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1 Introduction

Flow fields in high speed regimes exhibit strong shock waves and sharp boundary
layers (BL). Their numerical prediction is generally obtained with some of the
several upwind methods that have been proposed in the literature over the past
twenty years. Though shock waves are computed with a satisfactory numerical
capturing, the description of shear flows, such as boundary layers, can suffer
of severe shortcomings. These problems have widely experimented more than a
decade ago for certain upwind methods and, more recently, for others. In the
following we discuss this matter and focus attention on the motivations for such
numerical deficiencies.

2 A Significant Problem and Some Numerical
Experiments

We consider a simple but significant problem: the high speed flow over a flat plate
in the laminar regime. Downstrean of the front region of strong interaction, just
behind the leading edge of the plate, the flow field structure is characterized by
the viscous region of the BL, closely to the wall. An outer oblique shock wave,
induced by the BL obstruction, propagates higher over the plate. Inside the BL,
the velocity presents, along the normal to the plate, severe variations, as well
as do the density or the temperature. On the contrary, the pressure is very uni-
form, since the streamlines run almost parallel each other. The diffusive fluxes
(typical of the N-S egs.) play a dominant role inside the BL, by generating the
correct physical dissipation and diffusion. On the contrary, the convective fluxes
(typical of the Euler egs.) should be almost inactive and must avoid any spurious
injection of numerical (therefore artificial) dissipation, even in the presence of
strong variations of the density and the velocity. However,we find that not all
the upwind methods give the correct estimate of the convective fluxes and, de-
pending on the upwind method, the thickness of the BL can result anomalously
thicker because of the additional numerical dissipation or the pressure distribu-
tion inside the BL can show questionable oscillations.

In order to investigate the effects due to the different upwind methods, we have
computed the flat plate flow field with a simple code based on the time-dependent
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integration of the laws of conservation (laminar N-S), a finite volumes discretiza-
tion on a properly stretched structured grid and the plain first order scheme. The
diffusive fluxes at the interface between two adjacent volumes are evaluated with
a centered approximation and the convective fluxes are estimated with several
upwind methods that appear in the literature; the first order scheme is adopted
to emphasize the features of each upwind method.

We classify in groups the upwind methods that we consider in the following
numerical experiments: (a) flux-difference splitting methods (FDS), with the
approximate solvers shown in [15] (FDSROE) and [11] (FDSPAN, a mirror im-
age of the solver proposed in [10]), (b) flux-vector splitting methods (FVS) in
the version reported in [16] (FVSSW), [19] (FVSVL) and [12] (FVSEFM), (c)
the method HLL (or HLLE) proposed in [5] and [3], (d) the AUSM methods
presented in [7] (AUSM-VEL), [8] (AUSM-M) and [9] (AUSM+), and (e) meth-
ods, FDS mimes, initially different from the FDS ones, that tend to mimic them
through some implementations and are discussed in [1] (HUS, based on FVS),[3]
(HLLEM, based on HLL), [17] (HLLC, also based on HLL), [20] [21] (AUSMD
and AUSMV).

We have performed numerical experiments with the above methods by pre-
dictiong the flow field of the flat plate problem characterized by the follow-
ing data: length of the plate L = 1.0m and upstream conditions M., = 5.0,
Resor = 62,000m~?, T, = 72.2K, T, = 300K and Pr = 0.72. The results,
presented as pressure (p/ps) distribution on the normal to the plate, at the
distance z = 0,89m from the leading edge, are compared with a reference so-
lution obtained with a code that is based on FDSPAN, accurate ENO scheme
and a much finer grid, and has been checked against test-cases reported in the
literature.

The FDS predictions by FDSROE and FDSPAN, almost coincident, appear su-
perimposed in Fig.1. The shock wave and the expansion fan are not so sharp as
they should be, due to the poor accuracy of the first order scheme and the rough
grid. Nonetheless, the overall prediction is good. The shock location and the
pressure value at the wall are correct: these are indications that the numerical
dissipation has been kept low.

The results obtained with the FVS methods are different. Those from FVSSW
and FVSVL are shown in Fig.2 and those from FVSEFM and HLL appear in
Fig.3. The sharpness of the captured oblique shock is very good for FVSVL and
HLL, not so much for FVSSW and FVSEFM, but the most important fact is
that its location is too far from the wall and the pressure level there is definitely
overestimated. These results are due to a remarkable numerical dissipation in-
jected in the BL.

The results given by the three version of AUSM are reported in Fig.4. The ver-
sions, AUSM-VEL and AUSM-M, almost coincident except at the wall, give a
sharp capturing of the oblique shock, whereas AUSM+ shows a thicker captur-
ing zone. The pressure level at the wall seems to have been well predicted, a
sign that the numerical dissipation is minimal. However, a questionable result
is represented by the pressure oscillation inside the BL, in the proximity of the
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wall. Such an oscillation shows up clearly for AUSM-VEL, but also, though with
smaller amplitude, in AUSM-M and AUSM+, as it could be seen in enlarged
scale of the abscissa (Fig.5) or by increasing the Reynolds number.

The results obtained with FDS mimes methods are very close to the FDS ones.
We do not report any result from them, but we remark that these methods fully
reproduce the FDS features.

The remarkable discrepancies among the numerical predictions in a trivial fluid-
dynamic case require a critical interpretation of the algorithms that are dictated
by the different upwind methods.

3 A Critical Analysis on Upwind Methods

We borrow here the odd-even decoupling problem suggested in [13] in the inves-
tigation of numerical instabilities typical of some upwind methods in flows with
strong shocks, and we extend that analysis to a more general case and to the
many considered upwind methods.

The present analysis starts from the Euler egs. (upwinding refers to the convec-
tive fluxes) in the 2D (z,y) problem, written in the linearized form about the
uniform parallel flow characterized by po = 1.0, ug # 0, vo = 0, po = 1.0 (u and
v are the velocity components along x and y). For each upwind method we de-
velop the algorithm within the frame of the above linearization and we estimate
the flux on any interface between two adjacent volumes. The flow is assumed
uniform along z and variations can only occur on the transversal direction y.
Initial conditions are imposed with alternate perturbations along y: p° = 14 5°,
u® = ug £ 4%, v° =0, p° = 1+ p°, where the signs + and — hold alternatively in
the cells in the y direction. Then, the first order scheme is constructed and the
integration in time is carried out on the basis of the initial conditions (p°, u®,
v9, p?). Finally, it is possible to obtain simple recursive formulas that determine
the flow properties at any integration step K + 1, starting at the step K. These
formulas are reported in Tab.1. The label MOC refers to the FDS approach as
originally proposed in [4] and founded on the method of characteristics. The for-
mulas provide the evolution in time of the perturbations of density (p), velocity
(@) and pressure (p).

In order to interpret the results shown in the Figs.1-4, we assume initial pertur-
bations of density and velocity (p° # 0, 4° # 0) and uniform pressure (p° = 0),
a situation somewhat similar to a BL. The correct solution of the Euler egs.
requires the preservation of the initial conditions. It is now interesting to see
how the different upwind schemes react in this problem.

The FDS methods (MOC, FDSROE, FDSPAN) give the correct answer: at any
K (and for K — o), we have p> = p& = 0 and 4> = 0¥ = 4°. Therefore,
we expect that, in the flat plate problem, the FDS methods do not react to
the density and velocity profiles generated by the only diffusive terms of the
N-S equations and that the convective terms do not add any incorrect dissipa-
tion. The recursive formulas for MOC, the approximate solvers FDSROE and
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FDSPAN and the FDS mime HLLC are coincident. Similar results are obtained
also for the other FDS mimes (HUS, AUSMD, AUSMYV), since the only slight
variation appears in the coefficient of the pressure perturbation that remains
null in this analysis (p*° = p¥ = p° = 0), but the structure of the formulas
remains the same.

On the contrary, the reaction of the FVS methods is very different. Even if the
coeflicients in the formulas are not equal, the structure of the formulas results
the same for FVSSW, FVSVL and FVSEFM. The initial perturbations , p° and
@° decrease continuously by denoting the generation of spurious numerical dis-
sipation. Also HLL presents the same incorrect behavior, even if the coefficient
are different. It is now clear why the thickness of the BL is overestimated in
Figs. 2 and 3, as well as the wall pressure: the inviscid fluxes of FVS and HLL
methods, inside regions of finite gradients of density and velocity, tend to flatten
these gradients by injecting numerical dissipation.

The AUSM methods react differently. If we look at AUSM-VEL, we recognize
that the velocity perturbation is preserved correctly, but the density pertur-
bation is amplified and triggers a stable pressure perturbation initially absent:

P> =p>* = Ll,éo. This very anomalous behavior is confirmed, in computa-

tions carried out for the flat plate problem, by the generation of steady pressure
oscillations in the BL that are induced by the density gradient, just as shown in
Figs. 4 and 5. The recursive formulas for AUSM-M and AUSM+ are identical
each other and very simple: any initial perturbation is preserved. This is correct
for density and velocity. However, the pressure should change through travel-
ling waves as for FDS, whereas the recursive formulas indicate that they will be
maintained. Therefore we shall be not surprised in detecting small but persistent
pressure oscillations even with these two methods. We remind that the gener-
ation of more or less remarkable pressure oscillations with these methods has
been already experimented in computations of practical interest and reported in
the literature [14] [18] [6].
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Table 1. Integration with the linearized form of the different methods.
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Fig. 1. Pressure plot at z = 0.89 m; a) FDSPAN and FDSROE; b)FVSVL and FVSSW;
¢)FVSEFM and HLL; d)AUSM-VEL, AUSM-M and AUSM+; e)enlarged view of
AUSM-VEL, AUSM-M and AUSM+ behavior close to the wall.



