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Nomenclature

D = Journal diameter n = Eccentricity ratio δ = Radial clearance
L = Journal length ṅ = Squeeze speed ε = Eccentricity
W = Load z = Axial co–ordinate µ = Dynamic viscosity

h = Fluid film thickness β̇ = Whirl speed ω = Angular speed
()0 = Stationary configuration

1 Introduction

It is well known that rotors supported by lubricated bearings can undergo instability due, in
most cases, to the forces exerted by the fluid. Stability is generally analyzed using two different
approaches. One approach consists of numerical integration of motion equations so that the rotor
behavior can be analyzed as a function of time, while the other approach is characterized by the
linearization of the fluid forces acting on the bearings in the neighborhood of a well determined
stationary equilibrium position so that asymptotic stability conditions can be determined. In the
latter case it is necessary to know the analytical expressions of the stiffness and damping coefficients
to linearize the hydrodynamic forces.

It is evident that the first approach can provide more information to study the rotor dynamic
behavior, e.g. the possibility to compute minimum fluid film thickness; moreover, this method is
not affected by the consequences of linearization. However, it is worth noting that the resulting
numerical code can be complex. It is well known the argument arisen between Trumpler and
Poritsky [1] about the linearization necessary to determine the dynamic coefficients. However
the authors agree with Poritsky when he says that “while the effect of nonlinearity of the oil–
film forces may limit the whirl amplitude to a finite value, ( ..) nonlinearity by itself can never
restore complete stability in a range where the linear theory indicates instability” [1]. Therefore, if
determination of the system’s stability is the only goal, it is undoubtedly more convenient to use
dynamic coefficients.

The analytical expressions of dynamic coefficients can be determined from Ocvirk’s theory,
(short bearing), or from Sommerfeld’s solution (infinitely long bearing) or from Warner’s solution
(finite bearing), consisting of Sommerfeld’s solution corrected through a suitable “end leakage
function”.

In the literature it is possible to find the expressions for the dynamic coefficients for Ocvirk’s
solution [2] and for Sommerfeld’s solution [3], but, to the authors’ knowledge, expressions of the
dynamic coefficients for Warner’s solution have never been published. This fact is probably due to
the tedious nature of the analysis more than to numerical difficulties. Hence, the aim of the present
work is to determine, in a stationary reference frame, the analytical expressions of the dynamic
coefficients according to Warner’s theory, giving a further tool for stability analysis.

2 Warner’s model

Warner’s model [4] is based on the hypothesis that the oil pressure inside the bearing can be written
as

p(ϑ, z) = p∞(ϑ)

[
1 − cosh

(
2z

L
A

)
/cosh (A)

]
(1)

where A = λL/D, z is the axial co–ordinate with the origin located at the middle of the bearing
and

λ2 =

∫ ϑ2
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h3

(
dp∞
dϑ

)2

dϑ/

∫ ϑ2

ϑ1

h3p2
∞ dϑ. (2)

The angular displacements ϑ1 and ϑ2 identify the bearing arc where pressure is positive and
can be determined by solving the system
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In eq.(2), p∞(ϑ) represents the pressure corresponding to an infinitely long bearing, given by

p∞ − p(0) = 6µ
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) n sinϑ
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2 (4)

The radial and tangential components of the oil force ~W acting on the journal are:
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− ṅI
ϑ2

]
F (λ) (6)
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The forces components given in Eqs. (5) and (6), in a stationary reference system (x, y), assume
the following expressions:

Wx = Wr cos γ −Wϑ sin γ and Wy = Wr sin γ +Wϑ cos γ (9)

It is then possible to compute the stiffness and damping dynamic coefficients, Kij and Cij

respectively, in any given equilibrium configuration. It is worth noting that the parameter λ is a
function of n, ṅ and β̇; here we give expressions of λ and of its partial derivatives.
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In order to simplify the coefficient expressions, let us define:

G2 =
G1

λ2

[
A

cosh2 (A)
− tanh (A)

]
and G4 =

G3

λ2

[
A

cosh2 (A)
− tanh (A)

]
(13)

K̄ij = Kij
4

µDω

(
δ

L

)3

and C̄ij = Cij
4

µD

(
δ

L

)3

(14)

3



Finally, the following expressions hold for the dynamic coefficients:
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