipa-

tion. The re
ursive formulas for MOC, the approximate solvers FDSROE and
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FDSPAN and the FDS mime HLLC are 
oin
ident. Similar results are obtained

also for the other FDS mimes (HUS, AUSMD, AUSMV), sin
e the only slight

variation appears in the 
oeÆ
ient of the pressure perturbation that remains

null in this analysis (p̂

1

= p̂

K

= p̂

0

= 0), but the stru
ture of the formulas

remains the same.

On the 
ontrary, the rea
tion of the FVS methods is very di�erent. Even if the


oeÆ
ients in the formulas are not equal, the stru
ture of the formulas results

the same for FVSSW, FVSVL and FVSEFM. The initial perturbations , �̂

0

and

û

0

de
rease 
ontinuously by denoting the generation of spurious numeri
al dis-

sipation. Also HLL presents the same in
orre
t behavior, even if the 
oeÆ
ient

are di�erent. It is now 
lear why the thi
kness of the BL is overestimated in

Figs. 2 and 3, as well as the wall pressure: the invis
id 
uxes of FVS and HLL

methods, inside regions of �nite gradients of density and velo
ity, tend to 
atten

these gradients by inje
ting numeri
al dissipation.

The AUSM methods rea
t di�erently. If we look at AUSM-VEL, we re
ognize

that the velo
ity perturbation is preserved 
orre
tly, but the density pertur-

bation is ampli�ed and triggers a stable pressure perturbation initially absent:

�̂

1

= p̂

1

=





 � 1

�̂

0

. This very anomalous behavior is 
on�rmed, in 
omputa-

tions 
arried out for the 
at plate problem, by the generation of steady pressure

os
illations in the BL that are indu
ed by the density gradient, just as shown in

Figs. 4 and 5. The re
ursive formulas for AUSM-M and AUSM+ are identi
al

ea
h other and very simple: any initial perturbation is preserved. This is 
orre
t

for density and velo
ity. However, the pressure should 
hange through travel-

ling waves as for FDS, whereas the re
ursive formulas indi
ate that they will be

maintained. Therefore we shall be not surprised in dete
ting small but persistent

pressure os
illations even with these two methods. We remind that the gener-

ation of more or less remarkable pressure os
illations with these methods has

been already experimented in 
omputations of pra
ti
al interest and reported in

the literature [14℄ [18℄ [6℄.
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Table 1. Integration with the linearized form of the di�erent methods.

MOC �̂

K+1

= �̂

K

+ (�

2�




)p̂

K

FDSROE û

K+1

= û

K

FDSPAN p̂

K+1

= (1� 2�)p̂

K

HLLC

FVSSW �̂

K+1

= (1 �

�




)�̂

K

+ (�

�




)p̂

K

û

K+1

= (1�

2�




)û

K

p̂

K+1

= (�)�̂

K

(1� 3�)p̂

K

FVSVL �̂

K+1

= (1�

�

2

)�̂

K

+ (�

�

2

)p̂

K

û

K+1

= (1� 2�)û

K

p̂

K+1

= (�





 + 1

)�̂

K

(1� 3�





 + 1

)p̂

K

FVSEFM �̂

K+1

= (1�

p

2�

p

�


)�̂

K

+ (�

p

2�

p

�


)p̂

K

û

K+1

= (1� 2

p

2�

p

�


)û

K

p̂

K+1

= (

(
 + 1)�

p

2

p

�


)�̂

K

(1� 3

(
 + 1)�

p

2

p

�


)p̂

K

HUS �̂

K+1

= �̂

K

+ (�

�

2


 + 1




)p̂

K

û

K+1

= û

K

p̂

K+1

= (1� �

3
 � 1


 + 1

)p̂

K

HLL �̂

K+1

= (1� 2�)�̂

K

û

K+1

= (1� 2�)û

K

p̂

K+1

= (1� 2�)p̂

K

AUSM-VEL �̂

K+1

= (1 +

�

2

)�̂

K

+ (�

�

2

)p̂

K

û

K+1

= û

K

p̂

K+1

= (

�


2

)�̂

K

(1�

�


2

)p̂

K

AUSM-M �̂

K+1

= �̂

K

AUSM+ û

K+1

= û

K

p̂

K+1

= p̂

K

AUSMD �̂

K+1

= �̂

K

+ (��)p̂

K

AUSMV û

K+1

= û

K

p̂

K+1

= (1� �
)p̂

K



6 Maurizio Pandol� and Domeni
 D'Ambrosio

a)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.95 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35

y
/L

p/pinf

Flat plate : Minf=5   Rex=55625   Tinf=72.2 K   Tw=72.2 K   Pr=0.72

reference solution
FDSPAN
FDSROE

b)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.95 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35

y
/L

p/pinf

Flat plate : Minf=5   Rex=55625   Tinf=72.2 K   Tw=72.2 K   Pr=0.72

reference solution
FVSVL

FVSSW


)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.95 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35

y
/L

p/pinf

Flat plate : Minf=5   Rex=55625   Tinf=72.2 K   Tw=72.2 K   Pr=0.72

reference solution
FVSEFM

HLL

d)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.95 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35

y
/L

p/pinf

Flat plate : Minf=5   Rex=55625   Tinf=72.2 K   Tw=72.2 K   Pr=0.72

reference solution
AUSM-VEL

AUSM-M
AUSM+

e)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

1.04 1.05 1.06 1.07 1.08 1.09

y
/L

p/pinf

Flat plate : Minf=5   Rex=55625   Tinf=72.2 K   Tw=72.2 K   Pr=0.72

reference solution
AUSM-VEL

AUSM-M
AUSM+

Fig. 1. Pressure plot at x = 0:89 m; a)FDSPAN and FDSROE; b)FVSVL and FVSSW;


)FVSEFM and HLL; d)AUSM-VEL, AUSM-M and AUSM+; e)enlarged view of

AUSM-VEL, AUSM-M and AUSM+ behavior 
lose to the wall.


