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It has been shown that an extension of the elasticity theory to more than three dimensions enables one to describe
the space-time as a properly stressed medium, even recovering the Minkowski metric in the case of uniaxial stress. A
Iundamental equation for the metric in the theory is shown to be the equilibrium equation for the medium. Examples
of spherical and cylindrical symmetries in four dimensions are considered, indicating convergencies and divergencies
with classical general relativity. Finally, a possible meaning of the dynamics of four-dimensional elastic medium is
discussed.

1. Introduction

The tensor theory of elasticity in three dimensions has
some apparent similarities with classical generaI rel-
ativity. The question I have addressed in this paper
is. whether or not this formaI analogy may correspond
to something more profound than a mere use of sym-
metri c tensors in both cases. In fact. many authors
have tried and introduced elasticity into general rela-
tivity, casting the general equations into a relativistic
form [1-6]. This was usually made for "practical" pur-
poses, in order to describe the dynarnic behaviour of
astrophysical bodies in relativistic conditions, the in-
teraction of gravitational waves with bar antennas, the
propagation of shock waves in viscoelastic media and
the like.

Here the approach is different, because the space-
time itself will be looked at as an elastic medium. Some
hint in that direction can be found in the literature, for
instance, in [7] where Gerlach and Scott introduce a
sort of "elasticity of the metric" , though in connection
with the presence of matter.

The guiding idea of this paper is as follows: suppose
the space-time is a four dimensional elastic medium.
The latter, when unstrained, is perfectly homogeneous
and isotropic. The fundamental symmetry around any
point inside it is GL(4,R). Apply now some stress-
es to the medium: the symmetry will be broken and
reduced. In particular, if the applied stress is one-
dimensional, the consequence is that one particular di-
rection is specialized: could this be time? Otherwise
stated: is it possible that a uniaxial stress reduces the
GL(4, R) symmetry to SO(3, l)?

This approach, as we shall see, is indeed viable at

l e-mail: tartaglia@itopoli.bitnet

a first level but leads (I would say 'of course') to final
equilibrium equations which are different from those
of generaI relativity. First of all, the linear theory of
elasticity in any number of dimensions leads inevitably
to linear equations. The description of space-time that
comes out as a result is "static", i.e., perfectly deter-
ministic. Any dynamics of a four-dimensional medium
needs a fifth evolution parameter and the evolution it-
self would bring about certain modifications both in
the past and the future of a given evento

In what follows l shall review the theory of elas-
ticity and show how it can be brought to describe a
reasonable space-time.

2. Instant review of elasticity theory

2.1. Str ain

Suppose you have an n-dimensional elastic medium.
In the absence of any strain the geometry inside it is
Euclidean (or at least, assume it is). The squared dis-
tance between two nearby points is

(1)

where fJ.lv is the metric tensor of the unstrained medi-
um.

Introduce now an infinitesimal strain. Any point
will be, in general, displaced by a small vector tU.
varying from place to place. As a consequence the new
squared distance between two points will be

The quantities x stilI refer to the unperturbed back-
ground and the tU, as well as e , are functions of the
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xa. In an explicit form one has:

OEa{3 == Eaf3,I"WI",

owa = w~dxl"

where commas denote par-tial derivati ves.
Now Eq. (2) may be written in the form

dl
2 = dx

a
dxf3(Eaf3 + Ea!JWfl + EI"{3W;a

+ I" v+ 1"+ v I"El"vW,aW,f3 Ea{3,I"W Eal",vW w,{3

+ VI"+ ÀI"V)EI"f3,vW w,a El"v,ÀW w,aw,{3 .

Usually a part of the content of the brackets in
(4) is identified with the strain tensor uI"V, which is
manifestly symmetric.

Now (4) becomes

dl2 = (fa8 + u(8)dxadxf3. (5)

The almost obvious identification

leads to

dl2 = gl"vdxl"dxv.

The symmetric tensor gl"v is now the metri, tensor of
the strained medium.

Ali this, as said, has been written using the unper-
turbed Euclidean coordinates. It is more natural to
have recourse to internaI or intrinsic coordinates (those
attached to the medium); these (let us cali them f,IL

will in generaI be functions of x!". The geornetr ic na-
ture of the objects used in the theory is such that it is
possible to recast everything in terms of E,I' by stan-
dard coordinate transformations for tensors. In prac-
tice we can simply rewrite forrnulas from (5) to (7) as
if the xl" were f,I" and nothing changes, consequently,
we shall continue to use XIL in the new meaning [8J.
By t/w way. in the base situation (unstrained medium)
x!' anel f,I" coincide.

2.2. Stress

In the classical theory of elasticity, a stress ten-
sor , whose element (Jaf3 has the meaning of the (Y-

component of the force per unit surface acting on a
surface e/ement orthogonal to the 8-direction, is in-
troduced. Assuming the range of stresses to be zero
(propagation only by surface interaction), (JI"V is sym-
metrico The next step is to link stresses and strains.
This can be done by the so-called Hooke's law, which
is indeed a linearization stating the proportionality be-
tween stresses and strains. The theory may be found
in any textbook on elasticity, such as, for instance,
[9J. Hooke's law in n dimensions is expressed by the
equivalent formulas

(
2j.l) vÀ

(Ja{3 = K - ~ Eaf3( UÀv + 2j.lua{3,

ua{3 = C)K - 2~n) Ea{3E
vÀ

(JvÀ + 2~(Jaf3 (8)

(3)

(4)

(6)

(7)

where K is the uniform compression modulus and j.l is
the shear modulus. Reasonable restrictions upon the
values of K and j.l are

"u » O. (9)K > O,

In generaI, in a linearized theory of elasticity in any
dimensions two independent parameters are sufficient
for describing the properties of the rnediurn. The pa-
rameters used may be variously combined to produce
others such as the first Lamé coefficient À (the second
is j.l), the Young modulus E and the Poisson coeffi-
cient (J.

3. Equilibrium conditions

In our homogeneous stressed medium an equilibrium
is attained when the following equation holds:

(Ja{3,f3 + fa = O ( lO)

Now fa represents the o -component of any force per
unit volume; due to the linearity of Hooke's law, indices
are raised and lowereel using f I"V .

Combining Eqs (8), (lO) ancl (6). one directly ob-
tains:

[(K - 2IL/n)((vÀgÀv - n) - 21L] f('<fU}

+ (!{ - 2JL/n)fa!3(fI"V gJ.lV ),v + 2/Iga!3,t3 = - t.: (Il)

In Cartesian coordinates (with the Eucliclean back-
ground geometry), (11) is simplified to

(12)

Eqs.(ll) or (l2) are n equations for n(11. + 1)/2
unknowns, consequently, the problem is underdeter-
minecl. Suitable boundary conclitions are neecled.

4. Uniaxial stress

Let us now suppose that in our homogeneous 11.-
climensional meclium a uniform stress is applied along
an arbitrary direction and cali the corresponding axis
the T axis. The stress tensor (as referrecl to a Carte-
sian coordinates system) is in our conditions

(Joo p,

o: :f- 8,O,
2:. (13)

The index ~umber O corresponds to T, Latin indices
run from l to n-l; 2: and pare constants; p > O
means traction and p < O means compression.

Looking at Eq. (12), we see that any s" = const
is a solution of the equilibriurn equation. To actually
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solve the problem, we have to directly deduce gJ.'lI from
(6) and Hooke's law (8):

.!.[(_1+n-l)p+(n_l)(_l -~).E],
n nI< 2/l «« 2fl
O, a =f 13,

l [(/ 1 1 ) (n-l 1)]- - - - p + - + - .E. (14)
n «« 2fl «« 2fl

Uoo

Ui;

Now applying (6), we see that gllll = "'Ill/' where
"'Ill/ is the Minkowski metri c tensor, whenever

P
.E

[(n - 1)/n](2fl- nI<),

-[2fl + nI«n - l)]n .

In four dimensions that is:

P
.E

!(Il - 2I<),

-~(fl + 6I<).

In view of the conditions (9), it comes out that
.E< O in any case, which means transverse compres-
sion. This is consistent with what we know from three-
dimensional elasticity if p > O, i.e., if there is traction
along the r axis. The parameter p is actually positive
when

Il> 21\..

The Minkowski space-tirne looks like a four-di-
mensional medium with suitable elastic properties
stretched along the time axis, Before the stress is
applied, there is no difference among various coordi-
nates, so there is no "time"; once there is a stress, one
of the coordinates, measured along any axis within the
light cone about r , becomes no longer interchangeable
with the others: this, from the intrinsic viewpoint, is
tirne.

5. Spatially flat expanding umverse

Another case of interest is that of an open expanding
universe. The corresponding conformally flat metric,
in Cartesian coordinates, may be written as

Introducing the metric (18) into (12), it is easily
verified that a nontrivial solution is found for a( r) if

fa = F = consto

The solution 1S

F
a

2 (T) = 2I< _ 3fl r + consto

and is consistent with the existence of a uniform vol-
ume field orthogonal to any space section of the four-
dimensional elastic medium,

(15)

(16)

( 17)

( 18)

(19)

After time rescaling according to

a(T)dr=dt,

the line element acquires the synchronous form

(20)

with

(21)

As can be seen, the time dependence of the space
scale factor is the same as that for a matter-dominated
Friedmann universe [l.O].

The solution we have found corresponds to a spher-
ically symmetric situation in four dimensions. There
is one center of symmetry (the big bang) and any ra-
diai axis may be used as a tirne axis. Unlike that,
a more generaI positive or negative space curvature
Robertson- Walker metric does not comply with this
symmetry and is not a solution to Eq. (11).

6. Rotation symmetry about an aXIS

This is a typical situation whirh in generaI relativity
leads, in the stati c case, to thc Schwarzschilel solurion.
A generaI form for a metric with this syrnmetry is

(

J(~ T)

g= O
O

(2:!)

The cylindrical coordinates T, T, fJ, 'P bave been used.
The correspondiug expression for the e is

o
1
O
O

(23)

Inserting (22) anel (2:3) into (11) leads to a pair of in-
dependent equations:

.. .
(I< - 2Il)(f - h) + 2flf

(I< - 2fl)(J' - h') - 2flf'

-fo.
-fr. (24)

Dots stand for partial elerivatives with respect to r and
primes for partial derivatives with respect to r.

The static case (r-independence of f and h) re-
quires fo = O, whereas nontrivial solutions exist only
if t- =f O. To actually solve the problem, it is neces-
sary to impose the distribution of strains or stresses
on a suitable surface, remembering also that f and h
should be positive.

One can arrive at the same results starting from
the solution for the uniaxial stress case and allowing p
and .E to depend on T and r.
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7. Discussion

It has been shown that solutions of the equilibrium
conditions inside a four-dimensional elastic medium
stressed in any way may provide reasonable forms for
space-time metric under various symmetry conditions.
There are, however , some problems; one ofthem is that
of the signature.

Treating the case of a uniaxial stress, we saw that
it is possible to recover the Minkowski metrico In four
dimensions (14) and (16) lead to the strain tensor com-
ponents

Uoo = 0, Uii = -2.

However , we know that the strain tensor is defined
starting from a strain vector fleld according to (4). In
the case of uniaxial symmetry the explicit form of the
strain tensor in the background Euclidean coordinates
1S

UIJ.V= wIJ.,V + WV,IJ.+ w~ w""v·

Substituting (25) into (26) and solving for the io" , one
obtains:

'u'o = const - 27, wr = (-l =Fi)r.

Thus, while the strain tensor is real, the strain vec-
tor field is complex: this is the price to be paid for the
Minkowski signature.

Another important point to remind is that the theo-
ry, due to Hooke's law, is linear. This implies that only
weak field regions may be described in this way. It is
possible to obtain a better approximation for stronger
fields considering nonlinear elasticity. The starting
point is the development of the Helmholz free ener-
gy F of the medium in powers of the strains, where
Hooke's law comes from. The next approximation after
the linear one is

À 2 1/ 3F = F', + - (ua) + jJU u/lO! + -( ua)o 2 a a IJ. ;3 . '"

+
avlJ.+ {31J."'+

~UaUIJ.Uv PUaU{3UIJ. ...

Three new parameters (1/, it , p) have been intro-
duced to characterize the behaviour of the medium.
lt is now no longer allowed to raise and lower indices
using simply the f 's; instead, gl'v must be used after
developing them to the first order in ur . Everything
is rnuch more complicated but it may be managed.

Finally we may remark that our treatment of an
equilibrium condition corresponds to a perfectly stat-
ic situation, i.e., to an entirely deterrninistic universe
where the histories coincide with the flux lines of the
strain vector field. However, any elastic medium has
not only statics but also dynamics: it may vibrate and
has characteristic internaI frequencies. If we consider a
four-dimensional elastic medium, vibrations evidently
have a meaning only with respect to some appropri-
ate evolution parameter, let us cali it T: something

(25)

(26)

(27)

(28)

like the good old Newtonian time. Four-dimensional
observers have of course no means to measure T:
their clocks actually measure what we called 7 (or t),
though now 7, as welI as the other space coordinates,
parametricalIy depends on T. An influence of the vi-
brations in four plus one dimensions may, however, be
seen from inside the four-dimensional world.

Suppose, for instance, that the medium contains a
couple of points held fixed, whereas the rest undergoes
elastic vibrations. Any strain flux line (or history) go-
ing from one point to the other is continuously modified
by the vibrations in T. An internaI observer, unable
to perceive T, will notice that there are many nearby
histories, and what in four plus one elimensions is a
T evolution for him may welI be transformed into dif-
ferent probabilities to be att.ached to various histories.
If the four-dimensional observer wants to forecast the
future, he will be led to an average over histories. A
remarkable feature is the fact that for a given vibrating
point both the future and the past (in 7 or t) vary in
T.

I think that this viewpoint may provicle a new ap-
proach to quantum mechanics anel in aoy case is worth
further investigation.
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