
11 July 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Exploiting symmetries for testing equivalence verification in the SPI calculus / CIBRARIO BERTOLOTTI, I; Durante, L;
Sisto, Riccardo; Valenzano, A.. - In: INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE. -
ISSN 0129-0541. - 17:4(2006), pp. 815-832. [10.1142/S0129054106004121]

Original

Exploiting symmetries for testing equivalence verification in the SPI calculus

World Scientific postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1142/S0129054106004121

Terms of use:

Publisher copyright

Electronic version of an article published as INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER
SCIENCE, 17, 4, 2006, pp. 815-832 https://dx.doi.org/10.1142/S0129054106004121 © World Scientific Publishing
Company https://www.worldscientific.com/doi/abs/10.1142/S0129054106004121.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1406239 since: 2024-06-17T12:40:21Z

World Scientific Publishing

International Journal of Foundations of Computer Science
c⃝ World Scientific Publishing Company

EXPLOITING SYMMETRIES FOR TESTING EQUIVALENCE

VERIFICATION IN THE SPI CALCULUS

IVAN CIBRARIO B., LUCA DURANTE

IEIIT-CNR, C.so Duca degli Abruzzi 24

Torino, I-10129, Italy

RICCARDO SISTO

DAUIN, Politecnico di Torino, C.so Duca degli Abruzzi 24

Torino, I-10129, Italy

and

ADRIANO VALENZANO

IEIIT-CNR, C.so Duca degli Abruzzi 24

Torino, I-10129, Italy

Received (received date)
Revised (revised date)

Communicated by Editor’s name

ABSTRACT

Testing equivalence is a quite powerful way of expressing security properties of cryp-
tographic protocols, but its formal verification is a difficult task, because it is based
on universal quantification over contexts. A technique based on state exploration to ad-
dress this verification problem has previously been presented; it relies on an environment-
sensitive labelled transition system (ES-LTS) and on symbolic term representation. This
paper shows that such a technique can be enhanced by exploiting symmetries found in
the ES-LTS structure. Experimental results show that the proposed enhancement can
substantially reduce the size of the ES-LTS and that the technique as a whole compares
favorably with respect to related work.

Keywords: Spi calculus, Cryptographic protocols, Model checking, Testing equivalence.

1. Introduction

Due to the increasing importance of secure distributed applications the formal
verification of cryptographic protocols is being studied extensively by several re-
searchers, through the investigation of proof techniques, based on various proof
systems and description formalisms [1, 4, 19, 20], and on state exploration meth-
ods [8, 11, 13, 14, 15, 16]. The latter requires modelling the protocol behavior
as a reasonably-sized finite state system, which generally entails the introduction
of simplifying assumptions and numerical bounds that can reduce the accuracy of

1

the analysis. Nevertheless, this kind of verification has the invaluable advantage of
being fully automatic.

This paper is focused on the spi calculus [2], a process algebra derived from the π-
calculus [17] with some simplifications and the addition of cryptographic operations.
The testing equivalence formulation of security properties introduced in [2] is more
accurate than alternative formulations based on the intruder knowledge [9]; however,
the efficient verification of testing equivalence is not trivial because of the need for
universal quantification over testers: testing equivalence means that two processes
are indistinguishable for any tester process, and there are an infinite number of such
processes.

This problem was addressed initially in [1] and [4], where tractable proof meth-
ods were introduced. Instead, [11] defined a spi calculus dialect and its brutus

logic [7], aiming at the definition of a theoretical framework for model checking a
set of logic properties, which is possibly wider than the set of those expressed by
testing equivalence, on the spi calculus.

More recently, a method for checking the spi calculus testing equivalence using
exhaustive state exploration instead of theorem proving was presented in [9]; there,
the problem of the quantification over contexts is solved in a way similar to the
one reported in [4], i.e. by defining an Environment-Sensitive Labelled Transition
System (ES-LTS), which describes the possible evolutions of both the protocol prin-
cipals and the corresponding intruder knowledge. In [9] it has been shown that trace
equivalence defined on such an ES-LTS is a necessary and sufficient condition for
testing equivalence.

In order to have a finite model which can be analyzed by state exploration, only
spi calculus descriptions which have a finite number of processes are considered,
thus ruling out the infinite replication operator of the spi calculus, and symbolic
techniques are used to get a finite representation of the infinite set of data that the
intruder can send each time a protocol principal performs an input.

To further reduce the model size and keep it within reasonable bounds, this
paper introduces a symmetry-based reduction method, which cuts off duplicated
behaviors that can be identified by inspecting the state behavior expression. When
multiple, concurrent sessions of the same protocol are involved, as often happens in
practice, such symmetries show up extensively.

The feasibility of the proposed method and the increase in performance achieved
by symmetry-based reductions are shown by the application of a preliminary version
of an automatic verification tool, called S3A (Symbolic Spi calculus Specifications
Analyser).

This paper, which assumes that the reader is familiar with basic cryptographic
techniques and the spi calculus, is organized as follows: Sects. 2 and 3 recall
the spi calculus language and the ES-LTS model, respectively. The theory of our
symmetry-based reduction technique is presented in Sect. 4 and Sect. 5 offers an
example. Sect. 6 gives some experimental results and comparisons, while Sect. 7
concludes the paper and discusses possible further developments.

2

Table 1: Syntax of the spi calculus.
σ, ρ, θ ::= terms
m constant
0 the zero constant
x, y variables
(σ, ρ) pair
suc(σ) successor
H(σ) hashing
{σ}ρ shared-key encr.
σ+ public part
σ− private part
{[σ]}ρ public-key encr.
[{σ}]ρ private-key sign.

P, Q, R ::= processes
σ⟨ρ⟩.P output
σ(x).P input
P | Q composition
(ν m) P restriction
0 nil
[σ is ρ] P match
let (x, y) = σ in P pair splitting
case σ of 0 : P suc(x) : Q integer case
case σ of {x}ρ in P shared-key decr.
case σ of {[x]}ρ in P decryption
case σ of [{x}]ρ in P sign. check

2. The Spi Calculus

The syntax of the spi calculus provides two basic language elements: terms,
which represent data (e.g. messages, channel identifiers, keys, key pairs, integers),
and processes, which represent behaviors. Terms can be either atomic constants
and variables, or structured terms built using term composition operators.

Table 1 outlines the syntax of the spi calculus [2]. The left-hand side of the
table shows the term grammar and presents some naming conventions used in this
paper. Besides term specification, the spi calculus also provides a rich set of process
algebraic operators, which are used to build behavior expressions, and they are
summarized on the right-hand side of Table 1.

For example, Fig. 1 presents the spi calculus specification of a simple protocol,
inspired by [10]: two agents A and B share a secret key k and exchange two simple
messages. The left-hand side of Fig. 1 shows the message exchanges the protocol
requires, adopting the informal, intuitive notation that is often used in the literature
dealing with security protocols, whereas the right-hand side shows the spi calculus
specification of the protocol. Processes PA and PB represent the roles of agents A
and B, respectively. The process Psample puts the two behaviors in parallel, allowing
them to be synchronized on channel c. Since c is public, it can also be accessed by
a potential intruder.

First of all, A sends B a message M encoded by means of k over public channel
c, then B tries to decode it and, in case of success, acknowledges A by sending it
back the hashed cleartext. Finally, A checks that the received message matches with
H(M) and then proceeds with further operations. F (M) is an unspecified process; it
represents the behavior of A after the successful termination of the protocol session.

Let us now introduce some further notations and definitions about spi calculus,
that will be used throughout the paper.

fv(P) and fc(P) denote the set of free variables and constants occurring in pro-
cess P , respectively. Both sets can be computed easily by syntactically inspecting
process P ; for simplicity, it is assumed that name overloading is not allowed. Also,

3

1) A → B : {M}k

2) B → A : H(M)

PA(M)
∆
= c⟨{M}k⟩. c(x). [x is H (M)] F (M)

PB
∆
= c(y1). case y1 of {y2}k in c⟨H (y2)⟩. 0

Psample(M)
∆
= (νk)(PA(M) | PB)

Figure 1: A sample spi calculus specification.

A denotes the set of spi calculus names, and M(A) the set of all spi calculus terms
that can be built starting from A.

The usual implicit assumptions about perfect encryption apply in the spi calculus
as well as in other similar specification formalisms.

3. The Environment-Sensitive LTS model

The environment-sensitive labelled transition system (ES-LTS) defined in [9] de-
scribes all possible interactions of a given spi calculus process with its environment.
In such a model, each time the spi calculus process executes an input, the envi-
ronment can send it any data term that can be built starting from the current
environment knowledge. Since the set of these terms is infinite, it is represented
symbolically by a so-called generic term, so as to have a finite ES-LTS.

Each state of the ES-LTS is denoted (K ✄ P)Υ,Λ and is made up of the current
spi calculus process P , the current environment knowledge K, and a specification
of how symbolic terms occurring in P and K must be interpreted (Υ,Λ). Each
ES-LTS transition takes the general form:

(K ✄ P)Υ,Λ
µ$−→
φ

(K ′
✄ P ′)Υ′,Λ′ , (1)

where µ and φ are synthetic representations of the action performed by process P
and of the complementary action performed by the environment, respectively.

3.1. Knowledge Representation

The environment knowledge is represented in a minimized and canonical form.
It includes a set of messages learned by the intruder, with a labeling on its elements
that uniquely identifies them according to the order in which they have been added
to the set. The need for such a labeling derives from the features of testing equiva-
lence. If the interest was only in checking simple security properties related to what
data the intruder can generate, no labeling would be needed. If instead interest lies
in verifying testing equivalence, the intruder’s ability to classify the data items of its
knowledge has to be modeled according to when they have been learned. For exam-
ple, the spi calculus processes P ! c⟨M⟩.c⟨N⟩.c⟨M⟩.0 and Q ! c⟨M⟩.c⟨N⟩.c⟨N⟩.0
are not testing equivalent, although the set of data that the intruder can learn from
each of them is the same at each step. In fact, a simple test that can distinguish
between P and Q is the one that checks whether the third received data is equal to
the first one.

The labeling on the environment knowledge data items solves this problem and,
at the same time, makes it possible to identify such data items independently of their

4

particular value, which is another key feature needed in checking testing equivalence.
For example, the spi processes P ! (νk)c⟨{M}k⟩.0 and Q ! (νk)c⟨{N}k⟩.0 are
testing equivalent although their outputs are different; this can readily be recognized
by comparing the identifiers that the intruder assigns to the learned data, instead
of comparing the data themselves.

The environment knowledge is formally represented by a bijective function K :
Σ → L, where the domain Σ is the set of terms that the intruder has learned, and
the image L is the finite set of indexes uniquely identifying them. The countable,
ordered set of indexes is denoted as I, so that L ⊆ I. Of course, the intruder term
generation capabilities depend on Σ. If σ ∈ M(A) is a finite term, it is said that σ
can be produced by K, written K ⊢ σ, iff σ belongs to the closure of Σ with respect

to the spi calculus term composition operators, i.e. σ ∈ Σ̂.

Similarly, it is said that σ can be produced by Σ, written Σ ⊢ σ, iff σ ∈ Σ̂. As
shown in [9], Σ is always kept in a minimized and canonical form. The decidability
of K ⊢ σ and of Σ ⊢ σ has been proved in [9] and in [6], where the algorithms
to check them and to incrementally compute Σ are given. In the following, K ′ =
f(ρ,K) denotes the new knowledge that is reached from K after the environment
has observed the data term ρ.

3.2. Symbolic Data Representation

As already noted, an input action of the current spi calculus process is repre-
sented in the ES-LTS by means of a generic data term, which represents the infinite
set of terms that the environment can generate at that moment. Generic terms are
added to the spi calculus by extending the language with an additional infinite and
countable set of names Γ, such that Γ ∩ A = ∅ and Γ ∩ I = ∅. In the rest of this
paper, γ ranges over Γ. A generic term is a spi calculus term θ ∈ M(A ∪ I ∪ Γ)
which has at least one subterm γ ∈ Γ.

Each symbolic ES-LTS state is characterized by a (finite) current set of atomic
generic terms G ⊂ Γ. A function Υ : G → 2M(A∪I∪G), which is part of the symbolic
ES-LTS state, gives the current interpretation of atomic generic terms. Each γ ∈ G
is mapped onto a corresponding knowledge function domain Υ(γ) that represents
the set of terms that was available to the intruder when γ was generated.

When the term represented by γ is generated by the intruder it can take the

whole set of values Υ̂(γ), and a different subsequent behavior is possible for each
one of them. However, for the purpose of testing equivalence, such behaviors are
indistinguishable from one another, and can be represented as a single symbolic
behavior, until the occurrence of some operation is conditioned by the value that
was initially exchanged. Whenever this happens, only the behaviors corresponding
to values that satisfy the condition are allowed to proceed, and this is symbolically
described by narrowing the set of terms represented by each atomic generic term γ

down to the largest subset of Υ̂(γ) compatible with the operations performed.
In most cases, a narrowing of this kind is equivalent to the substitution of one or

more atomic generic terms with corresponding specialized generic terms or concrete

5

terms. A specialized generic term is a compound term which has at least one
atomic generic term as a subterm. For example, a pair splitting operation on a
generic term γ narrows the set of concrete terms represented by γ so as to include

only pairs of elements of Υ̂(γ), which is equivalent to applying the substitution
⟨(γ′, γ′′)/γ⟩, where γ′ and γ′′ are two new atomic generic terms representing the
two components of the pair.

Substitutions like the ones presented above are called specializations, because
they substitute atomic generic terms with corresponding specialized or concrete
ones. For this reason, atomic generic terms are also called unspecialized generic
terms. In the rest of this paper, ξ ranges over specializations.

Specializations are not powerful enough to precisely describe any kind of nar-
rowing that can occur on the sets of terms represented by generic terms. For this
reason, extended narrowing specifications are introduced, which makes it possible to
specify that a given specialization must occur, while one or more further specializa-
tions can not occur. Such narrowing specializations take the form of a pair ⟨ξ, δΛ⟩
where ξ is the specialization that must be applied and δΛ = {ξ1, . . . ξk} is the set of
forbidden further specializations. Of course, ⟨ξ, ∅⟩ = ξ.

As long as the computation proceeds, forbidden specializations are added up,
and the set of specializations obtained as the union of all forbidden specializations
accumulated up to the current state is denoted Λ. It complements Υ in specifying
the current interpretation of generic terms.

The set of all the specializations that can be applied in the current state depends
only on Υ and Λ and is denoted by SΥ,Λ. When a specialization ξ is applied to
a symbolic state, Υ and Λ are updated accordingly, and the new interpretation is
denoted by Υ{ξ},Λ{ξ}.

3.3. Canonical Representation

As already mentioned, when checking testing equivalence it is necessary to ab-
stract away from the exact value of the exchanged data. The only relevant thing
is how such data are related to the current intruder knowledge. The canonical
representation of a term σ with respect to an intruder knowledge K expresses
how σ is related to K. This concept can be introduced by extending the no-
tion of substitution. The substitutions originally introduced in [2] act on atomic
terms only. If this constraint is relaxed, it is possible to have substitution lists
λ = σ1/ρ1,σ2/ρ2, . . . ,σn/ρn, where some ρi are non-atomic terms. If λ is one of
these extended substitutions, the postfix operator [λ] replaces each occurrence of
term ρi with term σi.

The canonical representation of a term σ with respect to an intruder knowl-
edge K is a spi calculus term defined over the extended set of names A ∪ Γ ∪ I,
obtained by applying to σ a substitution that replaces each subterm ρ ∈ Dom(K)
by its corresponding unique identifier K(ρ). Such a substitution is represented
by a substitution list made up of an item K(ρ)/ρ for each ρ ∈ Dom(K). With
abuse of notation, this substitution is denoted K, and, consequently, the canonical
representation is written σ[K].

6

Since [K] substitutes each occurrence of ρ with its corresponding index K(ρ),
σ[K] actually specifies how σ can be built using the data items available in the
intruder knowledge, each one being identified by its index. If K ⊢ σ, then σ[K] ∈
M(Γ ∪ I), i.e. the canonical representation of a term that can be produced by K
does not contain any spi calculus name, but only generic terms and indexes, because
it can be built using the elements of the intruder knowledge only. In a similar way,
it is possible to define the canonical representation of any object containing spi
calculus terms.

3.4. The ES-LTS Derivation System

Transitions can be categorized into three different types, taking the following
forms:

(K ✄ P)Υ,Λ
τ

$−→
ξ[K′]

(K ′
✄ P ′)Υ′,Λ′ (2)

(K ✄ P)Υ,Λ $
σ[ξ][K′]

−−−−−−−−−→
⟨ξ,δΛ⟩[K′],δK

(K ′
✄ P ′)Υ′,Λ′ (3)

(K ✄ P)Υ,Λ $
σ[K]
−−−→

γ
(K ✄ P ′)Υ′,Λ (4)

All labels (including the component denoted as δK) are canonical representations
with respect to the new intruder knowledge K ′.

Transitions taking form (2) are related to synchronization events occurring inside
the spi process. In this case, the process action is denoted by the special symbol
τ , which represents an internal synchronization. The complementary action label
may contain a pure specialization; in this case the transition is referred to as a
specialization transition.

A transition taking form (3) is referred to as an output transition and represents
an output on channel σ. The complementary action label includes an item, denoted
by δK , which describes how the intruder knowledge is affected by the event, and may
contain an extended narrowing specification ⟨ξ, δΛ⟩. The process action specifies
the channel name σ after the application of specialization ξ. The overline symbol
indicates, as in the spi calculus, that the operation performed by the process on the
channel is an output.

A transition taking form (4) is referred to as an input transition and represents
an input from channel σ. It implies a data transfer from the environment to the
process. Thus, no modification in the environment knowledge takes place. The
process action is analogous to the previous one, whereas the complementary action
label is a new generic term symbolically representing any data term that can be
generated by the intruder.

The ES-LTS derivation system is an extension of the derivation system defined
in [2] for the reaction relation. The main rules specify when input and output
transitions may take place:

K⊢σ ⟨ξ,δΛ⟩∈Θ(ρ,KΥ,Λ) K′
Υ′,Λ′=f⟨ξ,δΛ⟩(ρ,KΥ,Λ)

(K ✄ σ⟨ρ⟩.P)Υ,Λ (
σ[ξ][K′]

−−−−−−−−−−−−−−−−−−−−→
⟨ξ,δΛ⟩[K′],⟨δ−

K
(ρ), δ=

K
(ρ), ρ⟩[K′]

(K′ ✄ P [ξ])Υ′,Λ′

(5)

7

K⊢σ γ ̸∈dom(Υ)

(K ✄ σ(x).P)Υ,Λ (
σ[K]
−−−→

γ
(K ✄ P [γ/x])Υ∪{(γ,dom(K))},Λ

(6)

where:

f⟨ξ,δΛ⟩(ρ,KΥ,Λ) = f(ρ[ξ],K[ξ])Υ{ξ},(Λ∪δΛ){ξ} (7)

Θ(ρ,KΥ,Λ) = {⟨ξ, δΛ⟩ | ξ ∈ SΥ,Λ, δΛ ∈ SΥ, f⟨ξ,δΛ⟩(ρ,KΥ,Λ) ∈ KΥ,Λ} (8)

Function f⟨ξ,δΛ⟩ is the symbolic version of function f after the application of the
narrowing specified by ⟨ξ, δΛ⟩. As can be seen in (7), it results from the composition
of the knowledge transformation implied by the application of ξ, the addition of δΛ

to Λ, and the knowledge transformation described by function f(). Θ(ρ,KΥ,Λ) is
the set of narrowings ⟨ξ, δΛ⟩ that make f⟨ξ,δΛ⟩(ρ,KΥ,Λ) a valid knowledge function.
KΥ, Λ is the set of all valid knowledge functions.

It is worth noting that it is possible that the new knowledge function K ′
Υ′,Λ′ ,

reached after the output of ρ, depend on how generic terms are specialized. There-
fore, there may be more than one possible K ′

Υ′,Λ′ , each one corresponding to a
different transition and to a different element of Θ(ρ,KΥ,Λ). In rule (5), the δK of
rule (3) has been expanded as

〈
δ−K(ρ), δ=

K(ρ), ρ
〉
[K ′], where:

• ρ is the term the process sent as output on the public channel σ, and that has
been observed by the environment,

• δ−K(ρ) is the set of all elements that are eliminated from K in the transforma-
tion from K to K ′ when ρ is received by the environment,

• δ=
K(ρ) is the set of terms that become decipherable after ρ has been received

by the environment, without being eliminated from the intruder knowledge
domain.

The semantics of specialization transitions is described by the following rules:

(K ✄ P)Υ,Λ (
τ−−−−→

ξ[K[ξ]]
(K ✄ P ′)Υ,Λ{ξ}

(K ✄ (P |Q))Υ,Λ (
τ−−−−→

ξ[K[ξ]]
(K ✄ (P ′|Q))Υ,Λ{ξ}

(9)

ξ∈σ•ρ ξ ̸=⊤

(K✄(σ⟨θ⟩.P | ρ(x).Q))Υ,Λ (
τ−−−−→

ξ[K[ξ]]
(K ✄ (σ⟨θ⟩.P | ρ(x).Q))Υ,Λ{ξ}

(10)

ξ∈σ•ρ ξ ̸=⊤

(K ✄ ([σ is ρ]P))Υ,Λ (
τ−−−−→

ξ[K[ξ]]
(K ✄ [σ is ρ]P)Υ,Λ{ξ}

(11)

γ′,γ′′ ̸∈dom(Υ)

(K ✄ (let (x,y) = γ in P))Υ,Λ (
τ−−−−−−→

(γ′,γ′′)/γ
(K✄(let (x,y) = γ in P))Υ,Λ{(γ′,γ′′)/γ}

(12)

−

(K ✄ (case γ of 0:P suc(x):Q))Υ,Λ (
τ−−→

0/γ
(K✄(case γ of 0:P suc(x):Q))Υ,Λ{0/γ}

(13)

8

γ′ ̸∈dom(Υ)

(K ✄ (case γ of 0:P suc(x):Q))Υ,Λ (
τ−−−−−−→

suc(γ′)/γ
(K✄(case γ of 0:P suc(x):Q))Υ,Λ{suc(γ′)/γ}

(14)

ξ∈θ◦ρ ξ ̸=⊤

(K ✄ (case θ of {x}ρ in P))Υ,Λ (
τ−−−−→

ξ[K[ξ]]
(K ✄ (case θ of {x}ρ in P))Υ,Λ{ξ}

(15)

ξ∈η⊕ρ ξ ̸=⊤

(K ✄ (case η of {[x]}ρ in P))Υ,Λ (
τ−−−−→

ξ[K[ξ]]
(K ✄ (case η of {[x]}ρ in P))Υ,Λ{ξ}

(16)

ξ∈η⊖ρ ξ ̸=⊤

(K ✄ (case η of [{x}]ρ in P))Υ,Λ (
τ−−−−→

ξ[K[ξ]]
(K ✄ (case η of [{x}]ρ in P))Υ,Λ{ξ}

(17)

Rule (9) specifies how the parallel composition operator is dealt with. The other
rules specify all the situations in which specialization transitions can occur. The
operators •, ◦, ⊕, and ⊖ are unification operations. Each one of them yields the
minimal sets of specializations that, when applied, make some condition true. More
precisely, σ • ρ is the set of specializations that must be applied to σ and ρ so that
they can be matched. Formally, σ • ρ ! {ξ ∈ SΥ,Λ | σ[ξ] = ρ[ξ]}. Similarly, σ ◦ ρ
yields the specializations that make σ a term encrypted under key ρ, whereas ⊕ and
⊖ are the public and private key variants of ◦.

ES-LTS traces are defined in the usual way as sequences of transition labels. In
[9] it is proved that trace equivalence defined on the ES-LTS coincides with testing
equivalence.

4. Symmetry-Based Reductions

The ES-LTS generation and the consequent trace comparison suffer from the
state-explosion problem. In order to reduce the number of states, several techniques
[7, 21] have been proposed and adopted, mainly in the field of reachability analysis.
Formerly, symmetry-based techniques have been employed, mainly to check for the
existence of deadlocks, in the Petri net community [12]. The approach adopted here
is mainly inspired by the pioneering work of [21] and, to the best of our knowledge,
this is the first time that a symmetry-based reduction technique has been applied
to improve the efficiency of automatic testing equivalence verification.

In [21], two kinds of symmetry are analyzed and exploited: process and state
symmetry. The latter cuts down the number of outgoing edges from a given state
of the model state space by performing a partition of the set of processes. This
partition is based on their local state, and then only the edges corresponding to
a single, representative process (the leader process) are constructed and stored for
each equivalence class.

Similarly, this technique reduces the number of transitions departing from a
given ES-LTS state to be explicitly considered due to the fact that, under suitable
process equivalence conditions, all processes in the same equivalence class lead to the
same traces in the ES-LTS; so, in the construction of the ES-LTS itself it is enough

9

to take only one process per class into account. Unlike [7, 21], this approach also
deals with the symbolic data representation in the ES-LTS and is, therefore, suitable
for the more powerful testing equivalence verification.

Of course, the notion of process equivalence must be made clear, bearing in
mind that each process also has a context, consisting of the intruder knowledge
K, the function Υ and the set of forbidden substitutions Λ; it follows that process
equivalence will also involve context equivalence.

The notion of equivalence among processes proposed here is based on the syn-
tactical identity of processes up to a substitution of both the constant and free
variable names, that is to say, two processes Pi and Pj are equivalent iff there exists
a suitable substitution which maps the names of constants and free variables of the
first process on the constants and free variables of the second process.

Such a substitution induces a process equivalence only if the context is unaffected
by the substitution: this trivially holds for the free variable names, in fact given a
finite spi calculus process (νm̃)(P1 | . . . | Pn), where (νm̃) will be used as a shorthand
notation for (ν m1) · · · (ν mn), the spi calculus semantics guarantees that fv(Pi) ∩
fv(Pj) = ∅ for each i ̸= j with i, j ∈ [1, . . . , n].

More attention must be paid to constants, because it must be ensured that
a substitution involving constants does not change the semantics of the behavior
expression in force at the starting ES-LTS state. If this condition does not hold,
there is no process equivalence, because the substitution could be indirectly observed
by other processes.

The relation R informally described above can now be considered formally. It
can be proved with ordinary effort that R is symmetric, reflexive and transitive:
so, R is in fact an equivalence relation, and can be used to partition a parallel
composition of spi calculus processes. Since spi calculus processes are finite, the
partition of their parallel sub-processes can be computed algorithmically. Given a
spi process (νm̃)(Pi | Pj | P) with context K, Λ and Υ, R is defined as

Pi R Pj ⇐⇒ ∃ λij |

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

λij is a bijective substitution
Pi[λij] = Pj

λij = λ−1
ij

Dom(λv
ij) = Im(λv

ij) = fv(Pi) ∪ fv(Pj)
Dom(λc

ij) = Im(λc
ij) = fc(Pi) ∪ fc(Pj)

K[λij] = K, Λ[λij] = Λ, Υ[λij] = Υ
(νm̃)(Pi | Pi[λij] | P) = (νm̃)(Pi | Pi[λij] | P)[λij]

(18)

Above, a substitution λ has been explicitly partitioned into two disjoint parts: λc

involving only constant names, and λv involving only free variable names, when use-
ful. Relations Dom(λv

ij) = Im(λv
ij) = fv(Pi) ∪ fv(Pj) and Dom(λc

ij) = Im(λc
ij) =

fc(Pi) ∪ fc(Pj) mean that constant names replace constant names and variables
replace variables.

The guarantee that the substitution does not affect the context is given by:
K[λij] = K, Λ[λij] = Λ, and Υ[λij] = Υ, which refers to the sets giving the
state interpretation, and (νm̃)(Pi | Pi[λij] | P) = (νm̃)(Pi | Pi[λij] | P)[λij], which

10

states that the substitution leaves unchanged the syntactical form of the behavior
expression of the state.

As for the actual implementation of the algorithm, the S3A tool, for each pair
of disjoint sub-processes Pi and Pj of the process associated with the current ES-
LTS state, first checks their syntactical identity disregarding variable and constant
names. If Pi and Pj pass this test, then the tool tries to construct the substitu-
tions λv

ij and λc
ij by matching variable and constant names located in syntactically

equivalent positions. As the last step, the tool checks whether the above-mentioned
substitutions, λc

ij in particular, do not affect the context. When it finds multi-
ple symmetries for the same ES-LTS state, the tool applies all of them as long
as the sub-processes they operate upon are disjoint. When two or more symme-
tries apply to overlapping sub-processes, the tool selects the symmetry that acts
on the “longest” sub-processes, where the length of a sub-process is the number of
behavioral components it has.

For example, consider the following process:

P1 | P2 ! c(x).c(y).c(z).[x is z] c⟨y⟩.0 | c(t).c(w).c(u).[t is u] c⟨w⟩.0 ,

(with K = ∅, Υ = ∅ and Λ = ∅). The substitution λ = ⟨t/x, w/y, u/z, x/t, y/w,
z/u⟩ satisfies (18) and P1[λ] = P2 (and P1 = P2[λ]). If instead

P1 | P2 ! c(x).c(y).c(z).[x is z] c⟨y⟩.0 | c(t).c(w).c(u).[w is u] c⟨w⟩.0

is considered, there is no substitution satisfying (18): in fact it is necessary to map
w on y in the second input event, and on x in the test construct, so it is impossible
to build an injective substitution. This occurs because in P2 the comparison is
between the second and the third input data, whereas P1 compares the first and
the third input data. Going on to consider a process:

(νm̃)(P1 | P2 |P3) ! (νM)(νN)(c(x).c⟨M⟩.0 | c(y).c⟨N⟩.0 | c⟨M⟩.0)) ,

with K = ∅, Υ = ∅ and Λ = ∅: here λ = ⟨x/y, y/x, M/N, N/M⟩ gives P1 = P2[λ],
but P3[λ] ̸= P3, thus the last requirement which was posed on the substitution,

(νm̃)(Pi | Pi[λij] | P) = (νm̃)(Pi | Pi[λij] | P)[λij] ,

is violated. As a last example consider the process:

(νm̃)(P1 | P2) ! (νM)(νN)(c(x).c⟨M⟩.0 | c(y).c⟨N⟩.0) ,

with context K = {⟨c, l0⟩, ⟨M, l1⟩}, Υ = ∅ and Λ = ∅. A substitution λ =
⟨x/y, y/x, M/N, N/M⟩ gives the equivalence between P1 and P2, but the envi-
ronment can distinguish M from N , since M is already in the attacker’s knowledge.
In fact, the requirement K[λ] = K is violated in this case.

Theorem 1 Given a spi process P with context K, Υ, Λ and a bijective substitution
λ on constant and free variable names such that λ = λ−1, then:

(K ✄ P)Υ,Λ
µ

$−→
φ

(K ′
✄ P ′)Υ′,Λ′ ⇐⇒ (K ✄ P)Υ,Λ[λ]

µ
$−→

φ
(K ′

✄ P ′)Υ′,Λ′ [λ]

11

The claim for reduction rules (5-6) and (9-17) must be proved separately. Con-
sidering for example the first rule (5), it has to be proved that:

K⊢σ ⟨ξ,δΛ⟩∈Θ(ρ,KΥ,Λ) K′
Υ′,Λ′=f⟨ξ,δΛ⟩(ρ,KΥ,Λ)

(K ✄ σ⟨ρ⟩.P)Υ,Λ (
σ[ξ][K′]

−−−−−−−−−−−−−−−−−−−−−→
⟨ξ,δΛ⟩[K′],⟨δ−

K
(ρ), δ=

K
(ρ), ρ⟩[K′]

(K′ ✄ P [ξ])Υ′,Λ′

(5)

⇕
K[λ] ⊢ σ[λ] ⟨ξ[λ], δΛ[λ]⟩ ∈ Θ(ρ[λ], K[λ]Υ[λ],Λ[λ])
K′[λ]Υ′[λ],Λ′[λ] = f⟨ξ[λ],δΛ[λ]⟩(ρ[λ], K[λ]Υ[λ],Λ[λ])

(K ✄ σ⟨ρ⟩.P)Υ,Λ[λ] (
σ[ξ][K′]

−−−−−−−−−−−−−−−−−−−−−→
⟨ξ,δΛ⟩[K′],⟨δ−

K
(ρ), δ=

K
(ρ), ρ⟩[K′]

(K′ ✄ P [ξ])Υ′,Λ′ [λ]

(19)

(=⇒) By applying λ to σ⟨ρ⟩.P and its context in (5):

K[λ] ⊢ σ[λ] ⟨ξλ, δΛλ
⟩ ∈ Θ(ρ[λ], KΥ[λ],Λ[λ])

K′
λ
Υ′

λ
,Λ′

λ

= f⟨ξλ,δΛλ
⟩(ρ[λ], K[λ]Υ[λ],Λ[λ])

(K ✄ σ⟨ρ⟩.P)Υ,Λ[λ] (
σ[λ][ξλ][K′

λ
]

−−−−−−−−−−−−−−−−−−−−−−−−−→
⟨ξλ, δΛλ

⟩[K′
λ],

D

δ−
K[λ]

(ρ[λ]), δ=
K[λ](ρ[λ]), ρ[λ]

E

[K′
λ]

(K′
λ ✄ P [λ][ξλ])Υ′

λ
,Λ′

λ

(20)

In order to prove this implication it is necessary to obtain (19) from (20). In
particular, being λ bijective and λ = λ−1, it is not difficult to prove that:

K ⊢ σ ⇔ K[λ] ⊢ σ[λ]

⟨ξ, δΛ⟩ ∈ Θ(ρ,KΥ,Λ) ⇔ ⟨ξ[λ], δΛ[λ]⟩ ∈ Θ(ρ[λ],KΥ[λ],Λ[λ])

K ′
Υ′,Λ′ = f⟨ξ,δΛ⟩(ρ,KΥ,Λ) ⇔ K ′[λ]Υ′[λ],Λ′[λ] = f⟨ξ[λ],δΛ[λ]⟩(ρ[λ],K[λ]Υ[λ],Λ[λ])

P [λ][ξ[λ]] = (P [ξ])[λ]

so that ξλ = ξ[λ], δΛλ = δΛ[λ], K ′
λ = K ′[λ], Υ′

λ = Υ′[λ] and Λ′
λ = Λ′[λ]. Thus

(20) becomes:

K[λ] ⊢ σ[λ] ⟨ξ[λ], δΛ[λ]⟩ ∈ Θ(ρ[λ], KΥ[λ],Λ[λ])
K′[λ]Υ′[λ],Λ′[λ] = f⟨ξ[λ],δΛ[λ]⟩

(ρ[λ], K[λ]Υ[λ],Λ[λ])

(K ✄ σ⟨ρ⟩.P)Υ,Λ[λ] (
σ[λ][ξ[λ]][K′[λ]]

−−−−−−−−−−−−−−−−−−−−−−−−−−→
⟨ξ[λ], δΛ[λ]⟩[K

′[λ]],
D

δ−
K[λ]

(ρ[λ]), δ=
K[λ](ρ[λ]), ρ[λ]

E

[K′[λ]]

(K′ ✄ P [ξ])Υ′,Λ′ [λ]

(21)

Now it has to be proved that the transition label of (21) is equal to the label of
(19), i.e.:

$
σ[λ][ξ[λ]][K′[λ]]

−−−−−−−−−−−−−−−−−−−−−−−−−−→
⟨ξ[λ], δΛ[λ]⟩[K

′[λ]],
D

δ−
K[λ]

(ρ[λ]), δ=
K[λ](ρ[λ]), ρ[λ]

E

[K′[λ]]

= $
σ[ξ][K′]

−−−−−−−−−−−−−−−−−−−−−→
⟨ξ,δΛ⟩[K′],⟨δ−

K(ρ), δ=
K(ρ), ρ⟩[K′]

but this is easily done since θ[λ][K[λ]] = θ[K] holds for any spi term θ.
(⇐=) Relies on the fact that λ = λ−1.

The proof for the remaining reduction rules can be carried out in a similar way.

12

c

l0
0

c⟨{M}k⟩. c(x). [x is H(M)] 0

|c(x). case x of {y}k in c⟨H(y)⟩. 0

|c⟨{M}k⟩. c(x). [x is H(M)] 0

|c(x). case x of {y}k in c⟨H(y)⟩. 0

c

l0

{M}k

l1

11

c(x). [x isH(M)] 0

|c(x). case x of {y}k in c⟨H(y)⟩. 0

|c⟨{M}k⟩. c(x). [x is H(M)] 0

|c(x). case x of {y}k in c⟨H(y)⟩. 0

c

l0

{M}k

l1

12

c⟨{M}k⟩. c(x). [x is H(M)] 0

|c(x). case x of {y}k in c⟨H(y)⟩. 0

|c(x). [x isH(M)] 0

|c(x). case x of {y}k in c⟨H(y)⟩. 0

c

l0
13

c⟨{M}k⟩. c(x). [x is H(M)] 0

|case γ0 of {y}k in c⟨H(y)⟩. 0

|c⟨{M}k⟩. c(x). [x is H(M)] 0

|c(x). case x of {y}k in c⟨H(y)⟩. 0

c

l0
14

c⟨{M}k⟩. c(x). [x is H(M)] 0

|c(x). case x of {y}k in c⟨H(y)⟩. 0

|c⟨{M}k⟩. c(x). [x is H(M)] 0

|case γ0 of {y}k in c⟨H(y)⟩. 0

c

l0

{M}k

l1

21

c(x). [x isH(M)] 0

|c(x). case x of {y}k in c⟨H(y)⟩. 0

|c(x). [x is H(M)] 0

|c(x). case x of {y}k in c⟨H(y)⟩. 0

c

l0

{M}k

l1

22

c⟨{M}k⟩. c(x). [x is H(M)] 0

|case γ0 of {y}k in c⟨H(y)⟩. 0

|c(x). [x is H(M)] 0

|c(x). case x of {y}k in c⟨H(y)⟩. 0

c

l0

{M}k

l1

23

c⟨{M}k⟩. c(x). [x is H(M)] 0

|c(x). case x of {y}k in c⟨H(y)⟩. 0

| [γ0 isH(M)] 0

|c(x). case x of {y}k in c⟨H(y)⟩. 0

c

l0

{M}k

l1

24

c⟨{M}k⟩. c(x). [x is H(M)] 0

|c(x). case x of {y}k in c⟨H(y)⟩. 0

|c(x). [x is H(M)] 0

|case γ0 of {y}k in c⟨H(y)⟩. 0

✘✘✘✘✘✘✘✘✘✘✘✘

l0 l1

✟
✟

✟
✟

✟
✟

l0 l1

❍
❍

❍
❍

❍
❍

γ0l0

❳❳❳❳❳❳❳❳❳❳❳❳

γ0l0

✘✘✘✘✘✘✘✘✘✘✘✘

l0 l1 l0 γ0

❍
❍

❍
❍

❍
❍

l0 γ0

❵❵❵❵❵❵❵❵❵❵❵❵❵❵❵

l0 γ0

. . .

.

Figure 2: A quite simple protocol: partial ES-LTS with states and traces.

Theorem 2 Given a context K, Υ, Λ, a process P ! (νm̃)(Pi | Pi[λij] | P), and
a substitution λij defined as in (18), then:

(K ✄ (νm̃)(Pi | Pi[λij] | P))Υ,Λ
µ

$−→
φ

(K ′
✄ (νm̃)(P ′

i | Pi[λij] | P ′))Υ′,Λ′

⇕

(K ✄ (νm̃)(Pi | Pi[λij] | P))Υ,Λ
µ

$−→
φ

(K ′
✄ (νm̃)(P ′

i | Pi[λij] | P ′))Υ′,Λ′ [λij]

Because of (18): K[λij] = K, Λ[λij] = Λ, Υ[λij] = Υ, (νm̃)(Pi | Pi[λij] | P) =
(νm̃)(Pi | Pi[λij] | P)[λij], and λij = λ−1

ij , so it follows that:

(K ✄ (νm̃)(Pi | Pi[λij] | P))Υ,Λ = (K ✄ (νm̃)(Pi | Pi[λij] | P))Υ,Λ[λij] ,

and the hypotheses of Theorem 1 hold. Theorem 2 states that, under suitable
hypotheses, two identical transitions that originate from the same state and lead
to two states that differ only by a substitution of constant and free variable names,
i.e. where hypotheses of Theorem 1 still hold, are allowed. Thus, Theorem 2 can be
recursively applied to obtain two (sub)-ES-LTSs with the same transition labels and
corresponding states, barring a substitution. In practice, since one of the two (sub)-
ES-LTSs has exactly the same labels as the other, the redundant (sub)-ES-LTS can
be omitted, both in generating and comparing traces.

5. An Example

Fig. 2 shows how this reduction technique works on two parallel sessions of a
simple protocol inspired by [10], where two agents A and B share a secret key
k and exchange two messages. The initial intruder knowledge is assumed to be
K = {⟨c, l0⟩}. In Fig. 2 each ES-LTS state is represented by a box showing the

13

intruder knowledge K (upper part) and the spi calculus specification of the process
P (lower part). Thus, the spi calculus specification of the protocol as a whole can
be found in the lower part of the box that corresponds to state 0. Set Λ is always
empty in this case, so it is not shown, and Υ is not explicitly represented since it
can be easily deduced from the state where each generic term was generated. Each
arc connecting a pair of states has been labelled with µ and φ, on the left and right
side respectively. In this example ξ and δΛ are always empty in the complementary
action φ of output transitions, and δK is the same as the output term ρ, so φ is
simply represented as ρ[K ′]. Moreover, internal events on channels known to the
intruder are not represented, since they only generate pure τ labels and do not
contribute to traces. Dashed states and their corresponding thin input lines are
those identified as redundant by this technique. Dots under thick states mean that
the evolution of the ES-LTS produces other states not shown in the figure.

State 0 can be partitioned into a single equivalence class, containing two in-
stances of c⟨{M}k⟩. c(x). [x isH(M)] 0 | c(x). case x of {y}k in c⟨H(y)⟩. 0. The
substitution simply maps each x and y of the first instance onto the corresponding
ones of the second. It should be noted that the free variables x and y of one instance
are different from their corresponding counterparts, because of their different scope.

The output event (action) performed by the first instance leads to the state
marked 11 in Fig. 2, whereas state 12 is reached by considering the corresponding
event of the second instance. The labels of the two transitions are the same (output
of message l1 on channel l0) and the two states differ only in the role of their free
variables, i.e. they are the same state except for a substitution of the variable
names. Thus, the sub-traces generated starting with state 11 are the same as those
starting from state 12. The same reasoning applies to states 13 and 14, obtained
by considering the input event (action) of the two instances. Here a generic term
γ0 is created by the input action on channel l0.

Starting with state 12, there are three equivalence classes: two of them are made
up by c⟨{M}k⟩. c(x). [x isH(M)] 0 and c(x). [x isH(M)] 0 respectively, whereas the
third one contains two instances of c(x). case x of {y}k in c⟨H(y)⟩. 0. These two
instances lead to states 22 and 24, where a similar reasoning can be applied.

6. Experimental Results and Related Work

A preliminary version of a tool, called S3A, that fully implements the technique
described in [9] and the enhancement discussed in this paper, has been used to
verify several cryptographic protocols and, in particular, to test the efficiency of
the proposed symmetry-based reduction technique. Without symmetry-based re-
duction, the ES-LTS of Fig. 2 has 2,206,186 states, while their number drops to
215,268 when symmetry-based reductions are used (less than 10%).

Moreover, this approach has been compared with other tools implementing sim-
ilar reduction techniques for cryptographic protocols analysis. To the best of our
knowledge, only the brutus model checker [8] implements symmetry-based reduc-
tion techniques to speed up the verification of security properties of cryptographic
protocols; both S3A and brutus carry out the whole analysis, including symmetry-

14

Table 2: Experimental results.

brutus S3A
Prot. Init Resp None Symm None Symm Time
N-S 1 1 1,208 1,208 81 81 < 1s
N-S 1 2 1,227,415 613,713 36,233 17,365 2s
N-S 2 2 X X 9,007,163 2,176,344 195s
N-S 2 3 X X X 390,126,070 94, 955s
WMF 3 3 X X X 40,959,126 50s

based reductions, in a fully automated way. Moreover, brutus also uses partial
order reductions, to further cut down the number of states, but since interest here
is in symmetries, this paper limits the analysis to this topic.

In [8] numerical results are given for the analysis of three popular protocols,
namely 1KP [3], Needham-Schroeder with public key (N-S) [18] and the Wide
Mouthed Frog protocol (WMF) [5]. For the purposes of this paper, the analy-
sis of the last two protocols is more interesting, since it has been carried out with
an increasing number of instances for each role, giving ideas of the exponential
growth of the number of states when the number of instances of each role increases.

The first column of Table 2 shows the protocol name acronym and the number of
instances of the initiator and responder roles respectively. The second column shows
the number of states generated by brutus when no reductions are applied (None
sub-column) and when symmetry-based reductions are used (Symm sub-column).

The rightmost column lists the results obtained with S3A. An ’X’ symbol is used
when the number of states is too big to be computed with reasonable resources (>
700,000,000 states). For S3A, the Time sub-column also lists the execution times,
in seconds, when the tool is run on an Athlon XP 2100+ PC.

The comparison is based on the number of states instead of execution time
because, to the best of our knowledge, no execution time information is publicly
available for brutus.

Although brutus also implements partial order reductions whose results are
not depicted here, it must be pointed out that, when the comparison is carried out
using the same reduction technique, S3A behaves undoubtedly better.

The second and third row of Table 2 show that the compression ratio on the total
number of states achieved by symmetry-based reductions is about 1 : 2 when both
tools work on the same problem “N-S 1 2” (613, 713/1, 227, 415 and 17, 365/36, 233),
and the performance of S3A improves, reaching 1 : 4.14, when the problem size
increases, as in “N-S 2 2” (2, 176, 344/9, 007, 163). This result demonstrates that
symmetry-based reductions perform better when the number of instances of roles
grows, and more symmetries can be exploited. For the same reason, it is easy to
understand why they do not yield any advantage for “N-S 1 1”.

It can also be noted that S3A performs better than brutus in absolute terms,
both with and without the help of symmetry-based reductions: in fact the ratio
between the number of states generated by the tools falls between 1 : 15 (81 : 1, 208)

15

and 1 : 35 (17, 365 : 613, 713).
The difference is mainly due to the fact that brutus is a concrete model checker,

i.e. when the process performs an input action, all messages that the intruder can
build starting from its knowledge have to be explicitly considered. This number
is infinite even if the knowledge is finite, thus the exhaustive message generation
is restricted by means of an artificial upper limit on the size of the messages the
intruder is enabled to generate. Although this limit makes the problem tractable,
it potentially implies a restriction on the attacks that the technique can detect,
and input event management still remains a critical point for the explosion of the
number of states. On the other hand, S3A adopts a symbolic representation of
input messages, with a twofold advantage: input events are not a potential point
of state explosion, and having no limitations on message lengths and so on, our
state generation is exhaustive. Moreover, S3A also deals with non-atomic keys and
checks safety properties by means of testing equivalence verification, which allows
secrecy properties to be formulated in a more accurate way than with systems like
brutus.

For what concerns overheads, the experiments carried out on an instrumented
version of the tool show that S3A spends less than 10% of its overall execution time
dealing with symmetry-based reductions, a figure more than acceptable given the
overall performance gains they give. To the best of our knowledge, no information
about the overheads of symmetry and partial order reductions is publicly avail-
able for brutus, although the algorithms used to carry them out are thoroughly
described in [8].

7. Conclusions

The results presented in this paper extend those achieved previously in the field
of automatic verification of security protocols, because they provide evidence that
there is a viable alternative to the use of theorem proving for the verification of
complex security properties based on testing equivalence.

With respect to [4], the step-by-step knowledge equivalence verification is no
longer needed, because the ES-LTS transition labels introduced in [9] incorporate
all the information needed to verify testing equivalence. Moreover, [4] deals with a
spi calculus dialect where public-key encryption, hashing, integers, and non-atomic
keys are not considered.

In addition, symmetries arising from multiple parallel sessions are exploited by
a reduction technique which limits the size of the model to be checked and can be
implemented in a fully automated way with acceptable overheads with respect to
the analysis process as a whole.

The advantages of this technique, which are difficult to theoretically quantify,
have been verified with the S3A tool: its underlying theoretical framework [9] is
more sophisticated and complex than many others, since it deals with testing equiv-
alence, thus allowing a finer grain analysis of secrecy properties than is possible with
reachability analysis. Moreover, it does not suffer from drawbacks such as handling
only atomic keys and/or limitations on the size of messages and so on. Despite this

16

greater generality, S3A has provided encouraging results, even better than those ob-
tained using other tools based on a simpler and more limited theoretical approach.

Further improvements of the technique presented here can be achieved by defin-
ing other testing equivalence preserving reductions such as, for example, reductions
based on partial order, or by extending the technique to deal with sub-expressions
that are equal up to the substitution of generic terms.

Acknowledgements

This work was developed within the framework of the CNR project “Metodi e
strumenti per la progettazione di sistemi software-intensive ad elevata complessità”.
The authors wish to thank the anonymous reviewers, whose valuable comments and
suggestions helped to improve the quality of this paper.

References

1. M. Abadi and A. D. Gordon, “A bisimulation method for cryptographic protocols,”
Nordic J. Comput. 5 (1998) 267–303.

2. M. Abadi and A. D. Gordon, “A calculus for cryptographic protocols the spi calcu-
lus,” SRC - Research Report 149, Digital System Research Center, 1998.

3. M. Bellare, J. Garay, R. Hauser, A. Herberg, H. Krawczyk, M. Steiner, G. Tsudik,
and M. Waidner, “iKP - A family of secure electronic payment protocols,” Proc. 1st
USENIX Workshop on Electronic Commerce, Berkeley, CA, USENIX Assoc., 1995,
pp. 157–166.

4. M. Boreale, R. De Nicola, and R. Pugliese, “Proof techniques for cryptographic
processes,” SIAM J. Comput. 31 (2002) 947–986.

5. M. Burrows, M. Abadi, and R. Needham, “A logic of authentication,” Proceedings
of the Royal Society, Series A 426 (1989) 233–271.

6. I. Cibrario Bertolotti, L. Durante, R. Sisto, and A. Valenzano, “A new knowledge
representation strategy for cryptographic protocol analysis,” Proc. Tools and Algo-
ritms for the Construction and Analysis of Systems (TACAS 2003), Berlin, Lecture
Notes in Computer Science, vol. 2619, Springer-Verlag, 2003, pp. 284–298.

7. E. M. Clarke, S. Jha, and W. Marrero, “Partial order reductions for security protocol
verification,” Proc. Tools and Algoritms for the construction and Analysis of Systems
(TACAS 2000), Berlin, Lecture Notes in Computer Science, vol. 1785, Springer-
Verlag, 2000.

8. E. M. Clarke, S. Jha, and W. Marrero, “Verifying security protocols with Brutus,”
ACM Trans. Softw. Eng. Meth. 9 (2000) 443–487.

9. L. Durante, R. Sisto, and A. Valenzano, “Automatic testing equivalence verification
of spi calculus specifications,” ACM Trans. Softw. Eng. Meth. 12 (2003) 222–284.

10. M. Fiore and M. Abadi, “Computing symbolic models for verifying cryptographic
protocols,” Proc. 14th IEEE Computer Security Foundations Workshop (CSFW
2001), Washington, IEEE Computer Society Press, 2001, pp. 160–173.

11. S. Gnesi, D. Latella, and G. Lenzini, “A BRUTUS logic for the Spi-Calculus,” Proc.
WITS’02, 2002.

12. K. Jensen, Coloured Petri nets: basic concepts, analysis methods and practical use
(Springer-Verlag, Berlin, 1995).

13. G. Lowe, “Breaking and fixing the Needham-Schroeder public-key protocol using

17

FDR,” Proc. Tools and Algoritms for the Construction and Analysis of Systems
(TACAS 1996), Berlin, Lecture Notes in Computer Science, vol. 1055, Springer-
Verlag, 1996, pp. 147–166.

14. G. Lowe, “Some new attacks upon security protocols,” Proc. 9th IEEE Computer
Security Foundations Workshop (CSFW 1996), Washington, IEEE Computer Soci-
ety Press, 1996, pp. 162–169.

15. G. Lowe, “Casper: a compiler for the analysis of security protocols,” Proc. 10th
IEEE Computer Security Foundations Workshop (CSFW 1997), Washington, IEEE
Computer Society Press, 1997, pp. 18–30.

16. J. K. Millen, S. C. Clark, and S. B. Freedman, “The Interrogator: Protocol security
analysis,” IEEE Trans. Softw. Eng. 13 (1987) 274–288.

17. R. Milner, J. Parrow, and D. Walker, “A calculus of mobile processes, parts I and
II,” Inf. Comput. 100 (1992) 1–77.

18. R. Needham and M. Schroeder, “Using encryption for authentication in large net-
works of computers,” Communications of the ACM 21 (1978) 993–999.

19. L. C. Paulson, “The inductive approach to verifying cryptographic protocols,” J.
Comput. Sec. 6 (1998) 85–128.

20. S. Schneider, “Verifying authentication protocols in CSP,” IEEE Trans. Softw. Eng.
24 (1998) 741–758.

21. A. P. Sistla, V. Gyuris, and E. A. Emerson, “Smc: A symmetry-based model checker
for verification of safety and liveness properties,” ACM Trans. Softw. Eng. Meth.
9 (2000) 133–166.

18

