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Abstract
This paper addresses the selection of parametric relations for the

macromodeling of the output and power supply ports of IC output
buffers. Relations defined by sigmoidal functions and parameter esti-
mation via fully nonlinear optimization algorithms can lead to models
with improved efficiency. Modeling examples involving commercial
devices are shown.

1 Introduction
The system level simulation of high performance digital circuits for

signal integrity (SI) and electromagnetic compatibility (EMC) effects
requires effective models of the Integrated Circuits (ICs) ports driving
and loading interconnect structures.

Recently, a macromodeling methodology based on the estimation
of parametric models from port transient responses has been proposed
and successfully applied to real modeling problems [1, 2, 3]. This
approach has specific advantages, making it a useful complement to the
traditional modeling approach based on simplified equivalent circuits
of the device ports [4].

This paper addresses the choice of the parametric relation for the
modeling of the output and power supply ports of IC drivers. Para-
metric relations defined by Gaussian Radial Basis Functions (RBF)
and by sigmoidal (SIG) functions are exploited along with different
algorithms for the estimation of model parameters. Such relations are
applied to the modeling of IBM commercial drivers and their perfor-
mance are tested for realistic simulation problems.

2 Parametric macromodeling overview
The modeling of ICs for SI and EMC simulations amounts to find-

ing suitable port relationships (which we refer to as “constitutive”), for
a known logical activity of the ICs. As an example, Fig. 1 shows the
typical structure of an IC output buffer (driver in the following) that can
be considered as a three-port element, whose input port is connected
to the IC internal logic and the other two ports are the output and the
power supply ports connected to the external interconnects. The elec-
trical behavior of output and power supply ports for such element can
be described by the following constitutive relations

{

i = Fo(v, vdd)
idd = Fd(v, vdd)

(1)

where Fo and Fd are suitable nonlinear dynamic operators.
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Figure 1: General structure of a driver circuit and its relevant (output
and power supply) port electric variables.

For parametric macromodeling, the above constitutive relations are

sought as dynamic nonlinear parametric equations. The use of para-
metric equations to model physical systems is conceptually simple and
can be described by the three steps: (1) model selection, i.e., the selec-
tion of the parametric relation defining the model (model representa-
tion hereafter); (2) parameter estimation, i.e., the computation of the
model parameter values so that the model responses mimic well those
of the device under modeling; (3) model implementation, i.e., the trans-
lation of the model in a circuit simulation environment by representing
its equations with equivalent circuits.

Model selection is the most critical step of the modeling process,
since a model representation far from the functional form of the real
system can hardly reproduce its behavior. The model representation
suitable for buffer circuits is searched for within the class of discrete-
time parametric models. This is mainly due to the large availability
of methods for the estimation of this class of models [5, 6]. Besides,
this is the natural choice when the raw data, i.e., the external responses
of the system, are known as sampled waveforms. An additional back
conversion to continuous-time is needed for the implementation of the
model as a subcircuit, yet this is easily carried out via standard methods
in step three of the modeling procedure [1].

A general discrete-time input/output parametric relation can be ob-
tained by a nonlinear mapping defined by a sum of basis functions [6].
For a single input (extension to multiple input is straightforward) this
writes

y(k) = g(x(k),Θ) (2)

where y is the output, vector Θ collects the model parameters and the
scalar function g maps the present and past samples of the input u and
the past samples of the output into the present sample of the output.
The mapped input/output samples are collected in the regressor vector

x(k) = [u(k), u(k − 1), . . . , u(k − r),

y(k − 1), . . . , y(k − r)]T
(3)

where index r is referred to as the dynamic order of the model. Func-
tion g is defined by

g(ϕ, Θ) =

p
∑

n=1

αnφn(η(x)) (4)

where φn is the n-th basis function, obtained from a single mother
generating function φ(η) by changing its spreading and its position
(nonlinear parameters), αn is a linear coefficient (linear parameter)
and p is the total number of components (model size). Many different
basis functions can be used in (4), giving rise to model representations
with significantly different properties.

Parameter estimation relies on the information contained in a set of
transient responses (identification signals hereafter) of the system un-
der modeling {u(k), y(k)}, k = 1 . . . N , where N is the length of the
sequences. For given values of the model size p and of the dynamic
order r, model parameters are computed as solution of the following
nonlinear approximation problem, usually cast as a least square prob-
lem

U =





u(1)
...

u(N)



 ≈ g(X, Θ) =





g(x(1),Θ)
...

g(x(N),Θ)



 (5)



Specific algorithms are available to solve this problem, that depends
on the specific choice of the family of basis functions [6].

3 Basis functions and estimation algorithms
Presently, parametric macromodels based on Gaussian RBF expan-

sions have been successfully applied so far to the macromodeling of
the ports of digital ICs [1, 2, 3]. Gaussian RBF models belong to the
generic class defined by (4), where the mother generating function is
φ(η) = exp(−η2/2) and the n-th basis function φn is defined by the
argument

η(x) = |x(k) − cn|/βn (6)

where | · | denotes the Euclidean norm and cn and βn are the nonlinear
parameters defining the shape factor of the n-th basis function.

Gaussian RBF models offer remarkable advantages. Mainly, they
are robust and have a regular and smooth behavior outside the fitting
domain. The estimation of model parameters relies on simple and effi-
cient algorithms [7, 8] in which the nonlinear least squares problem (5)
is cast as an equivalent linear problem. This can be done since RBF
models are weakly sensitive to the position of center and spreading
parameters. In such a way, the set of possible center and spreading pa-
rameters are selected a priori and the nonlinear problem (5) is reduced
to the estimation of the linear parameters only.

However, this is not the only choice of basis functions leading to
models suitable for the approximation of a wide class of nonlinear
dynamic systems. A complete overview of possible choices can be
found in [6]. An alternate choice considered in this paper is the widely
used class of SIG basis functions that are defined by a mother function
φ(η) = tanh(η) and by

η(x) = v
T
n x(k) + bn (7)

where vn and bn are the nonlinear parameters of the basis function φn.
It is worth noting that, Gaussian RBF have spherical symmetry and

finite spreading, whereas sigmoidal functions defined by (7) have pla-
nar symmetry and unbounded support. The planar symmetry is more
suitable for fitting the actual constitutive relations of output and power
supply ports of IC drivers. Thereby, (7) is a good alternative to Gaus-
sian RBF for the problem at hand, leading to models with improved ef-
ficiency (less basis functions). Besides, for the approximation of map-
pings that exhibit a regular (e.g., weakly nonlinear) behavior, Gaussian
RBF representations can lead to models with a large number of basis
functions. As an example, Fig. 2 shows the approximation of a one di-
mensional static mapping by the superposition of Gaussian bell shaped
functions and of sigmoid functions within a specific domain.
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Figure 2: Approximation of a simple linear static u− y relation by the
superposition of different scalar basis functions (left panel: Gaussian
bells; right panel: sigmoid)

Unfortunately, SIG-type models do not exhibit the nice property of
weak sensitivity to the nonlinear parameters and therefore a fully non-
linear estimation algorithm is required to solve problem (5). Within
the many possible estimation algorithms we found good results with
the Levenberg-Marquardt method [10] and the procedure for the selec-
tion of the initial guess of parameters in [9].

As a final remark, supplemental information on the device being
modeled, like its static characteristic {usc, ysc}, when available, can

be included in the model. This can be done by modifying the least
squares problem (5) by stacking additional rows as follows,

[

U

Usc

][

g(X,Θ)
g(Xsc,Θ)

]

(8)

where Usc is a column vector collecting the static values of the input
variable [usc(1), usc(2), . . .] , and Xsc collects the regressor vectors
built on the static characteristic (the present and past values of u and
the past values of y in the regressor vector (3) are set to the same static
values in {usc, ysc}). The range of the static characteristic is usually
chosen larger than the range explored by the transient input identifi-
cation sequence stored in U, ensuring the right static behavior over a
wide domain.

4 Output and power supply port macromodels
This Section shortly reviews macromodels for output and power

supply ports of driver circuits. The key problem for the development
of a driver model is that the internal (logic) signal feeding the buffer is
not a measurable quantity. In spite of this, the port model must allow
for variation of the logic state. For constant values of the power sup-
ply port voltage, a parametric macromodel of the output port has been
presented and thoroughly discussed in [1]. It approximates the output
port constitutive relation with a two-piece model

i(k) = w1(k)f1(Θ1, v) + w2(k)f2(Θ2, v) (9)

where f1 and f2 are nonlinear parametric models accounting for the
port behavior in a fixed High or Low logic state, respectively and w1

and w2 are time-varying weighting coefficients for state switchings.
In order to include the effects of the power supply voltage vdd in the

macromodel (9), taking into account supply voltage fluctuations on the
switching of logic devices, the vdd variable is added as an additional
input in the parametric models f1 and f2. The output port macromodel
then writes

i(k) = w1(k)f1(Θ1, v, vdd) + w2(k)f2(Θ2, v, vdd) (10)

The weighting coefficients describing state switching, instead, are
constant with respect to vdd owing to the properties of model represen-
tation (9) [1]. The transient responses for the estimation of the model
parameters are obtained by driving the model devices with v(k) and
vdd(k) signals that are multilevel noisy waveforms [5].

The models of the power supply ports are needed for the simulation
of switching noise effects and yield the driver supply current idd as a
function of the supply port voltage vdd and of the output port voltage v
(see Fig. 1). The model representation exploited for the power supply
port of drivers is

idd(k) = wd1(k)fd1(Θd1, v, vdd)+

+wd2(k)fd2(Θd2, v, vdd) + δi(k)
(11)

where δi(k) takes into account the supply current drawn by the
driver stages that precede the last one, and fd1 and fd2 are the paramet-
ric submodels of the current of the last driver stage when it operates in
the LOW and HIGH logic states, respectively, and wd1 and wd2 are the
usual weighting coefficients describing state switchings.

5 Numerical examples
In this Section, the parametric models of Section 4 with the ba-

sis functions described in Section 3 are applied to the modeling of
commercial drivers. In the following, RBF and SIG indicate mod-
els composed of Gaussian RBF and of sigmoid functions, respec-
tively, whereas SIG-SC denote models composed by sigmoid functions
whose parameters are estimated by including information on the static
characteristics, as shown in Section 3. All models are obtained from



Table 1: Mean Square Error (MSE) between the output identification
sequence and the model response to the identification sequences (ap-
proximation error). Both the RBF and the SIG type models are con-
sidered. The total number of basis functions p included in the models
is in the range [1, 10].

p MSE(RBF) MSE(SIG)

1 4.12e-1 2.07e-6
2 7.22e-2 8.30e-7
3 3.25e-4 8.28e-7
4 3.14e-4 8.11e-7
5 1.40e-4 8.78e-7
6 2.40e-5 8.48e-7
7 1.63e-6 8.87e-7
8 1.59e-6 8.82e-7
9 1.44e-6 8.88e-7

10 1.34e-6 8.65e-7

transient responses of detailed transistor-level model of the devices un-
der modeling (hereafter references) and implemented as SPICE subcir-
cuits. Reference and models are compared by simulating realistic test
circuits.
Example #1. The first modeled device is the output port of a high-
speed IBM CMOS driver (Vdd = 1.8 V) for servers operating at
250 MHz. For this device, both the complete RBF and the SIG type
macromodels are estimated. For this example, we concentrate on the
characterization of the output port only and assume constant power
supply voltage equal to the nominal value Vdd.

As a first comparison, devised to highlight the differences among
the possible choices of basis functions, both the RBF and the SIG para-
metric models are estimated for submodel f1 of (10), i.e., the dynamic
i − v port relation when the driver is forced in the fixed High output
state. In this example, the dynamic order of submodels is r = 1.

Table 1 shows the Mean Square Errors (MSE) computed during the
estimation procedure for submodel f1 and different values of the num-
ber of basis functions p included in the model. MSE values on the
order of 1E-6 lead to macromodels reproducing the behavior of the
device very well and make the predicted responses almost indistin-
guishable from the reference ones. It is worth noting that the same
good accuracy obtained with RBF models for p = 7 is achieved with
SIG-type models for p = 1, only.

The complete macromodel (10) is estimated using the procedure
detailed in [1] and Table 2 summarizes some results on the complex-
ity and efficiency of possible macromodels. For this comparison, the
RBF, SIG and SIG-SC type of parametric models are used. The table
lists the number of basis functions p1 and p2, for the submodels f1

and f2, respectively, and the CPU time required to compute a simple
transient simulation test using the reference transistor-level models and
two SPICE-like implementations of the macromodels. The test setup
consists of the driver being modeled connected to a 100 Ω load resistor
and producing a logic high pulse (bit pattern "010"). The speed-up
factor introduced by the macromodels can be clearly appreciated.

As a realistic validation setup, the example driver #1 applying a
logic high pulse on an open-ended ideal transmission line (Z0 =
100 Ω, Td = 100 ns) is considered. Fig. 3 shows the near-end transient
voltage waveform computed through PowerSPICE and using the refer-
ence transistor-level model and the SIG-SC type macromodel. Curves
obtained using the RBF and the SIG type of models are not reported,
since they are indistinguishable from that of the SIG-SC type.

An additional index on the model quality is obtained by computing
the timing error, that is expressed as the maximum delay between the

Table 2: Number of basis functions of the possible macromodels of
the example driver #1 and CPU time comparison for a simple transient
simulation test (see text).

Macromodel p1 p2

CPU time
(PowerSPICE)

CPU time
(Pspice)

reference - - 27 s -
RBF 7 8 0.42 s 1.77 s
SIG 1 2 0.22 s 0.50 s
SIG-SC 3 3 0.30 s 0.80 s

reference and the macromodel responses measured for a suitable volt-
age crossing (e.g., 50 % of the voltage swing). As an example, for the
curves of Fig. 3 the timing error is 7 ps (0.35 % of the bit time).
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Figure 3: Near-end voltage waveform on an ideal transmission line
driven by the example driver #1 (see text). Solid line: reference;
dashed line: SIG-SC macromodel.

Example #2. The modeled device is a high-speed IBM CMOS driver
(Vdd = 1.32 V) for servers operating at 500 MHz. For this device, both
the output and the power supply port macromodels are estimated. In
this example, only the SIG-SC type parametric models are considered.

The obtained output port macromodel (10) turns out to have sub-
models f1 and f2 composed of 8 and 11 basis functions, respectively.
Whereas, the power supply port macromodel (11) has submodels fd1

and fd2 composed of 9 and 5 functions, respectively. All the submod-
els have dynamic order r = 2.

As a first validation test, Fig. 4 shows the driver port waveforms pre-
dicted by the reference transistor-level model of the device and by the
macromodels while the driver applies a bit stream "0100110010"
on a dynamic load (ideal transmission line with Z0 = 50 Ω and 0.3 ns)
and the power supply pin is connected to a Vdd battery. The timing er-
ror for this test is 11 ps (1.1 % of the bit time).

A second validation setup for a Simultaneous Switching Noise
(SSN) prediction is considered. It is composed of M identical open-
ended transmission lines driven by M replicas of the modeled device.
The power supply port of every driver is connected to a common power
supply structure that is modeled by Rs, Ld and by the battery Vdd.
The parameter values are: transmission line characteristic impedance
Z0 = 50 Ω, time delay Td = 0.3 ns; Rs = 1 mΩ, Ld = 0.1 nH and
Vdd = 1.32 V. All drivers are then driven to switch simultaneously (bit
stream "0100110010") and the circuit waveforms are computed.

Figure 5 shows the comparison between the reference and the pre-
dicted voltage and current waveforms at the output of a driver and the
total power supply voltage and current waveforms for M = 11 simul-
taneous switchings. The model predictions and the reference responses
are in good agreement. The parametric model involved in this test has
been estimated for vdd variations in the range Vdd ± 15%, whereas the
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Figure 4: Near-end voltage waveform on an ideal transmission line
driven by the example driver #2 whose power supply pin is connected
to a Vdd battery (see text). Solid line: reference; dashed line: SIG-SC
macromodel.

vdd variations for this case exceeds the modeling range. This means
that the accuracy of the obtained model remains acceptable also on
the boundaries of the vdd modeling range. The timing error computed
from the previous curves is 31 ps (3.1 % of the bit time)..

6 Conclusions
The parametric approach discussed in this paper offers a rigorous

framework for the modeling of nonlinear dynamic devices from exter-
nal responses. The use of RBF model representations allows to handle
most devices and produces model with good efficiency and accuracy.
However, when more information on the device properties is exploited,
specific choices of basis functions (sigmoidal class and ridge construc-
tion) and estimation algorithms can lead to improved models. The
advantages of the proposed modeling strategies are demonstrated for
the output and power supply ports of driver circuits, obtaining accu-
rate and efficient macromodels that can be effectively used in actual
simulation problems.
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