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An Approach to Harmonic Load– and Source–Pull
Measurements for High-Efficiency PA Design

Paolo Colantonio, Franco Giannini, Ernesto Limiti, Member, IEEE, and Valeria Teppati, Student Member, IEEE

Abstract—High-efficiency power-amplifier design requires
numerous efforts to investigate both input and output harmonic
terminations effects. A simplified theoretical approach to clarify
the relevance of such terminations is presented here, and design
criteria to improve efficiency for high-frequency applications
are briefly discussed. An advanced active load/source–pull
test-bench has been used to validate theoretical harmonic tuning
techniques, characterizing an active device. The adopted opti-
mization strategy is presented, together with measured results
obtained with a medium-power 1-mm MESFET at 1 GHz. Input
second harmonic impedances effects are stressed, showing a drain
efficiency spread between 37%–49% for a fixed input power level,
corresponding to 1-dB compression. Finally, as predicted by the
presented theory, after input second harmonic tuning, further
improvements are obtained, increasing fundamental output
load resistive part, demonstrating an additional drain efficiency
enhancement, which reaches a level of 55% at 1-dB compression.

Index Terms—Harmonic tuning, high efficiency, load–pull,
power amplifiers (PAs).

I. INTRODUCTION

WIRELESS network operators main requests are opera-
tional costs reduction and, at the same time, system ca-

pabilities increase. In particular, deployment of smaller base sta-
tions, featured by higher flexibility, efficiency and lower cost,
becomes one of the system suppliers main goals.

In this scenario, power amplifiers (PAs) play a key role, be-
coming crucial elements of transmitter units in many microwave
systems, including handy phone applications, satellite payloads,
microwave transponders, and many others.

Usual PA design approaches seek high power efficiency cou-
pled with suitable gain and output power levels. The former is
required to improve battery lifetime and to ease thermal man-
agement, thus reducing operating cost, while the latter speci-
fications are needed to reduce the number of amplifier stages
together with unit size and weight, thus decreasing manufac-
turing costs. Such requirements are contrasting ones, therefore,
demanding a design compromise on achievable performances.

Several design strategies have been proposed up to now.
In particular, for narrow-band applications, harmonic tuning
strategies have been addressed and successfully applied at
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microwave frequencies [1]–[5], resulting in significant im-
provement in both output power and conversion efficiency.

For PA design, nonlinear techniques are required, due to
the intrinsic active device nonlinear behavior; two different
approaches are available: one is based on large-signal simula-
tions, the other on measurements and experimental results. In
the former case, a full nonlinear model for the active device is
needed, joined with nonlinear analysis algorithms. The major
drawback of this design approach is related to the use of an
appropriate and accurate nonlinear model [6], [7].

The experimental approach is mainly based on
load/source–pull techniques, in which the actual active
device is fully characterized in terms of output power, matching
impedances, efficiency, and any other required performance,
by means of exhaustive and intensive measurement activity
[8]–[11]. As a matter of fact, the experimental approach repre-
sents a direct solution since the actual device is characterized
in real time (no models are required) and design quantities
are readily available. Obvious disadvantages of this approach
are related to test-bench equipment cost and to actual device
availability in the appropriate testing form.

In both cases, however, if harmonic tuning approaches need
to be exploited, some considerations must be applied to reduce
design efforts and to avoid misleading results, with the help of
some theoretical guidelines proposed in the past, by means of a
simplified analysis [12].

The goal of this paper is to present the combination of an
advanced harmonic load–pull test bench with harmonic tuning
guidelines, thus forming an accurate and effective tool for PA
design. Moreover, although the design procedure that will be
presented is focused on an experimental approach, it also pro-
vides useful indications for approaches based on nonlinear sim-
ulation, avoiding time-consuming nonlinear optimization algo-
rithms, which may lead to local minima and whose goals could
be difficult to identify and define.

In Section II, the measurement setup and calibration are de-
scribed, while in Section III, the theory of harmonic tuned PA
design is focused. Section IV presents the experimental valida-
tion and, finally, in Section V, some conclusions are drawn.

II. NONLINEAR TEST BENCH

The measurement test set, already proposed in [11], combines
-parameter capability, real-time load- and source–pull (single

tone or harmonic) with time-domain waveform measurements
[13]–[15] and has been extended to intermodulation (IM) mea-
surements.

Any linear vector network analyzer (VNA) with at least two
samplers (or mixers) can be used as linear receiver, while a mi-
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Fig. 1. Simplified scheme of the load/source–pull and IM setup, with waveform measurement capabilities.

crowave transition analyzer (MTA) is used as a nonlinear re-
ceiver, measuring the phase relationships between harmonics
of the signals at the device-under-test (DUT) ports. The setup
is completed with two independently controlled active loops
(more loops could be added). The loops can be set at the input
or output of the device, and tuned both for single tone and har-
monic measurements. A simplified scheme of the test bench is
shown in Fig. 1.

The linear and nonlinear receivers are simply combined by
means of two power splitters. In other words, the two receivers
work in parallel on the same DUT. The information achiev-
able with this system are, therefore: 1) input and output re-
flection coefficients, at fundamental and harmonics; 2) source
reflection coefficient (“port 1–port 2 source switch” allows an
RF switching technique [8]), at fundamental and harmonics; 3)
input and output power, at fundamental and harmonics; 4) input
and output time-domain waveforms; 5) power-added efficiency;
and 6) IM products.

This is a more effective (but also more expensive) technique
if compared to other similar systems [10], where only an MTA
is used as a receiver: the flexibility, accuracy, and speed of a
real-time load–pull and -parameter test set is combined with
the additional waveform information provided by the MTA. In-
deed, after the calibration phase, the slower MTA measurements
are performed only if and when needed. The quantities of in-
terest and performances are measured with higher speed and ac-
curacy with the VNA. Moreover, the simultaneous presence of
the two receivers allows simple verification capabilities of both
time/frequency-domain measurements.

The general calibration procedure, not described in detail be-
fore, is an extension of the on-wafer techniques described in
[16] and [17] and improved for the coaxial MTA-based system
in [10]. During calibration, the “port1–port2 source switch” is
connected, as in Fig. 1, in cascade to “power splitter 1,” but

its ways are connected at the input and output of the DUT, ex-
cluding the two bias Ts. Thus, -parameter calibration of the
system is performed by inserting the proper standards at “port
1” and “port 2” [with any two-port technique, e.g., thru-relect
line (TRL), line-reflect match (LRM)].

Let us call [18] and
the raw measurements at the th

frequency obtained, respectively, with the VNA and MTA.
We write the error boxes for VNA and MTA measurements

(1)

(2)

(3)

where and .
After the two calibration procedures with the VNA and MTA,

the coefficients of and the quantities

(4)

are known.
In order to compute power waves at the DUT reference plane,

the magnitudes and phases of each must be calculated.
To obtain the magnitudes, we follow the procedure for

on-wafer power level calibration described in [16], exploiting
coaxial port (“port 3”). This auxiliary port is connected to a
power meter and to three coaxial standards.

The phases of now need to be determined.
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Let us define the scattering matrix of the network linking
ports 2 and 3 as

(5)

After one-port and power calibration at port 3 (with a VNA),
performed with a generic device (e.g., a thru) connected be-
tween ports 1 and 2, the quantities and are
known.

Since the connection between ports 2 and 3 is realized with
directional couplers and cables, we can write . The
phase indetermination is solved on the basis of a linear group-
delay approximation . Now the matrix of the network
connecting ports 2 and 3 is completely characterized.

The phase information at the MTA “test” port must be trans-
ferred to the VNA and MTA error boxes. This is achieved per-
forming an additional direct connection of the MTA “test” port
to port 3, while a thru device is connected between ports 1 and
2, and measuring with both the MTA and VNA. In this situation,

(6)

where is the reflection coefficient of the MTA “test” port
and is the MTA measurement.

The reflection coefficient is computed from the cor-
rected VNA measurement when the MTA is connected at port 3
from the following:

(7)

Now, from the VNA raw measurements performed when the
MTA is connected at port 3,

(8)

Combining (6) and (8), we obtain an expression for .
The MTA error coefficients phases are then computed

by calculating the quantity in the following two ways:

• with the new VNA error coefficients;
• with the MTA error coefficients

when a 50- load is connected at port 3.
To translate this to formulas, we combine the following two

equations, coming from the measurements with the MTA and
VNA with and , respectively:

(9)

Finally, since is known,
are now also fully known.

In conclusion, let us resume the absolute phase and power
calibration of the proposed VNA–MTA setup. The calibration
algorithm goes through the following steps.

Step 1) Two-port calibration (e.g., LRM, TRL, etc.) at ports
1 and 2 with the VNA (“sampler 1–2”).

Step 2) Two-port calibration at ports 1 and 2 with the MTA.
Step 3) Power calibration exploiting port 3 (three standards

plus power meter) for the MTA and VNA.
Step 4) Phase calibration exploiting port 3 (direct connec-

tion to the MTA) computing the following:
• ;
• ;
• when the MTA is connected at port 3;
• phase-corrected VNA error coefficients;
• from the new VNA coefficients when 50

is connected at port 3;
• from MTA coefficients when 50 is con-

nected at port 3;
• phase-corrected MTA error coefficients.

The operating procedure, i.e., standard connection sequence,
corresponding to this algorithm is anyway rather simple and fast
as follows:

• standard connections (any two-port calibration can be ap-
plied) at ports 1 and 2, if possible ending the sequence with
a thru device;

• thru between ports 1 and 2, with port 3 connected to:
1) three coaxial standards; 2) a power meter; and 3) the
MTA.

III. HARMONIC TUNING APPROACH

Starting from simple power balance considerations, the drain
efficiency of a PA can be expressed as [12]

(10)

where

(11)

is the dissipated power on the active device, with and
being the drain voltage and current waveforms, and

(12)

the active power delivered from the device to the output
matching network at fundamental and harmonic
frequencies . and are the voltage
and current amplitude harmonic components and are their
phase shift, i.e., the phase of the output harmonic terminations

(13)
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Fig. 2. Simplified active device output model.

TABLE I
HARMONIC TUNED PA DESIGN PARAMETERS FOR (16)

From (10), it follows that maximum drain efficiency is
achieved if one of the following conditions is fulfilled:

fundamental output power

is maximized or (14a)

the sum of and for

i.e., is minimized. (14b)

All the harmonic tuning PA design approaches are recognized
to follow one of the above conditions. Moreover, the relevance
of both the input and output harmonic impedances has been ev-
idenced. In particular, for the output intrinsic harmonic imped-
ances, closed-form expressions are inferred under particular op-
erating conditions, i.e., ideal cases (class F [19], [20] and class
E [21], [22]) or assuming short-circuit impedances at highest
harmonic frequencies [12].

In the last cases, assuming a MESFET device with a simpli-
fied output model, as depicted in Fig. 2, the voltage-controlled
current source is described by

(15)

and the intrinsic drain impedances must be purely re-
sistive , and their values are expressed by

(16)

where is the optimum fundamental load resistor for a tuned
load (TL) approach [23], and and are optimum
design values, which are summarized in Table I.

From (16), harmonic tuning approaches can be exploited only
if positive values for are obtained. This implies that
current harmonic components and have to be in a proper
phase relationships with respect to .

Such phase relationships can be controlled in two ways:
choosing a proper input driving waveform or exploiting input
nonlinearity phenomena. Usually the former solution is less

practical than the latter. Unfortunately, no closed-form expres-
sions can be easily derived for input harmonic impedances, thus
only qualitative considerations can be theoretically performed
[12].

In more general cases, however, useful statements can be in-
ferred from (14) and results arising from (16); in particular, if
a harmonic tuning strategy is adopted, then the fundamental
output load resistive part has to be increased with respect to the
value obtained without harmonic manipulation.

In Section IV, an experimental validation of theoretical con-
siderations on harmonic manipulation PA design criteria will be
provided, stressing both the input impedance at relevance
and the further benefit arising from the output fundamental load
resistive part increase after the input tuning.

IV. EXPERIMENTAL VALIDATION

The device used is a medium-power MESFET (10 100 m)
by Alenia Marconi Systems (AMS), Rome, Italy, which has
been separately modeled by a full nonlinear model employing
neural-network concepts [24]. The device knee voltage is

V and its maximum intrinsic drain current is
mA. A drain-bias voltage of 5 V has been selected, while the
gate-bias voltage has been chosen at 2 V, corresponding to
an intrinsic dc drain current mA. In the experiment,

GHz has been chosen as the fundamental frequency.
To perform a multiharmonic load–pull, the test set depicted

in Fig. 1 has been adopted, in which one active loop should be
added to control each harmonic termination.

To reduce test-bench cost and complexity, only two active
loops ( and ) have been adopted, respectively, for
the input and output loads, thus controlling a single harmonic
impedance at a time. In particular, has been used to
control the fundamental output impedance, thus performing tra-
ditional load–pull; conversely, has been used to perform
source–pull at the second harmonic.

The remaining harmonic impedances were not tuned, but
have been measured up to 5 GHz, resulting in almost matched
terminations (i.e., 50 ). The actual input and output

active device terminations are then

tuned for
(17)

tuned for
(18)

The proposed measurement procedure can be summarized in
the following steps.

Step 1) Perform a load–pull on to find the optimum load
at the output port.

Step 2) Perform a source–pull on to analyze the ef-
fects of the load at the input port at the second har-
monic.

Step 3) Perform a load–pull on again to demonstrate
that further increases on device performances can be
obtained.

If the load–pull test set has harmonic tuning capabilities, only
the first two steps are usually performed, thus neglecting the
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Fig. 3. Measured (filled) and simulated (unfilled) fundamental output load.

Fig. 4. Single-tone measured performances (dotted lines) compared with
simulation results (solid lines) at 1 GHz.

benefits arising from the third one, as will be shown in the fol-
lowing.

A. Load–Pull on

The first step is a traditional load–pull on output termina-
tion at fundamental frequency to obtain the optimum load .
To further reduce time effort, a starting point for is esti-
mated by means of simplified considerations inferred through
a linearized active device model [23], [25]. After that, on the
test bench, values are tuned, changing the attenuation and
phase shift of the fundamental output active loop , thus
mapping the Smith chart around the starting point until an op-
timum is obtained. In this experiment, the optimum output load
value has been determined and a com-
parison between simulated and measured optimum fundamental
output load is reported in Fig. 3.

Output power at fundamental frequency, drain efficiency,
and gain measurements and simulations are depicted in Fig. 4
versus available input power , while drain current and
voltage waveforms (at 1-dB compression) measurements and
simulations are plotted in Fig. 5. The nonlinear simulation, both

Fig. 5. Measured (solid lines) versus simulated (dotted lines) time-domain
waveforms for voltage and current at 1-dB compression.

Fig. 6. Simulated intrinsic load curve.

for time-domain and single-tone measurements, were achieved
with a commercial computer-aided design (CAD) tool, using a
homemade nonlinear model, and they are in good agreement
with measurements.

Moreover, from simulation results, it is possible to note
(Fig. 6) that the load curve at the intrinsic device terminals is
very narrow, showing that the output intrinsic value must be
purely resistive [23].

B. Source–Pull on

The second step of the procedure is a source–pull, in order
to investigate the effects of the input second harmonic termi-
nation [12]. For this purpose, a fixed input drive level
has been assumed, corresponding to 1-dB output compression
( dBm in the experiment), and all the possible (pas-
sive) values for have been investigated, leaving funda-
mental termination at the value of the prior step.

Measured contour plot of drain efficiency as a function of
is shown in Fig. 7.

The efficiency clearly exhibits maximum and minimum
points, in the following, referred to as case 1 and case 2. Output
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Fig. 7. Measured contour plot of drain efficiency versus Z .

Fig. 8. Measured output power and efficiency for case 1 and case 2.

power and efficiency measurements obtained in both cases are
shown in Fig. 8 as a function of available input power, while the
corresponding measured output voltage and current waveforms
(at 1-dB compression) are reported in Fig. 9.

From this figure, different second harmonic components, due
to different input harmonic generation, can be noted. In partic-
ular, in case 1, voltage and current waveforms are flattened, re-
sulting in lower dissipation on the device, even if the power de-
livered at the second harmonic is higher than in case 2.

Simulated values of (11) and (12) are
reported in Fig. 10. The active power delivered to the output load
at harmonic frequencies is higher in case 1 compared to case 2.
However, the power dissipated in the active device is lower and
the total

(19)

is minimized according to (14b).

Fig. 9. Output voltage and current waveforms corresponding to case 1 and
case 2.

Fig. 10. (a) Dissipated power and power delivered at harmonic frequencies.
(b) Total power loss (19) simulated as a function of available input power.

C. Load–Pull on Again

To show that further improvements can be obtained in-
creasing the fundamental output load resistive part, according
to (16) [12], a load–pull has been again performed, leaving
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Fig. 11. Initial (Z ) and final (Z ) optimum output load at fundamental.

Fig. 12. Efficiency performances measured during the three-step experiment.

second harmonic source termination unchanged from the
previous case. The final optimum output load (namely, )
is shown in Fig. 11. The new output fundamental load has
moved on a constant susceptance curve,
while its resistance value is increased. This is in agreement
with the assumption that the active device output behavior can
be modeled with a current source with a parallel capacitor

, as depicted in Fig. 2.
The obtained drain efficiency, compared with the previous

cases, is shown in Fig. 12, while the drain efficiencies measured
at a fixed input available power dBm are summa-
rized in Table II.

The efficiency level at 1-dB compression exhibits an increase
from 49% (obtained at step 2) to 55%, i.e., a relative increase
with respect to the initial efficiency value (46%) of approxi-
mately 13%.

Finally, the (tone spacing kHz) performances
obtained during the three steps of the experiment are reported
and compared in Fig. 13. From the obtained results, it can be
noted that also affects the device IM distortion. This result

TABLE II
DRAIN EFFICIENCY MEASURED FOR A FIXED INPUT AVAILABLE

POWER P ' 11:5 dBm

Fig. 13. Intermodulation performances measured during the three-step
experiment.

was already demonstrated to be a typical effect of the harmonic
manipulation procedure [3]. Moreover, the improvement on the

, related to second harmonic input termination, was stressed
in [26]. Under small-signal excitation, case 2 is the worst con-
dition, due to the highest levels. On the other hand, under
large-signal excitation, the final case exhibits a higher value
due to the highest output resistive load. In fact, in this case, de-
vice physical limitations and, in particular, ohmic region, are
reached for lower output power levels.

V. CONCLUSION

A simplified theoretical approach to clarify the relevance
of active device harmonic terminations, both at the input
and output ports, has been presented, suggesting design
criteria to improve efficiency for high-frequency PAs. To
validate theoretical considerations and to provide a suitable
measurement optimization procedure, an advanced harmonic
load/source–pull bench and its calibration procedure have been
presented. The proposed measurement bench has been used to
investigate the effects of second harmonic (2 GHz) input and
fundamental (1 GHz) output terminations on a 1-mm power
MESFET device. In particular, a drain efficiency spread be-
tween 37%–49% for a fixed input power level, corresponding to
a 1-dB compression point, has been experimentally observed,
varying second harmonic input termination. Further improve-
ments have been obtained by increasing the fundamental output
load resistive part after input second harmonic tuning, thus
reaching a drain efficiency value of 55% at 1-dB compression.
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