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This paper introduces a novel construction of wavelets on the unit interval. With this
construction explicit upper bounds for the length of the modified border wavelets filters
can be given. This insures a good localization of the border wavelets when a triangular
biorthogonalization scheme is employed. The resulting wavelet bases are then well suited
for the adaptive solution of partial differential equations.

1. Introduction

Wavelets provide very efficient multilevel decompositions of signals, functions, and
operators. Properly designed algorithms may lead to solution schemes for PDE’s
characterized by a reduced computational complexity with respect to more stan-
dard discretizations at no loss of accuracy. Among the various applications in this
field we recall multilevel preconditioning, compression of discretization matrices and
adaptivity (see Refs. 11, 6, 9, and references therein).

One of the key properties of wavelets is translation invariance. This leads to
the construction of multilevel decompositions naturally defined on the full real line,
or on bounded domains with periodic boundary conditions. However, most of the
applications require the solution of PDE’s within a bounded domain with possibly
complex boundary conditions. Therefore, if wavelets are to be used, special care
must be taken in the construction of wavelet bases inherently defined on bounded
domains. The simplest case is represented by wavelet bases on the unit interval
(0,1). These can also be used as a building block to construct wavelet bases on
multidimensional domains of complex shape.*5-4

We concentrate our attention to the construction of biorthogonal wavelet bases
on the half-line (0,+00) and, subsequently on the unit interval. The construction
of such bases originates naturally by wavelets defined on the whole line by intro-
ducing suitable modifications to account for the edges of the domain. We focus on



2 Wawvelets on the Interval with Optimal Localization

biorthogonal systems rather than on orthogonal ones, like the famous Daubechies’
compactly supported orthogonal wavelets,'® because the former can be choosen to
have useful properties, like, e.g., compact support and central symmetry. As an
example we can cite the biorthogonal B-splines wavelets.” All orthogonal systems
are a particular case of the more general biorthogonal setting.

Many constructions of orthogonal and/or biorthogonal wavelets on the unit in-
terval or half-line can be found in the literature."®'21? Generally, these construc-
tions do not uniquely determine one particular biorthogonal system, but leave the
freedom to insure additional properties of the wavelet bases. In this paper we
will exploit this possibility and we will propose a different definition of the border
wavelets which seems to be better adapted to the applications.'”'® The key ad-
vantages of this new construction are a good localization of the modified border
wavelets and a short length of the corresponding filters. These two features are of
great importance in the construction of adaptive schemes for the solution of PDE’s.

The outline of the paper is as follows. In Section 2, we review the main properties
of systems on the real line. Moreover, we recall how to construct scaling function
spaces on the half-line (0, +00) and we describe the structure of their filter matrices.
Section 3 is devoted to the construction of biorthogonal systems of wavelets on
the half-line, exploiting again their filter matrices. In Section 4, we describe the
construction of scaling function and wavelet bases on the unit interval starting from
the construction on the half-line. We show, in Section 5, how we perform the
biorthogonalization process on both the border scaling functions and wavelets in
order to preserve a short filter length and a good localization. Finally, we report
in Section 6 an application illustrating the optimal localization provided by the
proposed construction.

2. Preliminary

In this section we review those aspects of the construction of scaling functions
and wavelets that will be extensively used in the following. In Section 2.1 we
recall the main properties for biorthogonal systems of compactly supported wavelets
generating multilevel decompositions of L2(IR) (see, e.g., Refs. 7, 3, 2). This setting
will be a necessary framework for the construction of biorthogonal wavelet systems
on the half line and on the unit interval. In Section 2.2 we describe how to construct
scaling function spaces for the half-line IRt = (0, +00); we follow Refs. 19, 3, where
the formal proofs can be found (see also Refs. 1, 12). Finally, in Section 2.3, we
draw some considerations on the modified border scaling functions filters, which
will be important for the subsequent construction of the border wavelets.

2.1. Biorthogonal decomposition in IR

Scaling functions. Let us consider two compactly supported scaling functions p, p €
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L?(IR) satisfying the following refinement equations with finite real filters h and h,

ni ni
o) =V2 Y hapz—n),  B)=V2 Y ha$R2z—n).  (2.1)
n=no n=no
Without loss of generality we will assume 719 < ng < 0 < ny; < f; so that suppp =
[ng,n1] C supp @ = [fig,71]. If this is not the case, the role of the primal and the
dual functions can be exchanged. From now on, we will only give details for the
primal setting. The dual construction, herewith indicated with a tilde ~, follows by
analogy.
Setting for j,k € Z, pj(x) = 2//2p(2/x — k), we suppose that the biorthogo-
nality relations

(i, Pk YR = / ik (2) @i (2)dx = pr, Vi kK € Z (2.2)
R

hold. Moreover, for any j € Z, the set {y;i : k € Z} will be a uniformly 2-stable
basis for the space

Vj = Vj(IR) = spanj2{pjr : k € Z} ={v =Y arpj : {on}ren € £},
keZ

i.e., there exist two constants A, B > 0 such that, for any v = )", apji € Vj,

Al{artrezlle < llvllz>m) < Bll{artrezlle -

This stability relation will be abbreviated in the sequel by |[v]|z2(r) < [{ow }rez|le -
Moreover, due to the biorthogonality relations (2.2), we can write

v = Z ﬁjk‘ﬂjk with ﬁjk = (’U,@j]&m.
keZ
In addition, V; C Vi1, Njez Vi = {0}, Ujez Vi = L*(IR).

Finally, we suppose that there exists an integer L > 1 so that, locally, the
polynomials of degree up to L — 1 (we will indicate this set IP;_;) are contained
in V;. It is not difficult to show? that L must satisfy the relation L < n; —ng — 1.
Similarly, there exists an integer L with analogous properties for the dual system,
and satisfying L > L.

Wawvelets. The primal wavelet is defined as
1—no N
Y(z) = V2 Z gnp(2z —n), with g, = (=1)"h1—p.
n:lf’r\il
Setting ¢k (z) = 2//2¢(2x—k),Vj, k € Z, and defining similarly the dual wavelets
Yjk, then (Vg Vi )m = 05 0kk , V4,5, k, k' € Z. The spaces

W= {Z artjr : {artrez € Y, Vje Z,

keZz
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are such that

Vi =V;eW;,  W; LV Vi =V;eW;,  W; LV,
and satisfy L?(IR) = ®;czW;. For any v € L*(IR), this implies the expansion

v= Y Ok,  with b = (0, 0) R
jkez

In addition [|vl|L2(m) X () pez [05617)"/?, Vv € L(IR).

Refinement and reconstruction equations. We recall now some relations that will
be useful in the following. The primal scaling functions and wavelets are related by
the refinement equations

Pim = Z hk72m§0j+1,k R VYm € Z, (23)
keZ

"/}jm = Z Jk—2mPj+1,k » Vm € Z, (24)
keZ

and by the reconstruction equation

Pi+1k = Z ﬁk—2m¢jm + Z Grk—2mPim » Vke Z , (2.5)
MmEZ MmEZ

where {h;} and {g} are the dual filters. The latter can also be restated as

Z[hk72m%n72m + gk72m§n72m] = 6kn7 Vka neZ. (26)

m

2.2. Scaling function spaces for the half-line

We recall in this section the main steps in the construction of scaling functions on
the half-line (0, +00). This is derived from an underlying construction on the real
line through suitable modifications of the functions that interact with the border
z = 0. To avoid ambiguity, from now on we will append a suffix B to all the
functions defined on the real line. It will be assumed that all the functions without
this suffix are defined on the half-line. Also, for simplicity, we will work on the scale
j=0.

Interaction with the border. As we have already mentioned, the guideline underly-
ing the construction is to preserve as much as possible the structure of the decom-
position on the real line, and to introduce modifications only for those functions
interacting with the boundary z = 0. To this end, note that if & > —ny, ‘P(])I/E has
support contained in [0, +00). More precisely supp It = [ng + k,n1 + k]. Let us
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fix a nonnegative integer ¢ and set k§ = —ng + d; observe that k} = min{k € Z :
supp pE C [§,+00)}. Let us define

V) = span {8k 0. sk >k (2.7)

+00)

this space will be identified in a natural way with a subspace of V;(IR) and will not
be modified by the subsequent construction.

Polynomial reproduction. To obtain a scaling function space Vo(IRT) for the half-
line, we will add to the basis {gog?c”mm) : k> ki) of V() a finite number of new
functions. These functions will be constructed so that the property of reproduction
of polynomials is maintained. In fact we know that for any polynomial p € P 1
and every fixed z € IR, there is a suitable set of coefficients pos such that p(z) =
> kez Dok ol (2). So, if {pa : @ =0,...,L — 1} is a basis for IP;_1, for every
x > 0, we have

ki—1
Pa(®) = Y carpli(@) = DY carpli(®) + Y carpli(@), (2.8)
E>—ni+1 k=—ni+1 k>k:

where cop 1= f]Rpa(y)(ﬁR(y — k)dy, a = 0,...,L — 1. Since the second sum in
(2.8) is a linear combination of elements of V() in order to locally generate all
polynomials of degree < L — 1 on the half-line, we will add to this space all the
functions

ki —1

boa(T) = Z Cak90£|[o7+oo)(33) ) a=0,...,L-1 (2.9)
k=—nq+1

It is clear that different bases of IP;,_; lead to different functions ¢g,. Some remarks
on possible choices can be found later in this subsection and in Section 5.

It is not difficult to show that the functions {¢o, : @« =0,..., L—I}U{¢£|[07+m),
k > ki} are linearly independent. Therefore, it is natural to define

Vo(IRY) = span {¢os : @ =0,...,L—1} V),
If we rename the internal functions as
_ R :
bok = ‘p07k3+k*L\[0,+oo) if k>1L,
we can write in a more compact form

VE) =span {¢or : k> L} and  Vo(RRT) =span {¢o : Vk >0}. (2.10)

Dimension matching. We study now the biorthogonality of the generators of Vo (IRT)
and Vo (IR"), where the dual construction is obtained by following the same guide-
lines used for the primal one. Setting

k* = max{k, ki} = max{—ng + 6, =g + 4},
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we can observe that {‘p&\[oﬂLm) : k> k*} and {@ﬁl[[)#m) : k> k*} are already

biorthogonal. In order to get a pair of biorthogonal systems, we have therefore to
match the dimensions of the spaces spanned by

{¢Oa : aZO""’L_l}U{@glzc|[0,+oo) tk=ky,... k" _1}
and by

{bos : B=10,...,L =1} U{Bgk 10,400 : E=k,... kK —1}.
This requirement can be translated into an explicit relation between § and ) ; indeed,
we must have L — kg = L — kg, i.e.,

5—86=L—L+ o —no. (2.11)

Since L > L, we get k* = —fig + 0. It should be noted that the two parameters §
and ¢ have been introduced exactly because we want the equality of the cardinality
of the sets previously indicated. On the other hand, we want to choose them as

small as possible in order to minimize the perturbation due to the boundary. Thus,

it will be natural to fix either § or 4 equal to zero and determine the other one from

the relation (2.11). For systems arising from B-spline functions, it can be seen!%12

that, if § = 0, we have 0 < § < L.

Boundary and interior scaling functions. Let us define the spaces VP and ‘703,
spanned by the so called boundary scaling functions, as

V2 :=span {¢o : k=0,...,L— 1}, IN/OB := span {(Z()k :k=0,...,L— 1},
and the spaces V! and ‘70[ spanned by the interior scaling functions as
Vi :=span {¢op, : k> E}, ‘701 := span {g;mc k> Z}

We have N N N
WRNY=VfaVy, WRHY=VPaV. (2.12)

Note that, if L < L, the subspace VJ is strictly contained in V() (see (2.10)).

In other words, some of the functions in V() (which are scaling functions on IR

supported in [0, +00)) are thought as boundary scaling functions, i.e., are included
in VOB .

Biorthogonality. Recalling that V! is already biorthogonal to Vg and that
VWPLV, WL,
we only need to modify the border functions in order to obtain fully biorthogonal

systems. The problem is then to find a basis of VE, say {por : k=0,..., L- 1},
and one of V&, say {$o; : [ =0,...,L — 1}, such that

<g00k7§50l>ﬂ3+ = / N SOOk(l")‘ZOl(z)dﬂ? = 6/6[7 kal = 07 - '7L —1.
R
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Fig. 1. Primal (top row) and dual (bottom row) border scaling functions obtained from a B-spline
multiresolution with L = 2 and L = 4.

Setting @or = an;lo Dimdom and Qo = an_:lo Dimdom, and calling X the
Gramian matrix of components

X1 = {bok, ot me+ k,1=0,...,L—1,

this is equivalent to finding two L x L real matrices D = {Dgn} and D = {Djn }
satisfying N
DXD? =1. (2.13)

A necessary and sufficient condition for (2.13) to have solutions is the non-singularity
of X, or equivalently VB N (V)L = {0}. We know at present of no general result,
establishing the invertibility of X, although it can be proved, e.g., for orthogonal
systems' and for systems arising from B-spline functions.!?"'? From now on we will
assume that this condition is verified. If this is the case, there exist infinitely many
couples which satisfy Eq. (2.13). We describe in Section 5 a particular biorthog-
onalization scheme leading to scaling functions with good localization properties.
This is illustrated in the example of Fig. 1, which reports plots of the biorthogonal
border scaling functions derived from a B-spline multiresolution with L = 2 and
L=4
Renaming now the functions of Vi and V{ as

Yok = bok Bor = o » Vk,0> L,

we can conclude that the two sets ;{9001@ : k> 0} and {@y : I > 0} are dual
biorthogonal bases of Vo(IR') and Vo (IRT), respectively. It can be proved that
these bases are 2-stable, in the sense that

VO(R+) = {U = Zakgook : {ak}kew € £2}
k>0
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with
loll2(my < {artrenllee, Yo e Vo(RY),

and similarly for the dual system.

Refinement equations. Let us introduce the isometries T; : L?(IR")— L?(R™") de-
fined as
(T f)(z) = 272 (2), (2.14)

and set ¢;r = Tjpor, Vi, k > 0. We define the j-th level scaling function spaces as
Vi(RT) == T;(Vo(IRT)).

It can be shown that this is a family of refinable spaces, i.e., V;(IR") C Vj41(R").
This allows to define a refinement equation

m>0

that generalize the corresponding Eq. (2.3) holding for the scaling functions on
the real line. Similar observations can be applied for the dual construction. Some
important considerations on these filter matrices will be found in Section 2.3.

Projection operators. Once a pair of biorthogonal generators ¢;;, and @;; has been
defined, it is possible to consider suitable projection operators P; : L*(R") —
V;(IR"), defined as

Pj’U = Z ﬁjk‘ﬂjk s with ﬁjk = (’U, Szjk>lR+- (216)
k>0

One can prove that they are well defined, continuous, and uniformly bounded. In
addition, we have that Pjv = v, Yo € V;(IR") and Pj o Pj;; = P;. Similar
relations hold for the dual system. These operators will be used in Section 3 to
define appropriate wavelet bases.

2.3. On the border scaling function filters

The structure of the matrix H in the refinement equation (2.15) and of its dual
counterpart H is important for the applications, because the computational effi-
ciency of wavelet-based algorithms strongly depends on the length of the filters.
Therefore, it is fundamental to keep the structure of these matrices as sparse as
possible. Figure 2 reports the position of the nonzero entries in the filter matrices
corresponding to the example of Fig. 1. For illustration purposes the matrices have
been truncated and only the upper-left blocks are displayed. It should be noted
that starting from row L (recall that indexing starts from 0 and L= 4) the matrix
entries refer to functions of the internal spaces, which can be expressed in terms of
the internal functions at the next refinement level. Therefore, the rows of the filter
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L L L L L L L L L L L L L
0 5 10 15 20 25 0 5 10 15 20 25 30

Fig. 2. Structure of the filter matrices # and H for the scaling functions obtained from a B-spline
multiresolution with L =2 and L = 4. Each dot represents a nonzero entry.

matrices starting from row L are formed by translations of the filters h and 71, as
indicated by Eq. (2.3) and by its dual counterpart. Precisely, we have

Him = h VE> L, (2.17)

m—k*+L—2k’
and similarly for the dual filters. On the other hand, the rows 0, ..., L — 1 refer to
the border scaling functions, which are expressed in terms of both border functions
and internal functions at the next refinement level. However, the number of involved
internal functions remains small, as well as the length of the modified border filters.
More precisely, the number of nonzero entries in the first L rows can be explicitely
calculated, obtaining

Him =0, Ym>N;, and Hgm =0, ¥Ym>N;, Vk=0,...,L—1,

where
Ny=L+k"+n,—1, Ny =L+k" +n —1. (2.18)

We want to point out (see again Fig. 2) that in our construction the upper-left
blocks are upper-triangular. This is possible through the biorthogonalization scheme
described in Section 5, which produces both well localized scaling functions (see
Fig. 1) and short border filters.

3. Wavelet Spaces for the Half-Line

In this section we construct the wavelets and the detail spaces on the half-line.
We will partly follow Refs. 19 and 3, but we propose a new definition of “bor-
der wavelets” (see Eq. (3.3)) which seems to be more suitable for the applications.
Specifically, the new definition will lead to short border wavelet filters and to well
localized border wavelets when used in conjunction with the triangular biorthogo-
nalization scheme described in Section 5.

Interaction with the border. We start from level 7 = 0 and look for a complement
space Wo(IR™) such that Vi(RT) = Vo(IRT) & Wo(IRT) (note that the sum is



10 Wawvelets on the Interval with Optimal Localization

not, in general, orthogonal) and Wo(IR*) L Vo(IR™). To this end, we consider
the basis functions of V; (IR') and write them as a sum of an element in Vo (R™)
and a function which will be an element of Wy(IR"). As for the scaling functions,
we need to distinguish between internal wavelets, which are inherited from the
decomposition on IR and which will not be modified, and border wavelets, which
need to be explicitely defined.

Interior wavelets. Since Vy(IR) contains the subspace V() defined in (2.7), Vi (IRT)
contains the subspace V;" = T,V = {goﬁcl[o too) 1k > K5}, Considering
Eq. (2.4), it is possible to identify which wavelets can be reconstructed by using
only scaling functions in VIH). This corresponds to finding a lower bound on m in
Eq. (2.4), such that all the indices k in the sum are greater than or equal to kg.
This is equivalent to 2m > ki + 71y — 1, so we set

ks +n—1

m 2 [

= m;
(where [z] indicates the smallest integer greater than or equal to z). Let us set
+) . R . Y,
WO( )= span {Yom 0, 100) = ™ Z M5}

we observe that WO(+) can be identified with a subspace of Wy (IR) generated by
wavelets supported in [0, +00), so it is orthogonal to Vo(IR") and WO(H C Wo(R™T).
Let W' be a generic supplementary space of W()(+) in Wo(IRt). Tt can be easily
proved that dim W' = mj. Therefore, we need to define additional m{ functions
that, together with the basis functions of WO(JF) and Vo (IR™), will generate V1 (IR™).

Border wavelets. Let us first identify which functions of Vi (IR*) we are able to
generate with the internal scaling function and wavelet spaces only. These spaces
are generated by {Qgh(10.400)» ™ = Ko} and {4dh 10 10y ™ = MG}, respectively.
Substituting these functions in Eq. (2.5) and enforcing the bounds on m, we get
a lower bound on k. More precisely, the internal spaces generate the functions
{goﬁ‘[(),_i_oo), k > k}, with

k=2ki +ny — 1.

It was proved!® that the remaining functions of V; (IR™) can be generated by adding
the border wavelets defined as

£0m = (Id—P())gOlE?kml[O m:O,...,ma - 1, (31)

,+00)’

where P is the projection operator defined in Eq. (2.16) and k,, = k+2m—2mS+1.
Therefore, setting
Wt ={€om :m=0,...,m§ — 1},

we can define the wavelet space as

Wo(RT) = W5t @ Wi,
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so that
‘G(R+) = Vo(R+) D Wo(R+)

The same procedure leads to the construction of the dual wavelet space AWB(]R*).
As for the scaling functions, we must find a couple of biorthogonal bases for the
spaces Wo(IRT) and Wy (IR1). Setting

m* = max{mg, mg},
we can define, in analogy with the procedure followed for the definition of the scaling
function spaces, the internal and border wavelet spaces, respectively, as

WE = span {&m :m =0,...,m* =1}, W{ :=span {¢on : m >m*}, (3.2)

where we have set &y, 1= wganO +o0) if m§f < m < m* and Yo, = wganO +o0)
if m > m*. The dual spaces are defined accordingly. From the properties of the
construction on the real line, we have that W{ and W{ are biorthogonal, i.e.,

<¢0m7{/;0n>ﬂ3+ = 6mn, Vm,n Z m*.

Note, however, that the biorthogonality between the internal and the border wavelet
spaces is not guaranteed. Therefore, any biorthogonalization applied to the border
wavelets only (as we did for the scaling functions) would not lead to fully biorthog-
onal wavelet spaces. This problem can be solved'® by adding a suitable number of
primal and dual internal wavelets to the border wavelet spaces, and by performing
the biorthogonalization on this enlarged set. However, this procedure leads to a
large number of border wavelets. In addition, the modified border wavelet filters
result quite long if compared to the filters of the internal wavelets. These two facts
contraddict the main philosophy of the construction, which should be founded on
the smallest number of modifications with respect to the multiresolution on IR in
order to account for the border 2 = 0. For this reason, we suggest an alternative
definition of the border wavelets with respect to Eq. (3.1). These new wavelets will
be automatically biorthogonal to the internal wavelets, and will be characterized by
much shorter filters with respect to other constructions.!?19-20

Improved definition for border wavelets. The proposed new definition of the border
wavelets is

om == (Id — Py — Q{)pl%, ooy M=0,mg— 1, (3.3)

where Q¥ is a projection operator onto the internal wavelet spaces, defined, Vv €
L*(R"), as

QéU = Z ﬁUm"/}Oma with ﬁ[)m = <U,1Z0m>lR+'

m>m*
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Using a similar definition for the dual wavelets, it is clear that the following relations
hold,
wE LW, wii1wg,

while the interior wavelets spaces W{ and WJ are already biorthogonal. Con-
sequently, only the biorthogonality between the primal and dual border wavelets
needs to be enforced. We can follow the same procedure as used for the scaling
functions, i.e., find a basis of W&, say {¢)om : m =0,...,m* — 1}, and one of WOB,
say {VZ[)” :n=0,...,m* — 1}, such that

<¢0m,1Z0n>1R+ = dmn, m,n=20,...,m" — 1.
Setting Yom = Y70 Epror and thon = S0 Epéor, and denoting by Y the
Gramian matrix of components
Vi = (€ok» Eot) R+ k,=0,...,m"—1,
this is equivalent to finding two m* x m* real matrices E and E satisfying
EYE” =1L (3.4)

It is not difficult to see® that the invertibility of Y follows from the invertibility of X.
Therefore, this problem is identical to Eq. (2.13), and will not be further discussed
here. Additional considerations can be found in Section 5. In summary, we have
constructed two sets of biorthogonal generators for the wavelet spaces, which we
will indicate as

Wo(IR™) = span {3, : m > 0} and Wo(IR™) = span {to, : m > 0}.

Refinement equations. Using now the isometries (2.14), we set ¥jm = Tj¥om,
Vj, m > 0. Accordingly, we define the j-th level wavelet spaces as

Wi(IR") := T;(Wo (R™)).

Clearly, these are included in the scaling function spaces at the next refinement
level,
Wi (RY) C Vi (RY).

This allows to define a wavelet refinement equation

Yik =D GemPit1m

m2>0

that generalizes the corresponding Eq. (2.4) holding for the wavelets on the real
line. Similar considerations hold for the dual setting.

Wavelet filters. We focus now on the wavelet filters, giving some additional details
about their construction. The following calculations will show that the length of the
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border wavelet filters is limited by the length of the border scaling function filters.
Without loss of generality, we will discuss the case m§ > mg, which is compatible
with the assumption L < L or, equivalently, kg < %6‘ Otherwise, the role of primal
and dual functions can be exchanged. In what follows, we will set m < mg for the
primal wavelets and m < g for the dual wavelets.

Recalling the definition (3.3), we need to compute the projection of a scaling
function ¢! onto the scaling function space and the internal wavelet space. A
straightforward calculation leads to the expressions

Poply = Zﬂkl¢0la Pyl = Zﬁkz(ﬁol,

>0 1>0
where
LT—1r~_ ~ I .
My = { ano [D 1]L+k—k§,n/Hln ?f kg < Ij <k, (3.5)
Hl,z+k7k* if k> k*,
Oy = @l eidmr =H g k2H,
and to

Qbelt = D Gr-2ntbon, 6P = D Gr—anthon.
n>m* n>m*
Substituting now in Eq. (3.3), and using Eq. (2.15) with their dual counterpart, we
obtain the refinement equations for the non-biorthogonal border wavelets,

me = Z Gml‘pll , g()m = Z éml&ll- (36)

1>0 >0

The complete expression of G and G can be easily obtained through straightforward
substitutions and will not be reported here. Rather, we proceed to explicitely
computing the length of the border filters. For this reason, we focus on the cases
> L and m such that ., km > k*. The first bound allows to individuate which
internal scaling functions are involved in the refinement equations (obviously, it
is clear that the border scaling functions will always be involved). The second
bound allows to simplify the expressions of the wavelet filters, because under this
limitation only the second row in Eq. (3.5) is needed for the calculations. Again,
this only affects the border scaling functions. A straightforward calculation leads
to the expressions

Gmi = 0 _psia™ ZHmerkm—k*H”l - G =209 41T —2p>

n>0 n>m*
Gn = 512m7k*+f,l - Zﬂn,fﬂém—k*%nl - Z It —2n9p11-T 20"
n>0 n>m*

Substituting now the expression (2.17) for the scaling function filters and using the
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identity (2.6), we obtain

-1
G = _Z/HanLkmfk*anl_‘_
n=0
+ Z e =2l ) T+ Z Gkm =2 11 T 2n
n<k*—1 n<m*—1
-1
G = _Z/anﬂémfk*ﬂnl_‘_
n=0
+ Z hl’“m*2nhk*+l7’[\:72n+ Z it —209pe p1-T—2n"
n<k*—1 n<m*—1

These expressions are convenient because of the explicit upper limits in the sum-
mations. They allow to calculate the number of nonvanishing entries in each row of
G and (. More precisely, it is easy to show that

G =0 if >N,
G =0 if >Ny,
where
Ny = max{Np,L+n —fig —1+v},
N; = max{Nﬁ,z-i—le—no—l-i—y},

and v = dmod2. Moreover, recalling definition (2.18), N, < Nj + 1, with the
equality holding only when L = L and § odd, and N3 = Nj. Thus, the length
of the border wavelet filters is essentially limited by the length of the border scal-
ing function filters. This was not true for the previous construction,'® where the
wavelet filters could be long even as twice as the scaling function filters. Finally,
the biorthogonal filters G and G are easily found by applying the change of basis
through matrices E and E to Eqs. (3.6).

Ezamples. We conclude this section by showing plots of the border wavelets (Fig. 3)
in the B-spline case with L = 2 and L=4 (see also Fig. 1). Note the good lo-
calization of each border wavelet g, J()m around the dyadic points (2m + 1)271,
due to the optimal biorthogonalization performed according to the guidelines in
Section 5. Note that it is also possible to modify the single nonvanishing primal
and dual wavelets 9 and 1;00 so that their value at 2 = 0 is the same as the corre-
sponding scaling functions. This can be accomplished by a simple renormalization
through a constant, because it can be shown? that ©oo(0)Bo0(0) = o0 (0)t0 (0).
A similar normalization is usually referred as boundary adaption, and proves quite
useful in applications based on domain decompositions for the solution of PDE’s.?
Figure 4 depicts the structure of the biorthogonal wavelet filters, which is similar
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Fig. 3. Primal (top row) and dual (bottom row) border wavelets obtained from a B-spline mul-
tiresolution with L. =2 and L = 4.

101

Fig. 4. Structure of the filter matrices G and G for the wavelets obtained from a B-spline multires-
olution with L = 2 and L = 4. Each dot represents a nonzero entry.

to the scaling function filters. In particular, the upper-left blocks corresponding to
the border wavelets are characterized by a small number of nonvanishing entries.

4. The Unit Interval

This section describes how the multilevel decomposition of the half-line derived in
the previous sections can be adapted to build a multilevel decomposition of the unit
interval I = (0,1). The main point is to merge two parallel decompositions on the
half-lines (0, +o00) and (—o0,1) obtained from the same decomposition on IR. This
procedure requires that the effects of the two boundary points z = 0 and z = 1
can be treated independently. We will see that this imposes a lower bound on the
refinement level j used in the decomposition.

The construction on (0, +00) has been described above. To obtain the decompo-
sition on (—oo0, 1), it is natural to consider the one on (—o0, 0) and shift it rightwards
by 1. The construction on (—o0,0) is achieved by repeating the adaption of scaling
functions and wavelets on IR to the boundary point for z < 0. We do not report
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here the details, which follow the same guidelines of Sections 2 and 3.
The structure of the scaling function and wavelet spaces on the unit interval will
be

V;(0,1) = span {(pg.[l)) eI} ®

span {pjr : k€ I} ®

span {cpﬁ) :r € IR}, Vj 2> Jo,
W;(0,1) = span {wj(?) lekit e

span {¢jp : k€ Kr}®

span {¢J(-714) :r € KR}, Vj > jo,

9 or (1 label those scaling functions and wavelets that have

where the suffixes
been redefined to account for the boundary points z = 0 and = = 1, respectively,
and where 7, Z;, g, K1, K1, and Kg indicate suitable sets of indices. In order to
decouple the effects of the two boundary points, there must be at least one internal
scaling function, i.e., Zy # (. This can be identified with a scaling function in each
decomposition on (0, +00) and (—o0,1). These in turn can be both identified with
the same scaling function of the underlying decomposition on IR. Obviously, its
support must be strictly included in (0,1). The same considerations apply for the
wavelets, leading to Ky # (). As the supports of scaling functions and wavelets on
IR at level j have length proportional to 277, there must be a minimum level jo
such that Vj > jp the above decoupling conditions are verified.

In the particular case of scaling functions and wavelets characterized by central
symmetry, like the systems arising from B-spline functions, it is easy to show that
the whole construction on (—oc,0) can be derived from the construction on (0, +00)
through reflection around the origin. Therefore, all the border functions at the right
boundary can be derived from the border functions at the left boundary by reflection
and translation by 1, as depicted in Fig. 5.

5. Biorthogonalization

In this section we describe the biorthogonalization process used for the construction
of the border scaling functions and wavelets. Some considerations are in order to in-
troduce the motivations underlying the proposed biorthogonalization scheme, which
is detailed in the first subsection. In fact, the solution to Equations (2.13) and (3.4)
is obviously not unique. Therefore, we need some criteria for the determination of a
particular solution that enhances those features that are useful for the applications.
Our choice will be to preserve as much as possible the localization of the border
scaling functions and wavelets. This is indeed a fundamental requirement for those
applications based on adaptive representations obtained through nonlinear wavelet
approximations®!7-!® (see the example reported in the forthcoming section).

Let us recall the decomposition of the scaling functions and wavelets spaces into
“internal” and “border” subspaces (Eqs. (2.12) and (3.2)). The internal spaces are
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Fig. 5. Primal border wavelets on the unit interval constructed from a B-spline multiresolution
with L = 2 and L = 4. The refinement level is j = 4.

generated by the same scaling functions and wavelets defined on the real line. The
latter are compactly supported and therefore well localized. On the other hand, the
border scaling functions and wavelets defined in Egs. (2.9) and (3.3) are expressed
as linear combinations of the corresponding functions defined on the real line. From
these expressions we see that all the border scaling functions and wavelets have the
same support. Therefore, they lead to a worse localization with respect to the
internal functions. These considerations suggest to improve the localization of the
biorthogonal border scaling functions and wavelets by using the additional degrees
of freedom intrinsic in the biorthogonalization process. In particular, we want to
insure that each border wavelet 1 has most of its energy concentrated around the
point zj; = (2k +1)27771 of a dyadic grid. This property holds for the wavelets of
the decomposition on IR, but it can be lost in the definition of the border functions
of Eq. (3.3). Also, previous constructions of wavelets on the unit interval led to
poorly localized border wavelets.!213-20

We have seen in Section 2.2 that the border scaling functions are constructed
by imposing the reconstruction of all polynomials of a certain degree. A set of basis
functions {p, : a =0,...,L—1} for the space of polynomials IP;,_; (and similarly
for the dual system) must be chosen to proceed with the construction. We will
see that well localized border scaling functions and wavelets can be obtained when
these basis polynomials are such that

DPa(x) = 2% (z), VYa=0,...,L—-1, (5.1)
where ¢,(z), Yo = 0,...,L — 1 is a polynomial that does not vanish at z = 0.
12

The basis of monomials obviously satisfies this property. However, it was shown
that this basis leads to an ill-conditioned Gramian matrix X. Other bases, like,
e.g., the Bernstein polynomials, still satisfy Eq. (5.1) and lead to Gramian matrices
with better condition numbers.!?:20 If Eq. (5.1) is satisfied, the non-biorthogonal
border scaling functions ¢g, (and similarly for the duals) have a zero of order «
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at x = 0. If this property is preserved by the biorthogonal scaling functions, these
will be localized around a center that shifts towards right for increasing values of
a (see the example reported in Fig. 1). This can be accomplished by forcing the
structure of the change of basis matrices D and D to be upper-triangular. It is
straightforward to verify that also the biorthogonal scaling functions filters #, H
result upper-triangular.

A similar consideration can be applied to the wavelet functions. The defini-
tion (3.3) leads to non-biorthogonal wavelets which are not necessarily adapted to
the boundary and well localized. In particular, the non-biorthogonal wavelet filters
are not upper-triangular. However, a Gaussian elimination can be performed on
the rows in the filter matrices corresponding to the border wavelets, to get upper-
triangular filters. If a biorthogonalization with upper-triangular matrices E, E is
performed, also the biorthogonal wavelets filters G, G will be upper-triangular, and
the corresponding border wavelets o, @ng will have a zero of order k at x = 0.
The examples of Fig. 5 show that this leads to well-localized primal and dual border
wavelets.

In summary, a suitable choice of polynomial bases together with a biorthogo-
nalization performed through upper-triangular matrices for both scaling functions
and wavelets leads to well localized hierarchical basis functions. Next subsection
describes in detail the proposed algorithm for the triangular biorthogonalization.

5.1. Triangular biorthogonalization

As the following applies to both scaling functions and wavelets, we will restate the
problem in a general setting by using a common notation. In particular, we will
denote the given primal and dual non-biorthogonal basis functions by {0 : k =
0,...,N—1}, {gk : k=0,...,N —1}, and the primal and dual biorthogonal basis
functions, to be determined, by {n; : k=0,...,N -1}, {nx: k=0,...,N —1}.
These basis fun~ctions are related to each other through the N x N matrices A =
{Amk}a A= {Anl}a

N—1 N-1
T = Amibi,  Ta= Y Aufl.
k=0 1=0
The full biorthogonality, i.e. (e, i) := () r+ = du, can be obtained by finding
two upper-triangular real matrices A and A satisfying the relation
AGAT =1y, (5.2)

where In is the N x N identity matrix and ® = {©} is the Gramian matrix
corresponding to the inner products

le:<9k7§l>a k,lZO,...,N—]..

We will assume without further discussion the invertibility of ®, so that the exis-
tence of a solution for Eq. (5.2) is insured.
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The first step for the determination of A, A is the biorthogonalization of the
two functions On_1, §N71- This consists simply of a renormalization through mul-
tiplication by a constant. The biorthogonalization of the remaining functions is
obtained by the following iterative scheme.

Let us fix an integer ¢ such that 0 < i < N — 2 and assume that the sets

Si+1:{77k: k:i+1,...,N—1}, Si+1:{77k: k:i-i-].,...,N—].}

have already been constructed so that S;;; is biorthogonal to §i+1. This implies
that all the entries {Anr : m > i, k> m} and {4y : n > 4,1 > n} have already
been determined. We want to add the functions n; and 7; to form the sets

Si = {ni,Sis1}, Si= {ﬁi,giﬂ}

so that &; is biorthgonal to S;. The iteration of this procedure for all values of 4
ranging from N — 2 down to 0 solves the biorthogonalization problem.

Let us write the biorthogonality of S; and S; in terms of the single elements of
the two sets,

<77i7ﬁi> = 1v and <77i7ﬁ8> = 07 (ﬂsaﬁi> = 07 Vs > i. (53)

The functions to be added can be expressed as

N-1 N-—1
mi=aibi+ > s, =B+ Y Bl (5.4)
s=it1 s=it1

The linear independence is obviously preserved if the coefficients a; and (3; are
nonvanishing. Substituting now Eq. (5.4) into Eq. (5.3) we get

g = —0Qy <0iaﬁs>a ﬁs = _ﬁi <0ians>a Vs > 1,

and
a;BiK; =1, (5.5)
where
K= (0:,05) = Y (03,705 (0i,m5).
s=i+1

Let us now partition the Gramian matrix as

© = 0; OfF

(3

and the change of basis matrices as

A= Ay AT A= Ay AT
0 A7, 0 A7,
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Table 1. B-splines (2,4)

é N' N2 N3 |le*]] e/ [le' 2]
1x1073 | 31 33 31 | 242x107% 2.14x103 1.84x 1073
5x10~* | 37 37 34 [ 1.01x107% 931x10~* 1.00x 103
2x107* | 39 41 37 | 741x107* 6.75x107* 6.49x 10
1x107% | 43 43 37 | 622x107* 6.27x107* 6.49x10°*
1x107° | 45 45 46 | 6.22x107* 6.26x107* 6.25 x 104
1x1076 | 49 49 51 | 6.21x107* 6.25x107* 6.25 x 104
1x1077 | 55 55 57 | 621x107* 6.25x107* 6.25x 104

0 1025 1025 1025 | 6.21 x 10~* 6.25 x 10~* 6.25 x 10~*

If we define the arrays
Qi1 = (Oéi+1,---,04N71)T, :Bi—i-l = (ﬂi+17'-'7ﬁN71)T7

we can express the solution in a more compact matrix form through the following
expressions

~ T
Ki = 0:-0; (A7) A7, 6
i = —a;AL, (O],
/3i+1 = _5iA?+1(‘)fa

together with Eq. (5.5). The nonvanishing entries in the change of basis matrices
read
A7 =ain A7, A7 =P, AL
Aji =y

It should be noted that the solution is still not unique because Eq. (5.5) imposes
only a constraint on the product a;3;. Once either a; or f; is fixed, all the unknown
entries in the matrices A and A can be uniquely determined. In other words, the
normalization of the primal (resp. dual) functions is arbitrary, but once this is
fixed, also the normalization of the dual (resp. primal) functions is determined.
This flexibility allows, for example, to obtain biorthogonal border scaling functions
and wavelets with the same L?-norm as for the internal functions. This can be a
useful property when deriving adapted representations through thresholding of the
wavelet coefficients, because it allows to use the same strategy for all coefficients.'®

6. An Application

We illustrate in this section the excellent localization of the proposed construction.
To this end, we compare the number of wavelet coefficients required to represent
at a given accuracy a function characterized by regions of fast variations located
either at the boundary or at internal points of the domain. More precisely, we will
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J N® N'/2 NI/ |le*]] e/ [le' 2]
1x1073 | 32 32 32 | 305x107% 9.18x107% 131 x 1073
5x107* | 38 32 33 | 9.45x107* 9.18x10™* 1.14x 1073
2x107% | 42 38 40 | 348 x107* 3.49x10~* 4.07x 1074
1x10°4 | 44 40 45 | 257x107% 2.22x107* 1.86x 10~*
1x10°° | 50 48 51 | 243 x10°* 1.06x10°* 1.06x 10°*
1x107% | 56 56 55 | 2.42x107% 1.05x10"%* 1.06 x 10~*
1x1077 | 60 58 61 | 242x10"%* 1.05x10™* 1.06 x 1074

0 1024 1024 1024 | 242 x10~* 1.05x 10~* 1.06 x 10~*

21

consider the following functions

f'(z) = tanh(500z(1 — z)),
fY%(x) = tanh(500(x —1/2)),
%) = tanh(500(z — 1/3)).

The first one is a model for a boundary layer, with sharp variations at both edges
of the domain, while the second and the third ones have fast variations located at
a dyadic point (x = 1/2) and at an arbitrary point (z = 1/3), respectively.

We consider the full expansion (we omit the superscripts in the following)

J—1
Prf(x) = ciok@iok(®) + > > winthjr(x)
k

Jj=jo k

with a minimum and maximum refinement levels set to jo = 4 and J = 10. The
adapted expansion is

Pif(z) = cionpiok(@) + D> winth(x),
P

(4:k)EAs

(6.1)

where the set of retained coefficients is defined through absolute thresholding of the
wavelet coefficients,

As = {4, k) : |wjk| > 0},

with a fixed threshold . The total number of coefficients in the adapted expan-
sion (6.1) is N = dim V}, + #As, where #.A denotes the cardinality of the set A.
Finally, the L? norm of the approximation error ||e|| = || f — PJf]| is also computed
for each value of 4.

Tables 1 and 2 show the number of coefficients needed to represent each of
these functions at a given accuracy with the biorthogonal B-splines (2,4) and (3,5)
systems, respectively. It can be concluded that, for both systems, the number of
coefficients in the adapted representation is approximately the same when the fast
variations are located either at the boundaries or at internal points in the domain.
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Therefore, the proposed construction for the border wavelets is shown not to spoil
the good behavior of wavelet decompositions on the real line when dealing with
edges.
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