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Low-Cost Electrochemical Impedance Spectroscopy
System for Corrosion Monitoring of Metallic

Antiquities and Works of Art
Alessio Carullo, Franco Ferraris, Marco Parvis, Member, IEEE, Alberto Vallan, Emma Angelini, and Paolo Spinelli

Abstract—Electrochemical impedance spectroscopy (EIS) is rec-
ognized to be a powerful and noninvasive technique to test the in-
tegrity of protective coatings on memorials, but commercial EIS
systems are rather costly though versatile devices. This paper de-
scribes a low cost and portable EIS system that is based on a com-
pact digital signal processor (DSP) board and embeds the potentio-
static function so that it can be used without requiring an external
potentiostat. The software that runs on the DSP is designed to an-
alyze the electrochemical impedance only in a reduced frequency
range in order to produce a simple corrosion alert result. The de-
vice is equipped with a digital interface and can be connected to a
personal computer to carry out a complete frequency analysis and
perform a more complex data processing.

Index Terms—Corrosion testing, electrochemical devices,
impedance measurement, intelligent systems, signal processing.

I. INTRODUCTION

M ETALLIC antiquities and works of art suffer from degra-
dation, which depends on the metal and the environment

[1]. Despite the great social importance of recovering these an-
tiquities and conserving them in a good state, there is no general
agreement on preferential conservation methods for different
metals and alloys [2]. Several organic coatings have been pro-
posed in the years to protect the cleaned artifacts; such coatings
have to exert a barrier effect against air, acid gases, oxygen, and
other aggressive pollutants, whose amount increases more and
more in the environment.

A good coating should be durable, resistant to handling, duc-
tile in order to cope with thermal expansion and volume ex-
changes from mild corrosion, repairable and removable. Unfor-
tunately, most common good coatings, which provide a durable
protection, are often difficult to remove in case of necessity and
this limits their use on valuable antiquities. An interesting al-
ternative is represented by reversible coatings, such as the wax
based ones, but their duration as well as protection efficiency
needs to be tested at regular intervals.

Several techniques can be used to carry out these tests as
well as to investigate the corrosion conditions of the surface.
Examples of techniques [3] include atomic force microscopy
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Fig. 1. Three-electrode cell and measurement method.

(AFM), scanning electron microscopy (SEM), x-ray diffraction
(XRD), Raman infrared spectroscopy (RIRS), Fourier transform
infrared spectroscopy (FTIR), and electrochemical impedance
spectroscopy (EIS). Among these techniques, the EIS [4] is
the only that can be carried out in the field with compact and
portable instruments.

II. ELECTROCHEMICAL IMPEDANCESPECTROSCOPY

The electrochemical impedance spectroscopy consists in the
measurement of amplitude and phase of the surface impedance
of coated metallic objects at different frequencies in order to
highlight the barrier properties of the coating. The impedance
measurement is carried out by using a three-electrode cell,
whose structure is shown in Fig. 1.

The three electrodes are referred to as 1) counter electrode
(C), 2) reference electrode(R), and 3) working electrode(W ).
The impedance is measured between the reference and working
electrode and is obtained as the ratio between the voltagevRW

and the currentiC that flows through the cell. The measure-
ments have to be carried out by applying a small alternating
voltage superimposed to a bias dc voltage between theC and
W electrodes, in order to obtain meaningful results. The applied
dc voltage has to be continuosly changed in order to maintain
a fixed predefined potential difference between theR andW
electrodes.

This is usually obtained by an automatic feedback system,
referred to as potentiostat, which continuously monitors the
dc voltage betweenR andW electrodes and keeps it constant
by modifying the dc voltage applied between theC andW
electrodes. The alternating voltage, which is required for the
impedance measurement, is also applied between the electrodes
C andW .
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The impedance is typically measured in the frequency range
of 1 mHz–100 kHz, while the expected impedance amplitude
is in the range of 10 k
–10 G
, for coated surfaces and cells
having an electrode surface of 10 cm2.

III. T HE PROPOSEDLOW-COST EIS SYSTEM

Two are the main constraints which require high quality elec-
tric circuits to be employed thus greatly increasing the cost of
traditional EIS systems.

The first constraint is related to the wide frequency range
traditionally involved in EIS systems, which also requires
long measurement sessions to gather the complete impedance
spectra.

Fortunately, for the simple monitoring of memorial coatings,
a complete spectroscopic analysis can be often avoided, thus
limiting the frequency span in the range of 0.1 Hz–10 kHz.

This reduced frequency range appears to be acceptable when
the scope of the measurement is to evaluate the protection effi-
ciency of the coating. On the contrary, the need for a very low
frequency limit comes when the scope is to obtain kinetic in-
formation about the electrochemical processes occurring within
the metal/coating/electrolyte system.

The second constraint is connected to the high impedances
presented by good coatings. Such high impedances, coupled to
the low amplitude of the employed stimulations signals, lead to
very small currents through the cell. However, when the simple
monitoring of memorial coatings is involved, impedance mea-
surements above 10 M
 can be carried out with an uncertainty
of up to 10% without impairing the instrument performance.

Both the frequency range reduction and the relaxed require-
ment on the accuracy allow a remarkable cost reduction to be
obtained if a proper measurement strategy is employed.

The authors decided to employ a digital approach by con-
verting the involved quantities into numeric samples by means
of an Analog to Digital Converter (ADC) and by processing
such samples with a time domain algorithm, which is able to
greatly reduce both the effects of noise and signal distortion.

In addition, instead of the conventional measurement of
voltage and current, the authors employed a substitution mea-
surement method (Fig. 1), in order to directly determine the
impedance. The substitution method employs only one ADC,
a variable-gain transimpedance amplifier, and a multi-value
resistive standard to determine the unknown impedance.

A two-step measurement is performed by acquiring the
samples at the output of the transimpedance amplifier when
a standard resistor (first step) and the unknown impedance
(second step) is connected. The obtained samples are processed
by means of the algorithm described in the Appendix thus
obtaining two complex numbersMs andMu, which are related
to the applied voltageV, to the measuring chain gainK, and to
the standard and unknown impedancesRs andZRW

Ms =
V

Rs

K (1)

Mu =
V

ZRW
K: (2)

The unknown impedance is eventually obtained by means of
the ratio between the two measurements:

Ms

Mu

=
ZRW

VK

VK

R
s

) ZRW =
Ms

Mu

Rs: (3)

Such a substitution method allows a measurement to be per-
formed even though both the applied voltageV and the mea-
suring chain gainK are only roughly known.

The two measurements need not be performed in sequence
for each frequency value. A complete set of measurements with
the standard resistor is performed before switching to the cell in
order to speed up the measurement procedure. This measure-
ment set is obtained by a-priori selecting all the frequencies
which will be used in the measurement session and by building
a table ofMs values for all the amplifier gains and frequencies.

The impedance uncertainty depends on several factors, but
three main uncertainty sources can be highlighted.

• Standard resistor uncertainty. This contribution depends
on the uncertainty calibration of the resistor and on its drift
and is expected to be negligible with respect to the other
uncertainty contributions.

• Parasitic effects due to cables and connectors. This uncer-
tainty contribution can be important when low capacitance
and/or very high impedances have to be measured. The
parasitic effects can be minimized by using shielded ca-
bles and partially corrected by a calibration process.

• Environmental noise. This kind of uncertainty can lead to
severe problems especially when dealing with frequencies
close to the power supply distribution frequency (50 Hz
or 60 Hz depending on the country). A reduction of the
environmental noise can be obtained by employing suit-
able shields, even though such a solution can be difficult
to apply in the field. Alternately, a notch filter can be em-
ployed, even though this impairs the instrument capabili-
ties near the notch frequency.

An example of the combined effect of these uncertainty
sources in a practical case is shown in Section V.

IV. BLOCK DIAGRAM OF THE PROPOSEDEIS SYSTEM

The block diagram of the EIS system and the structure of the
test cell are shown in Fig. 2, while a photograph of part of the
prototype is shown in Fig. 3. The EIS system is based on a cheap
digital signal processor (DSP) board by Texas Instrument. The
board, which is referred to as TMS320C30 DSK, is conceived
as a “starting kit” for teaching digital signal processors and con-
tains a floating point processor (TMS320C30 DSP), a parallel
port, which is used to connect the DSK to a PC, and an analog
interface circuit (AIC). The AIC is an integrated circuit, which
contains a programmable ADC and a digital to analog converter
(DAC). Both converters have a resolution of 14 bits and are de-
signed to work at a maximum speed of 20 kHz, even though
higher values can be employed although with higher uncertain-
ties.

The DSK is provided with an expansion bus which has been
used to connect a custom board to the DSP. Such a board con-
tains a 32KWord backed-up static RAM, two DAC’s, an LCD
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Fig. 2. Block diagram of the low-cost EIS system.

Fig. 3. Picture of the DSK and the RAM board.

display, the standard resistors, and some relays, which are used
for configuring the input stages and the standard resistor values.

The DAC contained in the AIC is used to generate the stim-
ulation sinusoidal voltage which is summed to the dc voltage
produced by the Cell Bias DAC. The use of an external DAC
for the bias generation allows the full AIC dynamic range to be
employed, thus reducing the signal noise to very low values.

A differential amplifier is used to get rid of the voltage drop
around the counter electrode, thus ensuring that the applied
voltage is precisely present at the reference electrode.

The current, which flows through the cell or through the stan-
dard resistor, is converted into a voltage by means of the tran-
simpedance amplifier and then sampled by the ADC. Such am-
plifier is designed to deliver transimpedances in the range of
105 V/A–1011 V/A in six steps and embeds a notch filter tuned
at 50 Hz. A set of standard resistors switched by means of relays
permits to perform the calibration of the amplifier gains.

The cell bias recovery DAC is used to get rid of the dc com-
ponents due to both the cell dc current and offset and bias of the
transimpedance amplifier. This allows the ac current component
to be amplified in order to use the complete AIC dynamic range.
Such an ac component is eventually sampled by means of the
AIC analog to digital converter.

The DSP performs the impedance measurement according to
a time-domain algorithm, which is described in the Appendix,
and drives the LCD to show a pass-fail result. All the computed
impedances are stored in the backed-up RAM and can be read
by a PC through a parallel port.

Measurements for frequencies in the range of 0.1 Hz–7 kHz
and for impedances in the range of 1 k
–1 G
 can be obtained.
The measurement of higher impedances is possible up to 10 G


although at reduced accuracy.
The test cell is composed of a plastic vessel which is filled

with an electrolytic solution. The vessel is closed at the top side
by a piston and at the bottom (sensitive) side by a porous mem-
brane; a rubber O-ring is used to provide the sealing between the
vessel and the memorial. A shielded electrode inserted into the
solution acts as the reference electrode; the working electrode is
the memorial surface while the counter electrode is positioned
in the top section of the vessel near the closing piston.

V. EXPERIMENTAL RESULTS

A. Preliminary Characterization

The preliminary EIS system characterization consists in the
estimation of the parasitic shunt impedance which is present in
the absence of devices connected to the input terminals. The
measurement has been carried out by connecting together the
counter and reference electrodes while leaving isolated the
working electrode. The expected impedance is well above the
values for which the EIS system is designed so that a large
instability is expected in the measurements. For this reason
several measurements have been averaged until stable traces
have been obtained. The impedance values have eventually
been used to determine the residual capacitance and shunt
resistance by means of a least square approach. A residual
equivalent capacitance of about 6 pF and a shunt resistance of
about 15 G
 have been obtained.

B. Simulated Cell

The performance of the EIS system has been tested by means
of known electric networks that have been employed in the
place of the three-electrode cell. Capacitors in the range of
330 pF–33 nF has been connected between the Reference(R)
and Working(W ) electrodes in order to simulate a good coating
and experimental tests have been performed in the frequency
range of about 0.1 Hz–7 kHz. Fig. 4 summarizes the instrument
performance for different frequencies and impedance values.
The uncertainty is generally confined within 4% for the module
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Fig. 4. Expected uncertainty performance of the EIS system.

Fig. 5. Summary of a series of measurement on a water-based coating.

and 1� for the phase and increases up to 13% and 4�, for high
impedance values and high frequencies.

Most of the uncertainty is a consequence of some small res-
onance effects, that are due to the very high employed gains.
Such effects could be corrected by means of a suitable model,
which is now under development.

C. An Example of Measurements with a Real Cell

The EIS system has been eventually used to measure the
properties of different coatings. Fig. 5 shows one of the results
obtained during a long measuring session on a water-based
coating, which absorbes the humidity and therefore has an
impedance which decreases as the time passes.

The figure shows a three-dimensional plot of the impedance
versus frequency and time. It is easy to observe the capacitive
nature of the coating and its degradation due to the absorbed so-
lution. The plot also shows that the degradation is reversible as a
drying process, applied after 5 h, restores the original impedance
values.

VI. CONCLUSION

An EIS system has been presented which can be used to mon-
itor the coating status of works of art and antiquities. The pro-
posed instrument is based on a commercial DSP board and has
a very limited cost in comparison to other commercial EIS sys-
tems. It is battery operated and thus completely portable, even
though an interface allows the measured data to be downloaded
into a conventional PC to perform more complex analyzes and

data display. It can measure impedances up to 1 G
 with an
uncertainty of about 4% maximum on the module and of about
1� on the phase. Such values can increase, depending on the
amount of electromagnetic noise, when the instrument is used
in the field, but the notch filter embedded into the instrument
allowed the authors to perform meaningful measurements in all
the tested conditions.

Most of the uncertainty is due to some systematic effects that
can be corrected by means of a model, which is under devel-
opment. If this systematic effects are removed, the uncertainty
decreases below 0.1% and 0.1� for impedances of up to some
megaohms.

APPENDIX

ALGORITHM

Amplitude and phase estimation of sinusoidal signals can be
obtained by expressing the acquired samples as:

Si = S0 +Ac cos(ki) + As sin(ki); k =
2�Ff

Fs

(4)

whereSi is thei-th sample of the signal,Ff is the signal fre-
quency andFs is the sampling frequency.

The equation contains four parameters(Ff ; Ac; As; S0), but
the frequency is known since it is generated by a digital to analog
converter, which shares the same clock of the sampling system.
In addition, the sincronous nature of the acquisition allows an
easy estimation of the offsetS0, which can be obtained as the
signal mean over an integral number of periods so that amplitude
parametersAc andAs can eventually be estimated as

As =
2

n
�

nX

i=1

sin(ik) � (Si � S0) (5)

Ac =
2

n
�

nX

i=1

cos(ik) � (Si � S0): (6)

This algorithm can be performed without storing the sam-
ples, provided that the DSP is able to perform all the calculation
within the sampling time, and allows a rough estimation of the
result correctness to be easily obtained as

kerk =

vuut
nX

i=1

(Si � S0)2 �A2
s � A2

c

vuut
nX

i=1

(Si � S0)2

: (7)
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