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Abstract

Precipitation of sparingly soluble salts is a mixing sensitive process that involves nucleation of the |
solid phase and various growth mechanisms. Two different growth mechanisms can be considered. *
The first one is the growth of the crystals from solution while the second one is growth from
aggregation of smaller particles. Depending on the operating conditions different mechanisms
control the crystal growth and thus morphology and size of the crystal. Experimental evidence
shows that under certain conditions also in dilute systems aggregation takes place, forming smaller
aggregates with various shapes. In this work a finite mode probability density function (pdf)
coupled with a CFD code (FLUENT) has been used to model precipitation and the population |
balance has been solved in term of the moments of the crystal size. The results show that under |
these operating conditions the mean crystal size and the total number of particles are slightly
affected by aggregation, but locally the crystal concentration is high enough to give an appreciable
aggregation rate.

1 Introduction

During precipitation from solution several phenomena may occur, namely: nucleation, growth, i
aggregation and breakage. The first step is responsible for the formation of crystal nuclei. The
new particles so formed can grow following different mechanisms, such as growth from solution or
aggregation of smaller particles, whereas collision between particles and reactor walls or impeller
may cause breakage, resulting in a reduction of particle size. Most of the time, the final product :
has to fulfil specific requirements on crystal size distribution (CSD) and crystal morphology. ‘
Since the mixing time scale is comparable with the reaction time scale, the process is controlled ?
both by precipitation kinetics and mixing. Several authors have studied the influence of mixing l
on the final CSD and crystal morphology and several modelling approaches have been adopted. ‘
Baldyga and Orciuch (1999) studied the turbulent precipitation of barium sulphate in a tubular
reactor and compared the experimental data with the model predictions. In this work they used
Computational Fluid Dynamic (CFD) coupled with different micromixing models, such as the
presumed probability density function (4-pdf) and multi-environment model. Piton et al. (2000)
studied the turbulent precipitation in the same reactor using CFD coupled with a multi-environment

1Corresponding author: e-mail: marchis@athena.polito.it; fax: 390115644699
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micromixing model, and compared model predictions with results from other authors (Baldyga and
Orciuch, 1997). Almost all modelling works appearing in the literature completely neglect the
role of aggregation and breakage in precipitation. Whereas for breakage this assumption might be
reasonable, numerous experimental studies have shown the important role of aggregation. Philips et
al. (1999), working in a single-feed semi-batch precipitator, from observation of crystals with SEM
found that under certain conditions particles form aggregates. Pagliolico et al. (1999), working
with a coutinuous Couette type precipitator, found complex aggregates, named roses, probably
formed by high local values of reactant concentration. The aim of this work is to study the effect
of aggregation on turbulent precipitation in a tubular reactor. The reactor is modeled using a
commercial CFD code (FLUENT) and the sub-grid scale is modeled using the multi environment
approach. Perikinetic aggregation has been included in the model using the transformed population
balance, under some simplifications.

2 Micromixing model

The multi-environment micromixing model divides each grid of the computational domain in N
environments. This approach is equivalent to a discretization of the composition pdf in a finite set
of delta fanctions (Fox, 1998):

N m
T, 1) =Y palx,8) [[ (e — 6 (%, 1)) (1)

n=1 o=1

where fy(1; %, t) is the joint PDF of all scalars (e.g., concentrations, moments, etc.) appearing in the
precipitation model, p,(x, t) is the probability of mode n (i.e., the volume fraction of Environment
n), ¢$}‘) (x,t) is the value of scalar & corresponding to mode n, N is the total number of modes, and
m is the total number of scalars. Piton et al. (2000) showed that three environments are sufficient
to work with good accuracy. Using three environments with the unpremixed chemical reaction
A+ B — C, Environment 1 contains pure A, Environment 2 contains pure B, and Environment 3
contains mixed reactants (reaction occurs in this Environment).

The Reynolds-averaged transport equations for the volume fractions of Environments 1 and 2
are given by (repeated indices imply summation):

opp O E) 8p

on vy O (pOP1 _ ~ ,
5t a:‘Ui((uz)m) F (1‘,‘, 6:v.~) + o3 — vsp1(1 — p1), @
2 0 iy = 2 (1,222 ol

5t T 5, (P) = Z- (Pt am) +7ps — YsP2(1 — p2); (3)

where p3 = 1 —p; — pa, (u;) is the mean velocity in the i** direction, I'; is the turbulent diffusivity

modeled as
C, k?
T, ==& 4
7 Sc € (4)

where Cp, = 0.09 and S¢; = 0.7, whereas < and -; are respectively the micromixing rate and the
spurious dissipation rate. The micromixing term <, can be expressed in terms of the turbulent
frequency (e/k) as follows

Vs = C¢€/ka (5)
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where Cy for a fully devoloped scalar field is of order of unity. Generally for environment n it i

possible to define a local concentration denoted by qS(") whereas the weighted concentration sg )5 is
defined by

s = ¢{pu. (6)
The transport equation for the weighted concentration of scalar ¢ in Environment 3 is
8s8) 85
5 T ——(( YD) = g | T | —mpalels) + 90 + ()

Y5p1(1 — p1)¢ + Yspa(l — p2)$2 + p3Sa(6™),

where ¢(1) and ng) are the local concentrations in Environments 1 and 2 (that do not need a
transport equation, because no reaction occurs in these environments), and S, (qb(")) is the chemical
source term. Note that ; is required to eliminate spurious scalar dissipation, resulting from the
finite-mode representation, but because the relative importance of this term in a tubular reactor is
small, in this work this term has been neglected.

3 Population balance

The population balance is a continuity statement based on the number density function n(Z;x, t),
and is given as (Randolph and Larson, 1988)

O b () + (G = 33 (rege) + B - Do ®

where G is the growth rate, B and D are respectively the birth and the death rate due to aggregation
and L is the crystal dimension. This equation has to be applied only in Environment 3 because in
this environment reaction/particle formation occurs. Rivera and Randolph (1978) suggested to use
the moment transformation to convert this intractable set of equations. The first four moments are
of particular interest, since they are related to the total number particle density (N; = myg), the
total particle area (A; = k,ms) and the total solid volume (V; = kym3) by shape factors (ks, k)
that depend on particle morphology. Using this approach the mean crystal size can be wntten as
follows:

d3p = —, 9)

and the solid concentration is given by

m
P iy (10)

where p is the crystal density, k, is the volume shape factor, and M is the molecular weight of the
crystal. The chemical source term appearing in Eq. 7 can be expressed in terms of mz and G as
follows:

S(g) = Lham2G. (1)
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The transport equation for the j%* moment is:

83(3) a a as(g)
ajt + 5;((%)55-3)) = o (I‘ - + psJ (¢3))(0) + G( ¢(3)) (3) (12)

ps [B3(m) - Ds(m{)]

where 3(3) m )pg is the weighted j** moment of the number density function and Bj and D;
are the moments of birth and death rate due to aggregation. The model equations are defined
once expressions for nucleation, growth, birth and death rate are found, and then can be added to
FLUENT as user-defined scalars. For every user-defined scalar a transport equation of the form

0
P‘% + 5= ( (ui)gy — Prk%z'f') =S¢ (13)

is solved, where ¢ is the k** scalars, p is the fluid density and I';, and S¢, are the diffusivity and
the source term for the k™ scalar, respectively (for details see Fluent User’s Guide, 1990). In this
work the diffusivity I'y has been set equal to the turbulent diffusivity (I';) for all scalars.

3.1 Nucleation and growth

The problem of a particulate system governed by nucleation and growth is well known and for
barium sulphate several kinetic expressions have appeared in literature. In this work the expressions
proposed by Baldyga and co-workers (1995) have been used. For the nucleation rate the supplied
expression is:

T(ba, ) = 2.83 x 101%Ac7  (1/m3s) for Ac < 10 mol/m3 (heterogeneous)
A PB) = 2.53 x 1073 AcS (1/m3s) for Ac> 10 mol/m3 (homogeneous)
(14)

where Ac = v/¢a¢5—ks, and ks is the solubility product of barium sulphate (at room temperature
ks=1.14 x 10™* mol?/mS").

For the growth rate a two-step diffusion-absorbtion model (Nielsen, 1984) was used, and gives
the following expression:

G(¢a,$B) =58 x 1078A = ki(pa — das) = ka(¢ps — ¢5s) (m/s) (15)

where kg is the mass transfer coefficient that can be estimated from the theory of mass transfer to
micro particles (Nagata and Nishikawa, 1972). Using this approach, k4 has been fixed to be equal
to 1.5 1078 (m/s)(m3/mol). Baldyga and Orciuch (1997) reported the crystal morphology to be in
the range 8.17 < k, < 348, where 8.17 is the factor for a well-formed rectangular crystal and 348
is the factor for a pyramidal crystal formed by surface nucleation. Because they found the best
agreement with their experimental data by using a shape factor equal to 348, this value will also
be used in this work.
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3.2 Aggregation

The study of aggregation starts from the work of Smoluchowski (1917) that first defined the birth
and the death rate for a discrete system made by interacting monomers. The equations can be
rewritten for a continuous system in terms of the particle volume as follows:

B'(v) = —;— /Ov B'(v — €, €)n (v — e)n'(€)de, (16)

D) =) [ " B (v, () de, (a7)

where n/(v) is the particle number density with particle volume as internal coordinate and B'(v,€)
is the aggregation kernel, that is a measure of the frequency of collision of the particles of volume
v and € that are successful in producing a particle of volume v + €. In order to be able to introduce
these terms in the moment transport equations, a further passage is needed. It is easy to show that
Egs. 16 and 17 expressed in a lenght-based form are as follows:

A (A AN L (s A3 2] n(A)dA _
Br)=2 fo i , (18)
D) =n(D) [ BTN (19

0
Application of the moment transforms to Egs. 18 and 19 yields
_ oo r2+i L gI(L3 — A3)/3, ] n [(L? — A3)/3, 2] n(A)dAdL
b= ./0 2 /o [ ](LS{- PORE ] ) (20)
b= [D Lin(L) /0 B(L, \yn(\)dAdL. 1)

The problem is closed if B; and Dj are expressed in terms of the moments of the CSD. In order
to supply this relationship some knowledge of the aggregation kernel is needed. The form of
the aggregation kernel generally depends on the type of aggregation involved. Since the particle
dimension in this case is lower than 1 um only perikinetic aggregation is considered. Under this
assumption the aggregation kernel is a function of the fluid properties and the size of the colliding
particles. In this work only interaction between particles of about the same size is considered. In
this case we will make use of the assumption of a constant aggregation kernel. Thus in all equations
B(L, \) will be replaced by fy. Putting u3 = I3 — X3 and reversing the order of integration, Eq. 20
becomes (Hounslow et al., 1988)

Bj= %‘l fo n(\) /0 (u® + X3)3dud). (22)

This double integral may be expanded in terms of the moments of the CSD only if /3 is an integer
(i.e., j=0,3). In these two cases the resulting expressions are:

BO = 1/2ﬂ0m%: (23)
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Table 1: Geometric parameter for the tubular reactor

Main tube inner diameter, mm 32
Injection tube outer diameter, mm 2.5
Injection tube inner diameter, mm 1.8
Main tube length, mm 1240
Injection tube length, mm 240
33 = ﬂomgm;,v. (24)

For j = 1,2 the integral can be solved if (u® + A3)#/3 is replaced by its Taylor series
(u® 4+ X33 = oI (1 + 233 = w[a; + as(z — 1) + as(z — 1)% + ... + an(z — 1), (25)

where a,, may be written in terms of the n'* derivative of the function (1+z%)J/3. This assumption
is valid if z is very close to one, this implies that the particle sizes L and A appearing in Egs. 20
and 21 are almost the same. Using this approach the following equation is obtained

Bj = ﬁobjmgmj, (26)

b and by might be calculated analytically, but in this work their value has been chosen in such a
way to force the simplified model to follow the analytical solution, found by Gelbard and Seinfield
(1978), for an exponential CSD and constant aggregation kernel. Using this approach by = 2/3
and by = 5/6. For the death rate, under the assumption of constant aggregation kernel, Eq. 21 is
tranformed as follows

Ijj = ﬁomomj. (27)

We have to highlight that for j = 3 the sum of birth and death rate due to aggregation is null,
because aggregation does not change the total solid volume.

3.3 Results and discussion

Barium sulphate precipitation was studied in a tubular reactor (Baldyga and Orciuch, 1997, 1999).
In Table 1 the reactor geometric parameters are reported. The CFD simulations were carried
out in an axisymmetric geometry using a grid with a finer resolution near the reactor inlet. The
velocity of the two feed-streams is the same and is equal to 2 m/s. This flow rate gives Re=64000.
The feed-stream concentrations were ¢£41) = 500 mol/m? (barium chloride) and ¢g) = 7.5 mol/m?
(sodium sulphate). The steady-state simulations were carried out solving the flow field using the
standard k — € model first, and then the volume fractions of Environments 1 and 2. The last step
was the solution of the transport equations for the reacting scalars in Environment 3.

The volume fraction of Environemnt 1 is non-zero only in a small region near the injection zone,
whereas the volume fraction of Environment 2 is non-zero in the annular region. The interaction
between Environments 1 and 2 creates Environment 3, in which reaction occurs. As soon as the
two streams mix together, nucleation takes place. The high local value of supersaturation gives a
high peak of nucleation rate. The maximum is located very close to the small tube inlet, and a high
number of particles is created in this region. Due to turbulent mixing the local reactant concentra-
tions decrease very rapidly and because of its non-linear nature, the nucleation rate decreases faster.
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Figure 1: Effect of Cy on total number particle Figure 2: Effect of Cy on mean crystal size at
density at the reactor outlet. the reactor outlet.

The influence on the final solution of the model parameters C,, and By was considered. Reactant
A is in Environment 1 and is injected through the small tube, while reactant B is in Environment
2 and is led by the main tube.

In Fig. 1 the total particle number density at the reactor outlet for several values of C; is
reported. A shallow minimum located at Cy = 0.5 was found; in fact, a decrease in Cy slows down
mixing, and is responsible for shifting the maximum of the profile along the axial direction, and
reducing the mixing between the two reactants (i.e., reducing the overall nucleation rate). After
the injection zone the nucleation rate is very low, whereas the growth rate is high enough to make
crystals grow. Also the mean crystal size is affected by the choice of Cy (see Fig. 2). Decreasing
C, the mean crystal size decreases due to the poor mixing that reduces the growth rate. These
results show that, in this range, the effect of the micromixing constant on the overall process is
small. As done in a previous work (Marchisio et al., 2000), in order to take into account the fact
that the scalar field near the injection point is not fully-developed Cy has been fixed lower than
unity (C¢ = 0.5).

In Fig. 3 the axial profiles of total number density are reported for several value of Sp. As it
is possible to see for all the values the profiles show a maximum due to the high local nucleation
rate. Increasing fp a lower peak of total number density is found, due to enhanced aggregation
that reduces the number of particles. This effect is localized in the small region near the inlet of the
small tube, but is also appreciable far from this point. Plotting the radial profiles of total number
density at the reactor outlet (Fig. 4), it is possible to see that an increase in Bp results in a lower
number of particles. For all the aggregation kernel values the radial profile has a maxium on the
reactor axis, due to the fact that the highest value of nucleation rate is localized in this zone of the
reactor. The aggregation rate has also an effect on the mean crystal size; in fact, plotting the radial
profiles of the mean crystal size for several fy (Fig. 5), it is clear that an increase in fp results in
particles with bigger dimension. Bigger particles are located near the reactor axis because also the
growth rate has the highest value in this zone of the reactor.
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Figure 5: Radial profile of mean crystal size at reactor outlet for several values of aggregation kernel
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Figure 6: Relative variation of the radial- Figure 7: Relative variation of the radial-
averaged mean crystal size against Gy. averaged total number density against f;.

In perikinetic aggregation, the kernel factor can be calculated from Brownian diffusion theory:

_ 8kpT
Bo= 3

where kg is the Boltzmann constant, 7T is the absolute temperature and p is the kinematic viscosity.
For water at room temperature fy is equal to 10~17. In Fig. 6 the radial-averaged mean crystal size
at the reactor outlet for several 3y, divided by the value without aggregation, is reported. The data
show that in the case of aggregation kernel equal to 10717 the mean crystal size increases of about
2 %. In Fig. 7 the radial-averaged total number density, divided by the value without aggregation,
is reported against the aggregation kernel. These results show that also in dilute system, under
these operating conditions, aggregation takes place. The local values of total number density and
mean crystal size are appreciably affected by aggregation. This effect is still detectable on the
radial-averaged values at the reactor outlet. Especially for the total number density the model
predicts a reduction of 20 %, while for the mean crystal size the effect is lower (increase of about
1 %). Although the important simplifications that affect the model, due to the short residence
time in the reactor, predictions are reasonable. An extention of the model to study the effect of
aggregation during precipitation for longer residence time needs to be validated by comparison with
complete solutions of population balance, using a standard technique (i.e., Monte Carlo methods).

(28)

3.4 Conclusion

A CFD approach coupled with a multi environment micromixing model for the sub-grid scale,
was used to study the role of aggregation in precipitation process. The population balance for
the solid phase was solved with the moment method and the aggregation terms were obtained
under certain hypothesis. The model was applied to study the turbulent precipitation of barium
sulphate in a tubular reactor with unpremixed feed. The results show that even in dilute systems,
aggregation can affect the final value of total number density and mean crystal size. Although a
simplified approach is employed, the results are reasonable, and show that the use of the moment
method can be succesfully applied to study precipitation including aggregation. The application
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of the model to study aggregation for longer residence time might require a better validation and
a partial reformulation of the problem. For example, the expansion of the term under the integral
using the Taylor series can be done considering the coefficients as a function of CSD (i.e., m;).

Notation

Co
D
d32

fqb("f’; X, t)
G

J
k
ko
kg

(u;)
C:—'Breek Letters

Pa
I;
Vs
T
I
I

p
Superscripts

(n)
Operators

()

birth rate due to aggregation, 1/m3 s

turbulent constant

micromixing constant

death rate due to aggregation, 1/m? s

mean crystal size, m

joint probability density function

crystal growth rate, m/s

nucleation rate, 1/m3s

turbulent kinetic energy, m?/s?

surface shape factor

mass transfer coefficient, (m/s)(m?/mol)

barium sulphate solubility product, mol?/m®
volume shape factor

particle dimension, m

local 7% moment of the crystal size distribution, m7—4
barium sulphate molecular weight, kg/mol
numerical crystal size distribution function, 1/m3m
probability of mode n

weighted concentration of scalar ¢, mol/m3
weighted 7% moment of the crystal size distribution, m’/—*
turbulent Schimdt number

absolute temperature, k

Reynolds averaged velocity in i direction, m/s

aggregation kernel, m3/s

local concentration, mol/m?
turbulent diffusivity, m?/s
micromixing rate, 1/s

spurious dissipation rate, 1/s
turbulent dissipation rate, m?/s®
dynamic viscosity, kg/ms
crystal density, kg/m3

local value in mode n

Reynolds average

372



References

Baldyga, J., and W. Orciuch, “Closure Problem for Precipitation,” Trans. Inst. Chem. Eng., T5A,
160 (1997).

Baldyga, J., and W. Orciuch, “Closure Method for Precipitation in Inhomogeneous Turbulence,”
Proceeding of the 14th Symposium on Industrial Crystallization, 12-16 Sept, paper 86, Rugby,
UK, 1069 (1999).

Baldyga, J., Podgorska, W., and R. Pohorecky, “Mixing Precipitation Model with Application to
Double Feed Semibatch Precipitation,” Chem. Eng. Sci., 50, 1281 (1995).

Fluent Inc. “Fluent 5 User’s Guide,” Fluent Inc., Lebanon, New Hampshire, USA (1990).

Fox, R.O., “On the Relationship Between Lagrangian Micromixing Models and Computational
Fluid Dynamics,” Chem. Eng. Proc., 37, 521 (1998).

Gelbard, F., and J.H. Seinfield, “Numerical Solution of the Dynamic Equation for Particulate
Systems,” J. Comp. Physics, 28, (1978).

Hounslow, M.J., Ryall, R.L., and V.R. Marshall, “A Discretized Population Balance for Nucleation,
Growth, and Aggregation,” AICKE J., 34, 1821 (1988).

Marchisio, D.L., R.O., Fox, and A.A. Barresi, “Simulation of Turbulent Precipitation in a Semi-
Batch Taylor-Couette Reactor using Computational Fluid Dynamics,” AICRE J., submitted.

Nagata, S. and, Nishikawa, paper read at the Meeting of First Pacific Chem. Eng. Congress (1975)
cited from Nagata, S., Mizing Principles and Applications, Halsted Press (Wiley), New York
(1972).

Nielsen, A.E., “Electrolyte Crystal Growth Mechanisms,” J. Crystal Growth, 67, 289 (1984).

Pagliolico, S., Marchisio, D., and A.A. Barresi, “Influence of Operating Conditions on BaSO4 Crys-
tal Size and Morphology in a Continuous Couette Precipitator,” J. Therm. Anal. Cal., 56, 1423
(1999).

Phillips, R., Rohani, S., and J. Baldyga, “Micromixing in a Single-Feed Semi-Batch Precipitation
Process,” A.L.Ch.E. J., 45, 82 (1999).

Piton, D., Fox, R.O., and B. Marcant, “Simulation of Fine Particle Formation by Precipitation
Using Computational Fluid Dynamics,” Canadian J. Chem. Eng., in press (2000).

Randolph, A.D. and M.A. Larson, Theory of Particulate Processes, 2nd Ed., Academic Press, San
Diego (1988).

Rivera, T., and A.D. Randolph, “A Model for the Precipitation of Pentaerythritol Tetranitrate
(PETN),” Ind. Eng. Process Des. Dev., 17, 183 (1978).

Smoluchowski, M.Z., “Versuch einer mathematischen Theorie der Koagulationskinetik Kolloider
Losunger,” Z. Phys. Chem., 92, 129 (1917).

373



