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Testing equivalence is a powerful means for expressing the security properties of cryptographic
protocols, but its formal verification is a difficult task because of the quantification over contexts
on which it is based. Previous papers have provided insights on using theorem proving for the
verification of testing equivalence of spi calculus specifications. This paper addresses the same
verification problem, but uses a state exploration approach. The verification technique is based
on the definition of an environment-sensitive, labeled transition system representing a spi calculus
specification. Trace equivalence defined on such a transition system coincides with testing equiva-
lence. Symbolic techniques are used to keep the set of traces finite. If a difference in the traces of
two spi descriptions (typically a specification and the corresponding implementation of a protocol)
is found, it can be used to automatically build the spi calculus description of an intruder process
that can exploit the difference.
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1. INTRODUCTION

Due to the increasing importance of secure distributed applications, such as elec-
tronic commerce, formal verification of cryptographic protocols is being extensively
studied by several researchers. Some have investigated proof techniques based on
various proof systems and description formalisms [Abadi and Gordon 1998; Bore-
ale et al. 2002; Paulson 1998; Schneider 1998]. Although partial automation of the
proofs is possible using theorem provers, such an approach is generally very time
consuming and requires considerable expertise. An alternative approach, which is
simpler and quicker, is to use state exploration methods such as model checking
(e.g., [Clarke et al. 2000; Lowe 1996; 1997; Lowe and Roscoe 1997; Millen et al.
1987]). This requires modeling of the protocol behavior as a reasonably sized finite
state system, which generally entails introducing simplifying assumptions that can
reduce the accuracy of the analysis. Nevertheless, this form of verification has the
invaluable advantage of being fully automatic.

Both theorem proving and state exploration have been used for several description
formalisms. In this paper, attention is focused on spi calculus [Abadi and Gordon
1999], a process algebra derived from π-calculus [Milner et al. 1992] with some
simplification and the addition of cryptographic operations. The strength of spi
calculus, compared to similar formalisms, is predominantly in its simplicity and
accuracy in describing cryptographic protocols and their security requirements. In
particular, in [Abadi and Gordon 1999], it is shown how authentication and secrecy
can be expressed easily using testing equivalence. For example, if P (M) is the
description of a cryptographic protocol to exchange a message M , a strong secrecy
requirement can be simply expressed by saying that for any M ′, P (M) and P (M ′)
must be testing equivalent, i.e., any tester process specified in spi must be unable to
distinguish their behaviors (the testing equivalence we refer to in this paper is the
may-testing equivalence defined in [De Nicola and Hennessy 1984]). This approach
enjoys two important properties.

First, there is no need to develop a specification of the attacker, because an
intruder definition is implicitly contained in the testing equivalence concept (tester
processes actually represent all the intruder behaviors that can be specified in spi
calculus). It is worth noting that the explicit intruder specification that is required
by some other methods [Schneider 1998], is not only extra work, but also a potential
weak point because it is a possible source of errors. From this point of view, tools
such as Brutus [Clarke et al. 2000] and Athena [Song 1999], which do not require
an explicit specification of the attackers, are certainly preferred.

The second important point in favor of the spi calculus approach is its accuracy
in specifying both the protocol and its properties. Unlike most other specification
formalisms, which only provide the means for specifying the exchanged messages
and make implicit assumptions for checking and decoding the messages, spi calcu-
lus enables a precise description of all the operations performed by each protocol
principal. It is also very powerful for describing the messages, because for exam-
ple, it admits structured keys in addition to atomic keys. Moreover, the testing
equivalence formulation of security properties is more accurate than alternative
formulations based on intruder knowledge. For example, the secrecy expression
mentioned above does not only require that the intruder will never know M , but it
ACM Journal Name, Vol. V, No. N, July 2003.



Automatic testing equivalence verification of spi calculus specifications · 3

requires that the intruder cannot infer anything about M . Naturally, weaker secrecy
specifications can also be expressed by means of testing equivalence, if required.

The main open problem that remains with the spi calculus approach is to check
testing equivalence in an efficient and easy manner. This is difficult because of
universal quantification over testers: checking equivalence means checking that two
processes are indistinguishable for any tester process, and there is an infinite number
of such processes. This problem has been addressed in [Abadi and Gordon 1998] and
[Boreale et al. 2002], where tractable proof methods aimed at checking the testing
equivalence of spi calculus processes are introduced. In [Abadi and Gordon 1998],
the proof method is based on a bisimulation relation that is a sufficient, but not
necessary, condition for testing equivalence. In contrast, the proof method proposed
in [Boreale et al. 2002] is based on a trace equivalence that is a necessary and
sufficient condition for testing equivalence. Such a trace equivalence is defined over a
contextual labeled transition system representing the protocol behavior constrained
by the environment knowledge of names and keys. No attempt to implement such
proof methods has been documented in the literature.

In contrast to the two approaches above, this paper presents a method of checking
the spi calculus testing equivalence using exhaustive state exploration instead of
proof techniques. The quantification over contexts problem is solved in a similar
manner to that reported in [Boreale et al. 2002], i.e., by defining an environment-
sensitive labeled transition system with a trace equivalence that is a necessary and
sufficient condition for testing equivalence. However, to make state exploration
possible and effective, a new problem has to be solved, that is, how the size of the
trace sets to be explored can be kept within finite and reasonable bounds. This
goal is achieved in two different ways.

First, because of the presence of replication expressions of the form !P , which are
interpreted in spi calculus as an infinite number of copies of P running in parallel,
and which make testing equivalence undecidable, only spi calculus processes having
a finite user-selectable number of parallel instances are considered. In practice, our
approach is to substitute any replication expression of the form !P with a finite
number n of parallel copies of P . This is equivalent to considering a finite and
acyclic version of spi calculus. Note that the resulting language is not a finite control
language because infinite execution paths are not possible because spi calculus
has no recursion. Because the replication operator is generally used to represent
parallel sessions of a cryptographic protocol and because each session has only finite
execution paths, this restriction is equivalent to considering up to n parallel runs
of the protocol. Consequently, attacks that are possible only with more than n
parallel sessions cannot be detected in this way. A similar restriction is adopted
in the literature whenever state exploration methods are used and this is generally
considered acceptable, because bugs tend to appear with few parallel sessions. This
has been proved for some special cases in [Lowe 1999].

The limitation on the maximum number of parallel processes is not sufficient
to guarantee finite models: because the environment can in principle send, at any
time, any data that can be produced by its knowledge as well as any fresh name or
integer, the number of transitions that correspond to inputs from the environment
is potentially infinite. Previous attempts to remove this problem were based mainly
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4 · Luca Durante et al.

on limitations on the length of messages an intruder can build and send [Clarke
et al. 2000; Lowe 1997]. Instead, we propose a more powerful solution, based on a
symbolic technique, that avoids the explicit representation of transitions but virtu-
ally considers the whole set of messages potentially produced by the intruder. More
precisely, our approach is to represent an infinite set of transitions (corresponding
to different input values from the environment) symbolically as a single transition
with an abstract label called generic term. As we prove in the paper, this form of
reduction does not imply any loss in accuracy; it is a key means of making traces
enumerable and limits their number.

A preliminary version of the techniques reported in this paper has been presented
in the conference literature [Durante et al. 2000].

The paper is organized as follows. Section 2 introduces the spi calculus lan-
guage and introduces two sample cryptographic protocol specifications, which are
used throughout the paper to illustrate our method. Then, Section 3 presents
our environment-sensitive LTS model, the traces of which describe all the possible
evolutions of the protocol and of the corresponding intruder knowledge. Here the
derivation rules to build the set of traces for each spi process are rigorously defined,
and the symbolic technique is proved to be loss-free. Section 4 shows that the trace
semantics defined above are sound and complete with respect to testing equiva-
lence. The completeness proof is particularly interesting because it shows how a
trace difference between two spi processes can be used to automatically build the
definition of a spi tester process that can distinguish the two processes. In practice,
this is useful to automatically derive the spi definition of an attacker whenever a
trace difference is found between specification and implementation. Section 5 com-
pares our approach with related methods, and Section 6 concludes. A table of the
notation used in the paper is provided in the Appendix.

2. SPI CALCULUS

Spi calculus is a process algebraic language defined in [Abadi and Gordon 1999]
as an extension of π-calculus [Milner et al. 1992], and is specifically designed for
the specification of cryptographic protocols. A comprehensive description of the
language can be found in [Abadi and Gordon 1999]. The reader is assumed to be
familiar with basic cryptographic techniques.

2.1 Syntax and informal semantics

Spi calculus includes two basic language elements: terms, which represent data
(e.g., messages, channel identifiers, keys, key pairs, integers), and processes, which
represent behaviors. Terms can be either atomic elements, classified as constants
or variables, or structured terms built using term composition operators. The
distinction between constants and variables was introduced by [Abadi and Gordon
1999], but was not present in π-calculus, where both constants and variables are
simply referred to as names. As in π-calculus, and for the sake of simplicity, we use
a formalization of spi calculus with a single set of atomic terms, called names. In
this way, a variable is a name that can be replaced by any other term. A special
name identifies the 0 integer constant.

This paper uses the following naming conventions:

ACM Journal Name, Vol. V, No. N, July 2003.
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σ, ρ, θ ::= terms
m name
0 name (the zero constant)
x name (a variable)
y name (a variable)
(σ, ρ) pair
suc(σ) successor
H(σ) hashing
{σ}ρ shared-key encryption
σ+ public part
σ− private part
{[σ]}ρ public-key encryption
[{σ}]ρ private-key signature

P, Q, R ::= processes
σ⟨ρ⟩.P output
σ(x).P input
P | Q composition
(ν m) P restriction
0 nil
[σ is ρ] P match
let (x, y) = σ in P pair splitting
case σ of 0 : P suc(x) : Q integer case
case σ of {x}ρ in P shared-key decr.
case σ of {[x]}ρ in P decryption
case σ of [{x}]ρ in P signature check

Fig. 1. Syntax of spi calculus

—σ, ρ, and θ range over terms;
—P , Q, and R range over processes;
—m, x, and y range over names; x and y are preferably used for variables.

Figure 1 shows the syntax of the language available to the user. The left hand
side of the table shows the term grammar. Terms can be combined by pairing
successor, hashing and encryption operators, with the following informal meanings:

— (σ, ρ) is a pair, made up of the two components σ and ρ. For simplicity, the
spi calculus does not have tuples, which, however, can be represented as nested
pairs.

— suc(σ) is the successor of σ. This operator has been introduced mainly to
represent integer successors, but it can be used more generally as the abstract
representation of an invertible term function.

— H(σ) is the hashing of σ. The hashing function is assumed to be perfect and
non-invertible.

— {σ}ρ is the encrypted message obtained by encrypting σ under key ρ using a
shared-key cryptosystem. It can be decrypted using the same key.

— σ+ and σ− represent the public half and private half of a key pair σ, respec-
tively. While it is possible to extract the public and private halves of a key pair, it
is impossible to build the key pair from one of two halves.

— {[σ]}ρ is the result of the encryption of σ with public key ρ. It can be
decrypted using the corresponding private key.

— [{σ}]ρ is the result of the signature (private-key encryption) of σ with private
key ρ. It can be decrypted using the corresponding public key.

Terms are not typed: any term can be used in any context, without restriction.
While this feature is seldom required to specify protocols, it is important because it
enables the spi representation of attacks on the protocols based on type mismatches,
where, for example, the attack is made possible because a malicious agent has led
an honest agent to encrypt a given message using a nonce instead of a key.

The right hand side of Figure 1 shows the process algebraic operators used to
build behavior expressions. Their informal meaning is:

ACM Journal Name, Vol. V, No. N, July 2003.
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— σ⟨ρ⟩.P is an output process, ready to output term ρ on channel σ when syn-
chronization with a corresponding input process occurs. The behavior after the
synchronization is described by P .

— σ(x).P is an input process, ready to perform an input from channel σ when
synchronization with a corresponding output process occurs. After the synchro-
nization, the message produced by the output process is assigned to variable x, and
the subsequent behavior is described by P .

— P | Q is a parallel composition where P and Q run in parallel. They may
either synchronize with each other or separately with the external environment.
This operator is commutative and associative.

— (ν m)P is a restriction process which produces a fresh, private name m and
then behaves as described by P .

— [σ is ρ]P is a match process which behaves as described by P if terms σ and
ρ are the same, and otherwise is stuck.

— 0 is the nil process: it is a stuck process.
— let (x, y) = σ in P is a pair-splitting process, where x and y are two distinct

variables. If σ is a pair, its two components are assigned to x and y and the process
continues as specified by P , otherwise the process is stuck.

— case σ of 0 : P suc(x) : Q is an integer case process, which is used to invert
the successor function. If σ is 0, it behaves as specified by P ; if σ is suc(ρ) for some
ρ, it assigns ρ to x and then it behaves as specified by Q. Otherwise it is stuck.

— case σ of {x}ρ in P is a shared-key decryption process. If σ is a cyphertext
taking the form {θ}ρ, it computes θ, assigns it to x and behaves as specified by P .
Otherwise it is stuck.

— case σ of {[x]}ρ in P is a decryption process. If σ is the result of encrypting
a message θ under a public key whose corresponding private key is ρ, the process
assigns θ to x and behaves as specified by P . Otherwise it is stuck.

— case σ of [{x}]ρ in P is a signature-check process. If σ represents a message
θ signed under a private key whose corresponding public key is ρ, it assigns θ to x
and behaves as specified by P . Otherwise it is stuck.

It should be noted that, with respect to the syntax of the original spi calculus
[Abadi and Gordon 1999], the replication operator (!P), which is interpreted as an
unbounded number of copies of P running in parallel, was omitted. This has been
done to have finite models. As explained below, a bounded version of replication
can be introduced as a syntactical shortcut.

The following implicit assumptions of perfect encryption apply in spi as in other
similar cryptographic protocol specification languages:

—an encrypted message can only be decrypted by means of the corresponding key;
—the encryption key cannot be deduced from the encrypted message;
—an encrypted message is sufficiently redundant so that the decryption algorithm

can detect whether or not it has succeeded in its task;
—the attacker cannot guess and/or forge any secret protocol data.
ACM Journal Name, Vol. V, No. N, July 2003.
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1) A → B : {M}k

2) B → A : H(M)

PA(M)
∆
= c⟨{M}k⟩. c(x). [x is H(M)] F (M)

PB
∆
= c(y1). case y1 of {y2}k in c⟨H(y2)⟩. 0

Psample(M)
∆
= (νk)(PA(M) | PB)

Fig. 2. A simple spi calculus specification

1) A → S : {kAB}kAS

2) S → B : {kAB}kSB

3) A → B : {M}kAB

PA(M)
∆
= (ν kAB) (cAS ⟨{kAB}kAS

⟩ . cAB ⟨{M}kAB
⟩.0)

PS
∆
= cAS (x1) . case x1 of {x2}kAS

in cSB ⟨{x2}kSB
⟩.0

PB
∆
= cSB (y1) . case y1 of {y2}kSB

in cAB(y3) .
case y3 of {y4}y2 in F (y4)

Pwmf (M)
∆
= (ν kAS) (ν kSB)(PA(M) | PS | PB)

Fig. 3. The wide-mouthed frog protocol

Figure 2 shows a simple protocol, inspired by [Fiore and Abadi 2001], where
two agents A and B share a secret key k and exchange two simple messages. By
adopting the informal, intuitive notation that is frequently used in the literature
dealing with security protocols, the left hand side of Figure 2 shows the exchanges
of messages involved in the protocol that proceed. In contrast, the right hand side
shows the spi calculus specification of the protocol. Processes PA and PB represent
the role of agents A and B, respectively. Psample puts the two behaviors in parallel,
thereby allowing their synchronization on channel c. Because c is public, it can also
be accessed by a potential intruder.

A sends B a message M encoded by means of k over public channel c. B tries to
decode it, and in the case of success, acknowledges A by sending back the hashed
cleartext. Finally, A checks that the received message matches with H(M) and then
proceeds with further operations. F (M) is an unspecified process, representing the
behavior of A after the successful termination of the protocol session.

Figure 3 shows a simplified version of the wide-mouthed frog protocol which
appeared in [Abadi and Gordon 1999], where two agents A and B establish a secure
session to exchange information with the aid of a server S. A shared-key encryption
scheme is adopted and agent A shares the key kAS with the server, while kSB is used
for communications between S and B. Processes PA, PB , and PS represent the role
of agents A, B, and S, respectively, and they communicate on public channels cAS ,
cSB, and cAB. To establish a secure connection with B, A picks up and sends a new
session key kAB encrypted under kAS to S on channel cAS . The server decrypts the
received message with kAS and forwards kAB to B on channel cSB by encrypting
it under kSB. Agent B, after receiving the session key from S, gets the cyphertext
{M}kAB from A on channel cAB, extracts the cleartext M using kAB, and then
proceeds with further operations, represented by F (y4).

Note that the spi processes fully specify the behaviors, as described concisely
on the left hand side of the figures. In particular, the generation of new keys, the
encryption/decryption activities, and the messages’ fields verification are explicitly
expressed by means of the spi calculus constructions.

We introduce some further notation and definitions for the spi calculus, which
ACM Journal Name, Vol. V, No. N, July 2003.
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will be used throughout the paper.
A name occurrence is said to be bound in a process P if P contains an operator

that binds it. The restriction operator (ν m) binds name m, and any operator that
implies an assignment of variable x binds x. Therefore, all the occurrences of x in
processes taking the form σ(x).P are bound by the input operator σ(x). Similarly,
all occurrences of x in expressions (case σ of {x}ρ in P ), (case σ of {[x]}ρ in P ),
(case σ of [{x}]ρ in P ), in the suc(x) : Q part of an integer case, and the oc-
currences of x and y in expressions (let (x, y) = σ in P ), are bound. A name
occurrence is free in a process P if it is not bound. The set of names that occur free
in P is called the set of free names of P and is denoted fn(P ). Similarly, bn(P ) is
the set of bound names of P , and n(P ) = fn(P )∪ bn(P ) the whole set of names of
P .

For simplicity, it is assumed that different occurrences of binding operators always
refer to different names. This is not a limitation, because processes that differ
only by a renaming of bound names are equivalent ([Milner et al. 1992]). This
assumption simplifies our formalization because in this way all names bound by
assignment operators actually represent write-once, uniquely identified variables,
and different nonces are always identified by different names. This also means
that name overloading is not possible. In the following we use the notation !P as
a syntactical shortcut for indicating n copies of P running in parallel (i.e., !P =
P |P | · · · |P︸ ︷︷ ︸

n times

), where n is a predetermined finite natural number that can be specified

by the user. In this case, we also assume that all the bound names occurring in P
are implicitly renamed so that the bound name uniqueness is preserved.

In what follows, A denotes the set of spi calculus names, and M(A) the set of
all spi calculus terms that can be built starting from A.

If a term σ occurs as a sub-expression of another term ρ, then σ is called a subterm
of ρ (a term is also considered a subterm of itself). This is also written σ ≼ ρ. A
term substitution list (called a substitution list for short) is a list of term pairs taking
the form λ = ⟨σ1/m1, · · · , σn/mn⟩, where mi ∈ A are pairwise different names and
σi ∈ M(A) are terms. The postfix term operator [λ] literally and simultaneously
applies all the substitutions in λ, i.e., θ[λ] is θ with each occurrence of mi replaced by
σi. For simplicity, the notation [σ1/m1, · · · , σn/mn] denotes [⟨σ1/m1, · · · , σn/mn⟩].
Because the semantics of a substitution list λ does not depend on the order of its
elements, λ can also be formally regarded as a set of substitution items. Each
substitution list λ identifies a corresponding term substitution function from M(A)
to M(A), and it maps any term θ onto θ[λ]. In the remainder of this paper,
substitution lists and their corresponding substitution functions are denoted in the
same way and simply called substitutions. The substitution that does not replace
any name is denoted ⊤, and is represented by an empty list. The composition of
λ1 and λ2, corresponding to the postfix operator [λ1][λ2], is simply denoted λ1λ2,
(i.e., [λ1λ2] = [λ1][λ2]). The postfix operator [λ] and the corresponding substitution
function can be extended to any domain of objects containing spi calculus terms in
the obvious manner: if E is an object containing spi calculus terms (e.g., a process
or a set of terms), E[λ] is E with each term θ occurring in E replaced by θ[λ].

Substitutions are useful, for example, to formalize the assignment of variables: an
ACM Journal Name, Vol. V, No. N, July 2003.



Automatic testing equivalence verification of spi calculus specifications · 9

input process σ(x).P , which interacts with a corresponding output process σ⟨ρ⟩.Q,
evolves into P [ρ/x], i.e., P with all the occurrences of x in P replaced by ρ1.

In the remainder of the paper, λ ranges over substitutions and Σ ranges over sets
of terms.

2.2 Reaction operational semantics

The spi calculus operational semantics was originally defined in [Abadi and Gordon
1999] by means of the reduction relation >, the structural equivalence ≡, and the
reaction relation →.

The reduction relation > is a binary relation on processes, such that P > Q
means that P is a process that can only reduce to Q by performing a successful
internal operation such as a check, pair-splitting, or decryption operation. It is
defined by the following axioms:

[σ is σ] P > P (1)
let (x, y) = (σ, ρ) in P > P [σ/x, ρ/y] (2)

case 0 of 0 : P suc(x) : Q > P (3)
case suc(σ) of 0 : P suc(x) : Q > Q[σ/x] (4)

case {σ}ρ of {x}ρ in P > P [σ/x] (5)
case {[σ]}ρ+ of {[x]}ρ− in P > P [σ/x] (6)
case [{σ}]ρ− of [{x}]ρ+ in P > P [σ/x] (7)

Structural equivalence ≡ is an equivalence on processes based on simple and
intuitive operator properties (e.g., commutative and associative properties), such
that processes bound by the reduction relation are also considered equivalent. It is
defined as the least relation that satisfies the axioms:

P ≡ P (8)
P | 0 ≡ P (9)
P |Q ≡ Q |P (10)

P | (Q |R) ≡ (P |Q) |R (11)
(νm1)(νm2)P ≡ (νm2)(νm1)P (12)

(νb)0 ≡ 0 (13)

and the rules:

m ̸∈ fn(P )
(νm)(P |Q) ≡ P |(νm)Q

(14)

P > Q

P ≡ Q
(15)

P ≡ Q

Q ≡ P
(16)

P ≡ Q Q ≡ R

P ≡ R
(17)

P ≡ P ′

P |Q ≡ P ′|Q (18)

P ≡ P ′

(νm)P ≡ (νm)P ′ (19)

Finally, the reaction relation → is a binary relation on processes such that P → P ′

means that process P can evolve into P ′ by performing an internal synchronization,

1In the original spi calculus definition, only the occurrences of x that are free in P are substituted.
Because we assume that each variable has a unique binding operator, this distinction is not required
in our setting.

ACM Journal Name, Vol. V, No. N, July 2003.
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(νk)( c⟨{M}k⟩. c(x). [x is H(M)] F (M)
|c(y1). case y1 of {y2}k in c⟨H(y2)⟩. 0) (20)(23)

(νk)( c(x). [x is H(M)] F (M)
|case {M}k of {y2}k in c⟨H(y2)⟩. 0) (5)

(15)

(18) (19)
(νk)( c(x). [x is H(M)] F (M)

| c⟨H(M)⟩. 0)(23) (20)
(νk)( [H(M) is H(M)] F (M)

| 0)

(14)
[H(M) is H(M)] F (M)

| (νk)0
(13) (9) [H(M) is H(M)] F (M) (1) (15) F (M)

Fig. 4. Reaction operational semantics applied to the specification of Figure 2

i.e., a synchronization between any two (sub)-processes of P . It is the least relation
on processes that satisfies the axiom,

σ⟨ρ⟩.P |σ(x).Q → P |Q[ρ/x] (20)

and the rules:

P ≡ P ′ P ′ → Q′ Q′ ≡ Q

P → Q
(21)

P → P ′

P |Q → P ′|Q (22)
P → P ′

(νm)P → (νm)P ′ (23)

Figure 4 shows the application of reaction operational semantics to the process
Psample(M) of Figure 2. In particular, thick boxes represent processes ready to
evolve by reactions, and thick arrows indicate the reaction rules involved. Dashed
boxes represent processes that can be simplified by means of structural equivalence,
and thin arrows indicate the corresponding rules.

Starting from the upper left box, and following the arrows, rule (20) allows the
two (sub)processes A and B involved in the parallel composition to synchronize
and to assign {M}k to y1, while rule (23) extends the reaction even in the pres-
ence of a restriction construction, leading to the behavior shown in the upper right
box. Then rule (5) is applied to decrypt {M}k and to assign y2, while rule (15)
joins the reduction relation with structural equivalence. Rules (18) and (19) ex-
tend the structural equivalence even in the presence of parallel composition and
restriction, respectively. The behavior expressions are subsequently reduced by a
further application of rules (20) and (23). Because the restricted name k does
not belong to the free names of [H(M) is H(M)] F (M), by rule (14) the restric-
tion can be moved inside the right hand side of the parallel composition, and rules
(13) and (9) can be applied to definitely remove the parallel composition. Finally,
[H(M) is H(M)] F (M) is reduced to F (M) by means of rules (1) and (15).

It is worth noting that, exploiting rule (21), which joins reaction and structural
equivalence, the dashed sections can be eliminated, and the whole evolution of the
process can be described by the following sequence of reactions:

(νk)(c⟨{M}k⟩. c(x). [x is H(M)] F (M) | c(y1). case y1 of {y2}k in c⟨H(y2)⟩. 0)
−→ (νk)(c(x). [x is H(M)] F (M) | c⟨H(M)⟩. 0) −→ F (M)

2.3 Testing equivalence

Testing equivalence is used to compare spi processes from the point of view of
security. More precisely, we use the may-testing equivalence definition initially
ACM Journal Name, Vol. V, No. N, July 2003.



Automatic testing equivalence verification of spi calculus specifications · 11

introduced by De Nicola and Hennessy on CCS [De Nicola and Hennessy 1984],
and we adapt it to the spi calculus, which is a CCS extension. As explained in
[Abadi and Gordon 1999], the choice of may-testing stems from the fact that may-
testing corresponds to safety, and typical security properties are safety properties.

A test R is a spi calculus process that, when run in parallel with a process under
test, P , may signal that P has passed a test by means of a distinguished success
action ω. Formally, the original spi calculus process grammar is extended by adding
the new syntactic rule:

P, Q, R ::= Ω

where Ω is a distinguished process that can perform only ω. It is assumed that Ω
is reserved for the definition of tests only.

For a process P , the predicate P exhibits ω, written P ↓ ω, is defined by the
axiom Ω ↓ ω and by the rules:

P ↓ ω

(P |Q) ↓ ω
(24)

P ↓ ω

(νm)P ↓ ω
(25)

P ≡ Q Q ↓ ω

P ↓ ω
(26)

whereas the convergence predicate P ⇓ ω is defined as:

P ⇓ ω
△= ∃Q | (P (→) ∗ Q) ∧ (Q ↓ ω) (27)

where (→)∗ is the reflexive and transitive closure of →. A process P may pass a
test R if and only if (P |R) ⇓ ω.

The testing preorder ⊑ and the testing equivalence ≃ are then defined as:

P ⊑ Q
△= ∀R ((P |R) ⇓ ω =⇒ (Q|R) ⇓ ω) (28)

P ≃ Q
△= (P ⊑ Q) ∧ (Q ⊑ P ) (29)

P ≃ Q means that the tests that P and Q may pass are the same. In other words,
P ≃ Q means that no test can distinguish between P and Q.

If we consider the sample protocol introduced in Figure 2, it may be necessary
to express a secrecy property, i.e., that an intruder cannot infer anything about M .
Such a property can easily be expressed by requiring that, for each M ′, P (M) ≃
P (M ′) [Abadi and Gordon 1999] .
Authenticity properties can also be expressed in terms of equivalence. We return,
for example, to the protocol introduced in Figure 3. Authenticity, in this case,
requires that agent B applies F to the message M sent by A, independently of
what happens during the protocol session. This means that no attacker can force
B to apply F to a cleartext that is different from M. For this reason we write
the reference spi specification in Figure 5, where PBSpec is a process that behaves
like PB in Figure 3 except for the fact that the (unspecified) process F is always
applied to M, independent of the message received on cAB, just as if agent B
already knew M in some other way. Similarly, PwmfSpec is the correct specification
of the protocol obtained by running PA, PS , and PBSpec in parallel. To express
the authenticity property in terms of equivalence, we can require that for each M ,
Pwmf (M) ≃ PwmfSpec(M) [Abadi and Gordon 1999].
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PA(M)
∆
= (ν kAB) (cAS ⟨{kAB}kAS

⟩ . cAB ⟨{M}kAB
⟩.0)

PS
∆
=cAS (x1) . case x1 of {x2}kAS

in cSB ⟨{x2}kSB
⟩.0

PBSpec(M)
∆
= cSB (y1) . case y1 of {y2}kSB

in cAB(y3) . case y3 of {y4}y2 in F (M)

PwmfSpec(M)
∆
= (ν kAS) (ν kSB)(PA(M) | PS | PBSpec(M))

Fig. 5. Reference specification of the wide-mouthed frog protocol

3. THE ENVIRONMENT-SENSITIVE LTS MODEL

Our first goal is to define an environment-sensitive labeled transition system (ES-
LTS) that describes all the possible interactions of a given spi calculus process
with its environment. The ES-LTS concept is borrowed from [Boreale et al. 2002],
although the labels of our specific ES-LTS are different from those proposed in
[Boreale et al. 2002], as explained in Section 5.

The environment considered in building the ES-LTS is most powerful, power
being measured by the knowledge the environment acquires by interacting with the
spi process. In analogy with [Boreale et al. 2002], each state of our ES-LTS is made
up of a spi calculus process P and an environment knowledge K, and is denoted
K ✄ P . As elucidated below, K incorporates all the knowledge that an intruder
can have acquired during the preceding interactions with the spi process, and is
represented in a finite and minimized form.

Transitions are described by the following syntactical form, already introduced
in [Boreale et al. 2002]:

K ✄ P
µ4−→
φ

K ′ ✄ P ′ (30)

where label µ represents the action performed by process P , and φ represents the
complementary action performed by the environment. The exact form of labels
µ and φ, which is explained below, has been carefully defined so as to make our
ES-LTS trace equivalence sound and complete with respect to testing equivalence.
Attention has also been paid to avoid unnecessary replication of information, there-
fore minimizing label sizes and simplifying their comparison.

As described above, symbolic representations are used to make the ES-LTS finite.
Both a concrete ES-LTS, where no symbolic representations are used, and a symbolic
ES-LTS, which is the finite symbolic version of the previous representation, are
defined. The form taken by the symbolic transitions is slightly different from that
taken by the concrete transitions:

(K ✄ P )Υ,Λ
µ4−→
φ

(K ′ ✄ P ′)Υ′,Λ′ (31)

In this case, K, P , µ, and φ have the same meaning as in the concrete ES-LTS, but
may be symbolic, i.e., they may represent infinite sets of corresponding concrete
elements. The state subscripts Υ, Λ, whose exact meaning is explained in Sections
3.4 and 3.5, specify how the symbolic elements must be interpreted, i.e., which
concrete values they can take. Moreover, to represent situations where a symbolic
transition is only possible for some of the concrete states represented by its symbolic
starting state, symbolic labels may also include additional elements specifying which
concrete behaviors are allowed to take the transition.
ACM Journal Name, Vol. V, No. N, July 2003.
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In the remainder of this paper we adopt the usual notation for functions, where
f : A → B is a (possibly partial) function from A to B that maps elements a ∈ A
onto f(a) ∈ B. According to the set-theoretic interpretation, f also denotes the
set of pairs f = {(a, b) | a ∈ A, b ∈ B, b = f(a)} that must satisfy the well-
known function properties. We also use the notation dom(f) = {a ∈ A | (a, b) ∈
f for some b ∈ B} and im(f) = {b ∈ B | (a, b) ∈ f for some a ∈ A} for the domain
and the image of f , and, if S ⊆ A, we denote the image of S by f as f(S).

3.1 Knowledge representation

The simplest form of intruder knowledge representation, which is adopted by most
cryptographic protocol analyzers (e.g., [Clarke et al. 2000; Song 1999]), consists of
only the set of data that can be collected by the intruder. Such a representation
is adequate provided the properties to be checked are sufficiently simple (e.g., the
intruder will never discover certain data), but it is inadequate for checking testing
equivalence. This can be understood by considering, for example, that the spi pro-
cesses P

∆=c⟨M⟩.c⟨N⟩.c⟨M⟩.0 and Q
∆=c⟨M⟩.c⟨N⟩.c⟨N⟩.0 are not testing equivalent,

although the set of data that the intruder can learn from each of these is the same at
each step (after the first step, the intruder learns M , after the second step it learns
N , and after the third step it learns no new data). Naturally, a simple test that
can distinguish between P and Q is R

∆=c(x1).c(x2).c(x3).[x1 is x3]Ω, which checks
if the data received third is equal to the first. To make this type of test possible
in our intruder model, a more accurate representation of the intruder knowledge is
needed, such that the order in which data terms are learned is also recorded.

Based on this consideration, the model for the intruder knowledge that we pro-
pose is a set of learned data terms with labeling of its elements that uniquely
identifies them according to the order in which they have been added to the set.
Such labels could be interpreted as the names of the variables used by the intruder
to store the learned data. The set of learned data that we use is a minimized set,
in the sense that it does not include redundant elements, but it includes only the
minimum set of elementary terms by which the intruder can build all the possible
messages that can be generated with all the data it has observed. For example, if
the intruder receives {m}k, and it does not know k, then {m}k is added to the set
of learned data. If instead the intruder already knows k, then m is added to the
set, but {m}k is not, because it can be built using m and k. Similarly, if the set of
learned data is {m, {m}k}, and the intruder receives k, then the new set will be
{m, k}, because {m}k can now be built from m and k.

The formal definition of our intruder knowledge representation requires some
preliminary definitions.

The closure of a set of terms Σ ⊆ M(A) is denoted Σ̂ and is defined as the set of
all spi calculus terms that can be built by combining the elements of Σ by means
of the term operators defined in spi (left hand side of Figure 1) and their inverses.
Formally, Σ̂ is the least set of terms such that, for each σ, σ1, and σ2 ∈ M(A), the
following closure rules hold:

σ ∈ Σ ⇒ σ ∈ Σ̂ (32)
ACM Journal Name, Vol. V, No. N, July 2003.



14 · Luca Durante et al.

σ ∈ Σ̂ ⇒ suc(σ) ∈ Σ̂ (successor) (33)

σ1 ∈ Σ̂ ∧ σ2 ∈ Σ̂ ⇒ (σ1, σ2) ∈ Σ̂ (pairing) (34)

σ1 ∈ Σ̂ ∧ σ2 ∈ Σ̂ ⇒ {σ1}σ2 ∈ Σ̂ (shared-key encryption) (35)

σ ∈ Σ̂ ⇒ H(σ) ∈ Σ̂ (hashing) (36)

σ1 ∈ Σ̂ ∧ σ+
2 ∈ Σ̂ ⇒ {[σ1]}σ+

2
∈ Σ̂ (public-key encryption) (37)

σ1 ∈ Σ̂ ∧ σ−
2 ∈ Σ̂ ⇒ [{σ1}]σ−

2
∈ Σ̂ (private-key signature) (38)

σ ∈ Σ̂ ⇒ σ+ ∈ Σ̂ ∧ σ− ∈ Σ̂ (key-pair extraction) (39)

suc(σ) ∈ Σ̂ ⇒ σ ∈ Σ̂ (predecessor) (40)

(σ1, σ2) ∈ Σ̂ ⇒ σ1 ∈ Σ̂ ∧ σ2 ∈ Σ̂ (projection) (41)

{σ1}σ2 ∈ Σ̂ ∧ σ2 ∈ Σ̂ ⇒ σ1 ∈ Σ̂ (shared-key decryption) (42)

{[σ1]}σ+
2
∈ Σ̂ ∧ σ−

2 ∈ Σ̂ ⇒ σ1 ∈ Σ̂ (public-key decryption) (43)

[{σ1}]σ−
2
∈ Σ̂ ∧ σ+

2 ∈ Σ̂ ⇒ σ1 ∈ Σ̂ (signature check) (44)

σ+ ∈ Σ̂ ∧ σ− ∈ Σ̂ ⇒ σ ∈ Σ̂ (key-pair reconstruction)(45)

Rules (33)-(45) can be divided into two groups: rules (33)-(39) are constructive
rules, related to term composition operators, whereas rules (40)-(45) are the cor-
responding destructive rules, related to term decomposition operations. Naturally,
the hashing rule has no destructive counterpart.

We say that a set of terms is finite if it contains a finite number of finite length
elements. Given a finite set of terms Σ, the minimal closure seed of Σ, denoted Σ,
is defined as the subset of Σ̂ that satisfies the following predicates for each m ∈ A,
and for each σ, σ1, σ2 ∈ M(A):

m ∈ Σ ⇔ m ∈ Σ̂ (46)
suc(σ) ̸∈ Σ (47)
(σ1, σ2) ̸∈ Σ (48)

{σ1}σ2 ∈ Σ ⇔ σ2 ̸∈ Σ̂ (49)

H(σ) ∈ Σ ⇔ σ ̸∈ Σ̂ (50)

{[σ1]}σ+
2
∈ Σ ⇔ σ+

2 ̸∈ Σ̂ ∨ σ1 ̸∈ Σ̂ (51)

[{σ1}]σ−
2
∈ Σ ⇔ σ−

2 ̸∈ Σ̂ ∨ σ1 ̸∈ Σ̂ (52)

σ+ ∈ Σ ⇔ σ ̸∈ Σ̂ (53)

σ− ∈ Σ ⇔ σ ̸∈ Σ̂ (54)

In practice, Σ is the minimum subset of Σ̂ that is sufficient to regenerate Σ̂.
The rationale behind rules (46)-(54) is that the minimal closure seed must contain
only those elements of the closure that cannot be regenerated by simpler closure
elements. For example, Σ contains all the atomic elements of Σ̂ (by (46)) because
there is no way to regenerate them. However, it does not contain terms taking the
forms suc(σ) and (σ1, σ2) (by (47) and (48)), because such terms can be respectively
generated by σ and by σ1 and σ2, which necessarily also belong to the closure by
ACM Journal Name, Vol. V, No. N, July 2003.
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rules (40) and (41). An element of Σ̂ taking the form {[σ1]}σ+
2

can be regenerated

by simpler elements only if both σ1 and σ+
2 belong to Σ̂. This is why (by (51)) it

belongs to Σ iff at least one of its components does not belong to Σ̂. Note that Σ is
not necessarily a subset of Σ, because Σ could include terms that can be decomposed
into simpler subterms not included in Σ. For example, if Σ = {{[m]}a+, a−}, then
we have that Σ = {{[m]}a+, a−, m}, because a− can be used to decrypt {[m]}a+ ,
therefore computing m, but {[m]}a+ cannot be regenerated using only a− and m.

The minimal closure seed Σ is uniquely defined because Σ̂ is uniquely defined,
and, for each σ ∈ Σ̂, there is exactly one of the rules (46)-(54) that uniquely
determines if σ ∈ Σ.

Σ has some useful properties that make it a suitable candidate for a finite and
minimized representation of the term generation capabilities of an intruder that
has had access to the set of terms Σ. First, if Σ is finite, then Σ is also finite and
is the minimal set of terms having the same closure of Σ, where minimality means
that any element in Σ cannot be built from the other elements, i.e., Σ does not
include redundant terms. Moreover, Σ is computable and the question if a finite
term σ belongs to the closure of Σ can be algorithmically decided using only Σ.
Such properties are now formally stated and proved.

We start with the finiteness and minimality of Σ.

Theorem 3.1. (Finiteness) For each finite set of terms Σ ⊆ M(A), Σ is finite.

Proof. By inspection of rules (46)-(54) it is clear that any structured element
of Σ has at least a subterm that does not belong to Σ̂, i.e., a subterm that cannot
be built by combining the elements of Σ. This means that any element of Σ is
necessarily a subterm of an element of Σ. However, because Σ is finite, the subterms
of its elements are also finite. This implies that Σ is finite.

Theorem 3.2. (Minimality) Let Σ ⊆ M(A) be a finite set of terms, and σ ∈ Σ.
Then ̂(Σ \ {σ}) ⊂ Σ̂.

Proof. From rules (33)-(45) it is clear that ̂(Σ \ {σ}) ⊆ Σ̂. Therefore, it is
sufficient to show that there is at least one element of Σ̂ that does not belong to

̂(Σ \ {σ}). Such an element is σ, which belongs to Σ̂ by rule (32), but it does not

belong to ̂(Σ \ {σ}) because, by rules (46)-(54), it is either a name or a structured
term with at least a subterm that cannot be built from the elements of Σ̂ (which
includes Σ̂ by definition).

Before formulating and proving the other properties, we require more definitions.
Define r(σ, Σ) as the boolean value that is obtained by executing the algorithm

shown in Figure 6.
The value computed by r(σ, Σ) is true if σ can be built from the elements of

Σ using only constructive closure rules. The base of recursion simply says that
r(σ, Σ) is true for any σ ∈ Σ and false for any atomic term not belonging to Σ. For
non-atomic terms not belonging to Σ, r(σ, Σ) is true if the components of σ can
be built using only constructive rules. This interpretation implies that if r(σ, Σ) is
true, then σ ∈ Σ̂.
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boolean r(σ, Σ) {

if σ ∈ Σ then return TRUE;

else if σ = suc(σ1) then return r(σ1,Σ);
else if σ = (σ1, σ2) then return r(σ1,Σ) ∧ r(σ2, Σ);
else if σ = {σ1}σ2 then return r(σ1,Σ) ∧ r(σ2, Σ);
else if σ = H(σ1) then return r(σ1,Σ);
else if σ = {[σ1]}

σ+
2

then return r(σ1,Σ) ∧ r(σ+
2 ,Σ);

else if σ = [{σ1}]σ−
2

then return r(σ1,Σ) ∧ r(σ−
2 , Σ);

else if σ = σ+
1 then return r(σ1,Σ);

else if σ = σ−
1 then return r(σ1,Σ);

else (σ ∈ A \ Σ) return FALSE;

}

Fig. 6. The recursive algorithm to compute r(σ, Σ)

The computation of Σ from Σ can be performed by a sequence of closure-
preserving transformations. Such a sequence is called a reduction of Σ, and each
transformation is called a reduction step. Each reduction step exploits one of clo-
sure rules (32)-(45) and transforms the current set of terms by applying a reduction
rule. A reduction rule is formally defined as a triple U = ⟨ΣI , C, ΣO⟩, where C
is the exploited closure rule, ΣI (premises of U) is the set of terms that must be
included in the current set of terms to enable the application of the rule, and ΣO

(conclusions of U) is the set of terms that replace the premises. Applying reduction
rule U to a finite set of terms Σ means eliminating ΣI from and adding ΣO to Σ.

This is written Σ U−→ Σ′, where Σ′ = (Σ \ ΣI) ∪ ΣO is the resulting set.
Given a finite set of terms Σ, a reduction of Σ is formally defined as an alternating

sequence of finite sets of terms Σi and reduction rules Ui, denoted by:

Σ0
U0−→ Σ1

U1−→ Σ2 · · · Σk−1
Uk−1−→ Σk

such that Σ0 = Σ and Ui ∈ U(Σi), where U(Σi) is the least set of reduction rules
that satisfies the following logical implications for each σ, σ1, σ2 ∈ M(A):

if H(σ) ∈ Σi ∧ r(σ, Σi) then ⟨{H(σ)}, (36), ∅⟩ ∈ U(Σi) (55)
if {[σ1]}σ+

2
∈ Σi ∧ r(σ1, Σi) ∧ r(σ+

2 , Σi)

then ⟨{{[σ1]}σ+
2
}, (37), ∅⟩ ∈ U(Σi) (56)

if [{σ1}]σ−
2
∈ Σi ∧ r(σ1, Σi) ∧ r(σ−

2 , Σi)

then ⟨{[{σ1}]σ−
2
}, (38), ∅⟩ ∈ U(Σi) (57)

if σ+ ∈ Σi ∧ r(σ, Σi) then ⟨{σ+}, (39), ∅⟩ ∈ U(Σi) (58)
if σ− ∈ Σi ∧ r(σ, Σi) then ⟨{σ−}, (39), ∅⟩ ∈ U(Σi) (59)

if suc(σ) ∈ Σi then ⟨{suc(σ)}, (40), {σ}⟩ ∈ U(Σi) (60)
if (σ1, σ2) ∈ Σi then ⟨{(σ1, σ2)}, (41), {σ1, σ2}⟩ ∈ U(Σi) (61)

if {σ1}σ2 ∈ Σi ∧ r(σ2, Σi) then ⟨{{σ1}σ2}, (42), {σ1}⟩ ∈ U(Σi) (62)
if {[σ1]}σ+

2
∈ Σi ∧ r(σ−

2 , Σi) ∧ ¬r(σ1, Σi)

then ⟨{{[σ1]}σ+
2
}, (43), {σ1, {[σ1]}σ+

2
}⟩ ∈ U(Σi) (63)
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if [{σ1}]σ−
2
∈ Σi ∧ r(σ+

2 , Σi) ∧ ¬r(σ1, Σi)

then ⟨{[{σ1}]σ−
2
}, (44), {σ1, [{σ1}]σ−

2
}⟩ ∈ U(Σi) (64)

if σ+ ∈ Σi ∧ σ− ∈ Σi then ⟨{σ+, σ−}, (45), {σ}⟩ ∈ U(Σi) (65)

Reduction rules Ui ∈ U(Σi) associated with constructive rules (i.e., (55)-(59))
have as premises terms that can be regenerated using the other elements of Σi. For
this reason, such rules simply remove the premises. Reduction rules Ui ∈ U(Σi)
associated with destructive closure rules, instead, act on premises from which it is
possible to extract new terms. They substitute the premises with a set of simpler
subterms extracted from them, which is sufficient to regenerate them. Note that
in reductions coming from equations (63) and (64), the premises are re-introduced
in the conclusions, because they cannot be regenerated otherwise. From the above
considerations, reductions preserve closures, i.e., the following proposition holds:

Proposition 3.3. if Σ U−→ Σ′ is a one-step reduction, then Σ̂ = Σ̂′

A reduction can be used to compute Σ from Σ as is expressed by the following
proposition:

Proposition 3.4. Given a finite set of terms Σ, there exists a finite reduction
of Σ

Σ = Σ0
U0−→ Σ1 · · · Σk−1

Uk−1−→ Σk

such that Σk = Σ

Proof. A reduction that leads from Σ to Σ can be found if we keep applying
reduction rules Ui ∈ U(Σi) as long as they can be applied. It can be verified by
inspection that reduction rules Ui ∈ U(Σi) always add subterms of terms that are
already included in Σi, and that each Ui ∈ U(Σi) can occur only once in a given
reduction, because, once applied, it is no longer included in U(Σi+1) · · · U(Σk), be-
cause the corresponding pre-condition in equations (55)-(64) becomes false. Con-
sequently, because Σ is finite, it is guaranteed that in a finite number of steps we
reach a Σk on which no reduction rule can be applied. When this happens, Σk = Σ,
because all the pre-conditions of equations (55)-(65) are false, which implies that
Σk satisfies the minimal closure seed definition equations (46)-(54).

The results that have been proved so far allow us to state and prove the final
theorems of closure preservation, computability, and decidability.

Theorem 3.5. (Closure preservation) For each finite set of terms Σ ⊆ M(A),
Σ̂ = Σ̂

Proof. The theorem directly descends from propositions 3.3 and 3.4

Theorem 3.6. (Computability) For each finite set of terms Σ ⊆ M(A), Σ can
be computed in a finite number of steps.

Proof. The theorem directly descends from propositions 3.3 and 3.4 and from
the fact that the computation of r(σ, Σi) takes a finite number of steps, because σ
and Σi are finite.
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Theorem 3.7. (Decidability) Let σ ∈ M(A) be any finite term and Σ ⊆ M(A)
be a finite set of terms. Then, the question if σ ∈ Σ̂ is decidable.

Proof. We claim that σ ∈ Σ̂ iff r(σ, Σ) is true. This claim can be proved
by induction, proving directly the cases σ ∈ Σ and σ ∈ A \ Σ, and proving the
other cases inductively. Once the claim is proved, it remains to be shown that the
computation of r(σ, Σ) takes a finite number of steps, but this descends directly
from the fact that σ and Σ are finite and from theorem 3.6.

The results just given mean that if a new term ρ is added to a minimal closure
seed Σ, the new minimal closure seed Σ ∪ {ρ} can be computed by a reduction that
starts from Σ ∪ {ρ}. In general, the net effect of such a reduction is to eliminate
some elements from the set of terms and to add some other new elements to it. We
denote δ−

Σ
(ρ) the set of eliminated elements and δ+

Σ
(ρ) the set of added elements.

Formally:

δ−
Σ

(ρ) = Σ \
(
Σ ∪ {ρ}

)
(66)

δ+
Σ

(ρ) =
(
Σ ∪ {ρ}

)
\Σ (67)

Another fact that may be found during a reduction is that something more be-
comes known about a term, which, however, is not removed from the set. This
may happen only when a public-key encrypted term {[σ1]}σ+

2
or a digitally signed

term [{σ1}]σ−
2

can be decoded by the appropriate decoding key, without knowing
the corresponding encoding key. In this case, σ1 becomes known, but the encoded
term cannot be removed, because it cannot be regenerated. We denote as δ=

Σ
(ρ)

the set of terms that become decipherable after the addition of ρ without being
eliminated from the minimal closure seed. Formally, we first define dec(Σ, σ) as the
predicate that is true if σ is an encoded term belonging to Σ that can be decoded
with the elements of Σ. We have that dec(Σ, {[σ1]}σ+

2
) = {[σ1]}σ+

2
∈ Σ ∧ r(σ−

2 , Σ),
dec(Σ, [{σ1}]σ−

2
) = [{σ1}]σ−

2
∈ Σ ∧ r(σ+

2 , Σ), and dec(Σ, σ) = false if σ takes
neither the form {[σ1]}σ+

2
nor the form [{σ1}]σ−

2
. Then, δ=

Σ
(ρ) is defined as:

δ=
Σ

(ρ) = {σ | dec
(
Σ ∪ {ρ}, σ

)
∧ ¬dec

(
Σ, σ

)
} (68)

i.e., δ=
Σ

(ρ) contains just those terms of Σ ∪ {ρ} that have become decipherable
during the last reduction. We always have δ−

Σ
(ρ) ∩ δ=

Σ
(ρ) = ∅.

As an example consider Figure 7 where term ρ = k−
3 is added to a minimal closure

seed Σ =
{
c, {[{k1}k2 ]}k+

3
, {[m]}k+

1
, k+

1 , k2

}
leading to Σ0 =

{
c, {[{k1}k2 ]}k+

3
,

{[m]}k+
1
, k+

1 , k2, k−
3

}
.

The column labeled Σi reports the set of terms at each reduction step; the column
U(Σi) shows the set of reduction rules enabled in each Σi, with the rule that is
applied first. Reduction starts from Σ0: term {k1}k2 is added to Σ0 after decoding
term {[{k1}k2 ]}k+

3
by means of key k−

3 . However, the encoded term remains in
the set because the encoding key k+

3 is not known. In Σ1, both {k1}k2 and k2 are
available, therefore allowing the addition of k1 to and the elimination of {k1}k2 from
Σ1. In Σ2, two reduction rules can be applied: m can be extracted from {[m]}k+

1
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Σ = c, {[{k1}k2 ]}
k+
3

, {[m]}
k+
1

, k+
1 , k2 ρ = k−

3 Σ0 = Σ ∪ ρ

i Σi U(Σi)

0 c, {[{k1}k2 ]}
k+
3

, {[m]}
k+
1

, k+
1 , k2, k−

3 {[{k1}k2 ]}
k+
3

, (43), {k1}k2 , {[{k1}k2 ]}
k+
3

1 c, {[{k1}k2 ]}
k+
3

, {[m]}
k+
1

, k+
1 , k2, k−

3 , {k1}k2 {k1}k2 , (42), {k1}

2 c, {[{k1}k2 ]}
k+
3

, {[m]}
k+
1

, k+
1 , k2, k−

3 , k1 {[m]}
k+
1

, (43), m, {[m]}
k+
1

, {k+
1 }, (39), ∅

3 c, {[{k1}k2 ]}
k+
3

, {[m]}
k+
1

, k+
1 , k2, k−

3 , k1, m {[m]}
k+
1

, (37), ∅ , {k+
1 }, (39), ∅

4 c, {[{k1}k2 ]}
k+
3

, k+
1 , k2, k−

3 , k1, m {k+
1 }, (39), ∅

5 c, {[{k1}k2 ]}
k+
3

, k2, k−
3 , k1, m

Σ ∪ {ρ} = c, {[{k1}k2 ]}
k+
3

, k2, k−
3 , k1, m

δ−
Σ

(ρ) = {[m]}
k+
1

, k+
1 δ=

Σ (ρ) = {[{k1}k2 ]}
k+
3
} δ+

Σ
(ρ) = k−

3 , k1, m

Fig. 7. An example of reduction

because k−
1 can be computed from key pair k1, and k+

1 can be removed because it can
also be computed from k1. In our example, the first rule is applied, leading to Σ3. It
can be noted that rule (39) is still applicable, along with a new rule that allows the
elimination of {[m]}k+

1
, because now both m and k−

1 are available. The two rules

are applied sequentially, and we therefore obtain Σ5 = Σ ∪ {ρ}. In conclusion, we
have δ−

Σ
(ρ) =

{
{[m]}k+

1
, k+

1

}
, δ=

Σ
(ρ) =

{
{[{k1}k2 ]}k+

3

}
and δ+

Σ
(ρ) =

{
k−
3 , k1, m

}
.

Finally, we define the intruder knowledge representation. Denote I as the infinite,
countable, totally ordered set of names used to uniquely identify the data items
learned by the intruder. Such names are called indexes and are assumed to be
distinct from the spi calculus names (i.e., I ∩A = ∅). We simply denote by < the
total ordering relation on I, and, for each element l ∈ I, we denote next(l) the
successor of l in I. We also denote as nextn() the application of next() n times.

In our framework, the intruder knowledge is formally represented by a bijective
function K : Σ → L, where the domain Σ is the minimal closure seed of the set of
terms that the intruder has learned (denoted Σ), and the image L ⊂ I is the finite
set of indexes uniquely identifying them. Naturally, the intruder term-generation
capabilities depend on Σ. If σ ∈ M(A) is a finite term, σ can be produced by K,
written K ⊢ σ, iff σ ∈ Σ̂. Similarly, σ can be produced by Σ, written Σ ⊢ σ, iff
σ ∈ Σ̂. The decidability of K ⊢ σ and of Σ ⊢ σ comes from theorem 3.7.

The total order on I has been introduced to represent the order in which knowl-
edge elements are added to the minimal closure seed of the set of terms known by
the intruder, i.e., for any l, l′ ∈ im(K), l < l′ means that the element with index
l has been added to dom(K) before the element with index l′. More precisely, the
elements added to Σ during the protocol run are labeled by consecutive indexes.
If Max(im(K)) denotes the maximum element in im(K), and Ki is the initial in-
truder knowledge, successive data terms added to the intruder knowledge domain
during the protocol run are labeled next(Max(im(Ki))), next2((Max(im(Ki))),
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etc.
When the intruder receives a new data term ρ, its knowledge K is updated, and

the new knowledge is denoted f(ρ, K). If Σ = dom(K), f(ρ, K) is the result of
eliminating the elements of δ−

Σ
(ρ) from and adding the elements of δ+

Σ
(ρ) to the

intruder knowledge domain. Because indexes are assigned to the new elements of
the intruder knowledge domain in a predefined order, f(ρ, K) is uniquely defined if
we specify the order in which the elements of δ+

Σ
(ρ) are added. Define the normalized

reduction of a set of terms Σ as the reduction of Σ such that, at each step, in the
case where U(Σi) contains two or more reduction rules, the one whose premises
have been in Σi for a longer time is applied. Then, the order in which the elements
of δ+

Σ
(ρ) are added to f(ρ, K) is the same as the order in which they are added

during the normalized reduction of (Σ ∪ {ρ}). For example, consider the knowledge
function:

K =
{
⟨c, l0⟩ , ⟨

{[
{k1}k2

]}
k+
3

, l1⟩, ⟨{[m]}k+
1

, l2⟩,
〈
k+
1 , l3

〉
, ⟨k2, l4⟩

}
(69)

where the labeling convention li < lj ⇔ i < j is used. Note that the domain
of K is the set Σ of Figure 7, and, when k−

3 is added to the intruder knowledge,
the reduction of Σ ∪ {k−

3 } in Figure 7 is the normalized reduction. This can be
verified, because in both reduction steps 2 and 3 we have two possible reduction
rules, one with premise {[m]}k+

1
and the other with premise k+

1 , whose indexes are
respectively l2 and l3, and the first index is applied in both cases. Then, we have
that:

f(k−
3 , K) =

{
⟨c, l0⟩ , ⟨

{[
{k1}k2

]}
k+
3

, l1⟩, ⟨k2, l4⟩ ,
〈
k−
3 , l5

〉
, ⟨k1, l6⟩ , ⟨m, l7⟩

}
(70)

because {[m]}k+
1

and k+
1 belong to δ−

Σ
(k−

3 ) and are removed from Σ, while k−
3 , k1

and m are respectively added to the set in this order.

3.2 Canonical representations

When checking testing equivalence, it is necessary to abstract away from the exact
value of the exchanged data, because only the manner such data is perceived by
the intruder is important. For example, the spi processes P

∆=(νk)c⟨{M}k⟩.0 and
Q

∆=(νk)c⟨{N}k⟩.0 are testing equivalent despite their outputs being different, be-
cause both the output of P and the output of Q are encrypted messages that the
intruder cannot decrypt. Therefore, there is no test by which the intruder behaves
differently if combined with P rather than with Q. To recognize this equivalence,
the output of {M}k and the output of {N}k should produce the same ES-LTS
transition label.

For this reason, we introduce the canonical representation of a term σ with respect
to an intruder knowledge K, which expresses how σ is related to K (this is also
how the intruder perceives and interprets σ).

To introduce this concept, we first extend the notion of substitution. The sub-
stitution lists originally introduced in Section 2 act only on names. If this con-
straint is relaxed, we have substitution lists λ = ⟨σ1/ρ1, · · ·σn/ρn⟩, where ρi can
be non-atomic terms. If λ is one of such extended substitution lists, the postfix
operator [λ] simultaneously replaces each occurrence of ρi with σi for 1 ≤ i ≤ n,
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with the rule that if ρi ≼ ρj and i ̸= j, any occurrence of ρi inside an occur-
rence of ρj is not substituted. For example, {M}k[A/M, B/{M}k] = B, but
{M}k[A/M, B/{M}h] = {A}k.

The canonical representation of a term θ with respect to intruder knowledge K
is a spi calculus term defined over the extended set of names A ∪ I, obtained by
substituting each ρ ∈ dom(K) occurring in θ by its corresponding unique identifier
K(ρ). Such a substitution is represented by a substitution list made up of an item
K(ρ)/ρ for each ρ ∈ dom(K). This substitution is denoted K, and, consequently,
the canonical representation is written θ[K]. In a similar way, it is possible to
define the inverse substitution, i.e., the substitution corresponding to function K−1.
Naturally, [K][K−1] gives the null substitution.

Because [K] substitutes each occurrence of ρ with its corresponding index K(ρ),
θ[K] actually specifies how θ can be regenerated using the data items available in
the intruder knowledge, each identified by its index. For example, if we consider
knowledge functions K and f(k−

3 , K) defined respectively in (69) and (70), we
have that {[m]}k+

1
[K] = l2 and {[m]}k+

1
[f(k−

3 , K)] = {[l7]}l+6
, which means that

{[m]}k+
1

is the element labeled l2 in K, and it can be regenerated from f(k−
3 , K)

by encrypting the element labeled l7 with the public part of the key pair labeled
l6. It can be easily verified that if K ⊢ θ, then θ[K] ∈ M(I), i.e., the canonical
representation of a term that can be produced by K does not contain spi calculus
names that are not indexes, because it can be built using only the elements of the
intruder knowledge.

Canonical representations can be extended in the obvious way to any object
containing terms. For example, the canonical representation of a substitution list
λ = ⟨σ1/ρ1, . . .σn/ρn⟩ with respect to K is λ[K] = ⟨σ1[K]/ρ1[K], . . .σn[K]/ρn[K]⟩.

3.3 The concrete ES-LTS derivation system

As described above, transitions of the concrete ES-LTS take the syntactical form
(30). Process action labels µ and complementary environment action labels φ may
take three different forms, corresponding to three different types of transitions:

K ✄ P
τ4−→
− K ✄ P ′ (71)

K ✄ P 4 σ[K′]−−−−→
δK(ρ)

K ′ ✄ P ′ (72)

K ✄ P 4 σ[K]−−−→
ρ[K]

K ✄ P ′ (73)

Transitions taking the form (71) are related to synchronization events occurring
inside the spi process, and for this reason they leave the environment unaware
of what has happened, and do not involve any knowledge migration (K does not
change). In this case, the process action has the special symbol τ , which represents
an internal synchronization, and the complementary environment action is missing.
Because such transitions actually represent spi calculus reactions, they are referred
to as reaction transitions.

Transitions taking the second and third forms are related to synchronization
events between the spi process and the environment.

A transition taking the form (72) is referred to as an output transition and rep-
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resents a protocol output on channel σ. It implies a data transfer from the process
to the environment. The process action (seen by the environment) is summarized
by label σ[K ′], i.e., the canonical representation of the channel with respect to the
updated intruder knowledge K ′, with an overline symbol indicating, as in spi cal-
culus, that it is an output. The data ρ sent by the process is not specified here,
but its effect on the environment knowledge is included in the environment action
label δK(ρ), the exact format of which will be detailed below.

A transition taking the form (73) is referred to as an input transition and rep-
resents an input on channel σ. It implies a data transfer from the environment to
the process. Therefore, no modification in environment knowledge takes place. The
process action label is analogous to the previous transition, whereas the complemen-
tary action label ρ[K] is the canonical representation of the data term generated by
the intruder, i.e., the description of how ρ can be built using the current intruder
knowledge.

To formally define our environment-sensitive LTS, we use a set of derivation
rules based upon the derivation system defined in [Abadi and Gordon 1999] for
the reaction relation, and recalled in Section 2.2: in practice, the reaction relation
definition axioms and rules are assumed implicitly.

The transition relation
µ4−→
φ

for the concrete ES-LTS is the least relation that
satisfies the following derivation rules:

P≡P ′ K1✄P ′
µ4−→
φ

K2✄Q′ Q′≡Q

K1✄P
µ4−→
φ

K2✄Q
(74)

P −→ P ′

K ✄ P (
τ−→
−

K ✄ P ′
(75)

K✄P
µ4−→
φ

K′✄P ′ µ̸=τ

K✄(P |Q)
µ4−→
φ

K′✄(P ′|Q)
(76)

K✄P
µ4−→
φ

K′✄P ′

K✄(νb)P
µ4−→
φ

K′✄(νb)P ′
(77)

K⊢σ K′=f(ρ, K)

K ✄ σ⟨ρ⟩.P (
σ[K′]−−−−−−−−−−−−−→

⟨δ−
K

(ρ), δ=
K

(ρ), ρ⟩[K′]
K′ ✄ P

(78) K⊢σ K⊢ρ

K ✄ σ(x).P (
σ[K]−−−→
ρ[K]

K ✄ P [ρ/x]
(79)

Rules (74) and (75) represent the link point between our derivation rules and
the original spi calculus semantics. Rule (74) specifies that structural equivalent
expressions have the same behavior, whereas rule (75) specifies that

τ4−→
− actually

means reaction.
Rule (76) specifies how the parallel operator is handled. Note that the case of

reaction transitions (µ = τ) is not specifically addressed here, because it falls within
the application domain of rule (75).

Rule (77) specifies that restrictions do not affect our transition relation directly.
This is because, as will be made clear in the following, the information conveyed by
restriction operators is already included in the intruder knowledge representation,
which directly affects the possibility of transition occurrence.

Rules (78) and (79) control the occurrence of output and input transitions, re-
spectively. They share the precondition K ⊢ σ, i.e., they require that the channel
identifier σ can be produced by the intruder. The complementary action label of
output transitions, as indicated by the symbol δK(ρ) in (72), is the canonical repre-
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sentation of a triple
〈
δ−K(ρ), δ=

K(ρ), ρ
〉
, which describes in an abstract and synthetic

way how the intruder knowledge is affected by the reception of the data term ρ.
The first component of the triple is defined as:

δ−K(ρ) =
{
⟨θ, θ[K]⟩ | θ ∈ δ−

Σ
(ρ)

}
with Σ = dom(K) (80)

It describes the terms that are eliminated from K in the transformation from K
to K ′ when ρ is received. Each element of δ−K(ρ) is a pair ⟨θ, θ[K]⟩, where θ ∈ δ−

Σ
(ρ)

is one of the terms removed from Σ in the reduction of Σ ∪ {ρ}, and θ[K] is the
index assigned to it in K. The second component of the triple is:

δ=
K(ρ) =

{
⟨{[σ1]}σ−

2
, {[σ1]}σ+

2
⟩ | {[σ1]}σ+

2
∈ δ=

Σ
(ρ)

}

∪
{
⟨[{σ1}]σ+

2
, [{σ1}]σ−

2
⟩ | [{σ1}]σ−

2
∈ δ=

Σ
(ρ)

}
(81)

This is a set of pairs describing the terms θ ∈ δ=
Σ

(ρ), i.e., the terms that become
decipherable after ρ has been received without being eliminated from the intruder
knowledge domain. Each pair includes θ itself (the second component), and the
term that is obtained from θ replacing the encryption key with the corresponding
decryption key, which is a term that can be built from the elements of Σ ∪ {ρ}.
Therefore, the pair ⟨{[σ1]}σ−

2
, {[σ1]}σ+

2
⟩ ∈ δ=

K(ρ) means that the intruder becomes
able to extract σ1 from {[σ1]}σ+

2
using σ−

2 , but is not able to re-build {[σ1]}σ+
2
. The

third component of the triple is the received data ρ.
Note that, because the triple

〈
δ−K(ρ), δ=

K(ρ), ρ
〉

is finally interpreted with respect
to K ′ (i.e., δK(ρ) =

〈
δ−K(ρ), δ=

K(ρ), ρ
〉
[K ′] =

〈
δ−K(ρ)[K ′], δ=

K(ρ)[K ′], ρ[K ′]
〉
), each

element of δ−K(ρ)[K ′] takes the form (θ[K ′], θ[K][K ′]) = (θ[K ′], θ[K]), i.e., it is
composed of the interpretation of a term θ ∈ δ−

Σ
(ρ) with respect to the new and old

intruder knowledge functions, respectively. Note also that the environment label
of output transitions does not include an explicit canonical representation of the
elements of δ+

Σ
(ρ), because they are represented by indexes that already occur inside

the canonical representations of the elements of δ−
Σ

(ρ), δ=
Σ

(ρ), and ρ.

As an example, consider the state K ✄ P with P
∆=(νk3)(c⟨k−

3 ⟩.c(x).Q), and K
defined as in (69) (with dom(K) = Σ defined as in Figure 7). In this case we have
K ⊢ c, therefore enabling the output transition (rule (78)). It also follows that
K ′ = f(k−

3 , K) is that defined in (70), and δ−
Σ

(k−
3 ) and δ=

Σ
(k−

3 ) are as in Figure 7.
Therefore, the following output transition can occur:

K ✄ (νk3)(c⟨k−
3 ⟩.c(x).Q) 4 l0−−−−−−−−−−−−−−−−−−−−−−→

⟨δ−
K(k−

3 )[K′], δ=
K(k−

3 )[K′], k−
3 [K′]⟩

K ′ ✄ (νk3)(c(x).Q)

where δ−K(k−
3 )[K ′] = {⟨{[l7]}l+6

, l2⟩, ⟨l+6 , l3⟩}, δ=
K(k−

3 )[K ′] = {⟨{[{l6}l4 ]}l5 , l1⟩}, and
k−
3 [K ′] = l5.
Because K ′ ⊢ c, with c[K ′] = l0, an input transition can occur after the output

transition, according to rule (79). If we assume that the message ρ built by the
intruder is {(m, k−

3 )}k2 , which satisfies K ′ ⊢ ρ with {(m, k−
3 )}k2 [K ′] = {(l7, l5)}l4 ,

then the input transition is:

K ′ ✄ (νk3)(c(x).Q) 4 l0−−−−−−−→
{(l7, l5)}l4

K ′ ✄ (νk3)Q[{(m, k−
3 )}k2/x]
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c

l0
0

c⟨{M}k⟩. c(x). [x is H(M)] F (M)

| c(y1). case y1 of {y2}k in c⟨H(y2)⟩. 0

1.1 c

l0

{M}k

l1

c(x). [x is H(M)] F (M)

| c(y1). case y1 of {y2}k in c⟨H(y2)⟩. 0

2.1 c

l0

{M}k

l1

[H(c) is H(M)] F (M)

| c(y1). case y1 of {y2}k in c⟨H(y2)⟩. 0

3.1 c

l0

{M}k

l1

[H(c) is H(M)] F (M)

| c⟨H(M)⟩. 0

4.1 c

l0

{M}k

l1

H(M)

l2

[H(c) is H(M)] F (M)

2.2 c

l0

{M}k

l1

c(x). [x is H(M)] F (M)

| c⟨H(M)⟩. 0

3.2 c

l0

{M}k

l1

H(M)

l2

c(x). [x is H(M)] F (M)

4.2 c

l0

{M}k

l1

H(M)

l2

F (M)

3.3 c

l0

{M}k

l1

[{c}{M}k
is H(M)] F (M)

| c⟨H(M)⟩. 0

4.3 c

l0

{M}k

l1

H(M)

l2
[{c}{M}k

is H(M)] F (M)

1.2 c

l0

c⟨{M}k⟩. c(x). [x is H(M)] F (M)

| case {c}c of {y2}k in c⟨H(y2)⟩. 0

2.3 c

l0

{M}k

l1

c(x). [x is H(M)] F (M)

| case {c}c of {y2}k in c⟨H(y2)⟩. 0

3.4 c

l0

{M}k

l1

[({M}k, c) is H(M)] F (M)

| case {c}c of {y2}k in c⟨H(y2)⟩. 0

✙
l0 ⟨∅,∅,l1⟩

✮
l0 H(l0)

❄
l0 l1

❄
l0 ⟨∅,∅,l2⟩

"
l0

l1

✮
l0 ⟨∅,∅,l2⟩

❄
l0 l2

❘
l0 {l0}l1

❄
l0 ⟨∅,∅,l2⟩

#
l0

{l0}l0

❥
l0

⟨∅,∅,l1⟩

❘
l0 (l1, l0)

Figure 6: A simple protocol: concrete ES-LTS with states and transitions

{(m, k−
3 )}k2 [K ′] = {(l7, l5)}l4 , then the input transition is:

K ′ ✄ (νk3)(c(x).Q) ! l0−−−−−−−→
{(l7, l5)}l4

K ′ ✄ (νk3)Q[{(m, k−
3 )}k2/x]

As a further example, consider again the specification of Figure 1: Figure 7 presents part of the corre-

sponding concrete ES-LTS where reaction transitions are not represented, and, for each infinite set of input

transitions, only one is fully represented with its subsequent behavior. The presence of other non-represented

input transitions is sketched by means of dashed arrows leading to semi-hidden states. Each state box reports

the intruder knowledge (upper half) and the process expression (lower half), and each arrow between two states

is labeled with the process action label on the left and with the environment complementary action label on the

right hand side. The initial intruder knowledge is assumed to be K = {⟨c, l0⟩}. Analyze, for example, the run

highlighted with bold state numbers and thick arrows. Initially (in state 0), the intruder knows only channel

c, which is labeled l0, and the process is ready for two events: an input and an output on channel c. The

output of {M}k leads to state 1.1, where the knowledge function is properly updated. The transition is labeled

with the index of the output channel (l0) and an output environment label having δ−K(ρ)[K ′] = δ=
K(ρ)[K ′] = ∅

and ρ[K ′] = l1 (because ρ = {M}k). Subsequently, state 2.2 is reached by means of the input of term {M}k

on channel c. An infinite set of other possible input transitions on c is possible here. The process action label

of the transition analyzed is the index of the input channel (l0), and the environment label is the canonical

representation of {M}k with respect to the current knowledge function (l1). Note that, because x is replaced

by {M}k, the internal operation case x of {y}k in · · · is successful. Consequently, both a new infinite set of
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Fig. 8. A simple protocol: concrete ES-LTS with states and transitions

As a further example, consider again the specification of Figure 2: Figure 8
presents part of the corresponding concrete ES-LTS where reaction transitions are
not represented, and, for each infinite set of input transitions, only one is fully
represented with its subsequent behavior. The presence of other non-represented
input transitions is sketched by means of dashed arrows leading to semi-hidden
states. Each state box reports the intruder knowledge (upper half) and the process
expression (lower half), and each arrow between two states is labeled with the
process action label on the left and with the environment complementary action
label on the right hand side. The initial intruder knowledge is assumed to be
K = {⟨c, l0⟩}. Analyze, for example, the run highlighted with bold state numbers
and thick arrows. Initially (in state 0), the intruder knows only channel c, which
is labeled l0, and the process is ready for two events: an input and an output on
channel c. The output of {M}k leads to state 1.1, where the knowledge function is
properly updated. The transition is labeled with the index of the output channel (l0)
and an output environment label having δ−K(ρ)[K ′] = δ=

K(ρ)[K ′] = ∅ and ρ[K ′] = l1
(because ρ = {M}k). Subsequently, state 2.2 is reached by means of the input of
term {M}k on channel c. An infinite set of other possible input transitions on c is
possible here. The process action label of the transition analyzed is the index of
the input channel (l0), and the environment label is the canonical representation
of {M}k with respect to the current knowledge function (l1). Note that, because
x is replaced by {M}k, the internal operation case x of {y}k in · · · is successful.
Consequently, both a new infinite set of input transitions and an output transition
are enabled. The next step on the highlighted path is the input transition that
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corresponds to the input value {c}{M}k
({l0}l1), which leads to state 3.3. Because

the behavior [{c}{M}k
is H(M)]F (M) is stuck, only the output of H(M) is possible,

which leads to a state where the whole process is stuck.

3.4 Symbolic data representations

The symbolic ES-LTS is characterized by symbolic states and transitions, each of
which actually represents a potentially infinite set of corresponding concrete states
and transitions. Such symbolic representations are all based on generic terms,
which are the symbolic data representations. When a spi calculus process is ready
to perform an input operation, the intruder can interact with it by sending any
term that can be built from its current knowledge. As already noted, the set of
such terms is infinite, and the concrete ES-LTS model contains an infinite number of
transitions, one for each different term that the intruder can send. In the symbolic
ES-LTS model, such a set of transitions is represented as a single transition, where
the data exchanged is a generic term, symbolically representing all the terms that
could be passed to the spi process by the attacker.

To introduce generic terms in spi calculus, we extend the language with an addi-
tional infinite and countable set of names Γ, such that Γ∩A = ∅ and Γ∩ I = ∅. In
the remainder of this paper, γ ranges over Γ. Each name γ ∈ Γ uniquely identifies
an unspecialized generic term, i.e., a term generated by the intruder and not con-
strained to assume any specific syntactical form. The concrete terms represented
by γ are all those that the intruder was able to generate when γ was issued. It is
worth noting that generic terms are not intended to be used in specifications, but
only as internal abstract representations, useful in the verification algorithm.

By combining unspecialized generic terms using term operators, it is possible to
build structured generic terms called specialized generic terms. They are generic
but constrained to take a given form. For example, {m}γ is a generic term that is
constrained to represent only cyphertexts obtained by encrypting m with the keys
represented by γ. In general, a generic term is a spi calculus term η ∈ M(A∪I∪Γ)
that has at least a subterm γ ∈ Γ. Similarly, by using generic terms inside processes
or knowledge functions, we obtain symbolic processes and symbolic knowledge func-
tions. For example, P = c.⟨{γ1}γ2⟩.0 is a symbolic process representing a set of
concrete processes, one for each different pair of concrete terms represented by γ1

and γ2. Note that while a symbolic process is meaningful with any generic term
interpretation, a symbolic knowledge function has a meaning only if all the concrete
values represented by its generic terms yield valid concrete knowledge functions. For
example, the symbolic knowledge function K = {(m1, l0), ({γ}m2, l1), ({m1}m2 , l2)}
has a meaning only if γ cannot represent the concrete term m1, otherwise we would
have a concrete K = {(m1, l0), ({m1}m2 , l1), ({m1}m2 , l2)}, which is not a function
because it maps the same term {m1}m2 onto two different indexes. Below, in this
section, the means to ensure that all the symbolic functions occurring in a symbolic
ES-LTS are meaningful is explained.

Each symbolic ES-LTS state is characterized by a (finite) current set of un-
specialized generic terms G ⊂ Γ. They are the only unspecialized generic terms
that can occur in the current symbolic state. Consequently, only generic terms
belonging to M(A ∪ I ∪ G) can occur in the current symbolic state. A function
Υ : G → 2M(A∪I∪G), which is part of the symbolic ES-LTS state, gives the current
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interpretation of the unspecialized generic terms. Each γ ∈ G is mapped onto a cor-
responding knowledge function domain Υ(γ), which represents the minimal closure
seed of the set of terms that was available to the intruder when γ was generated.
The notation ηΥ indicates a generic term η that must be interpreted according to
Υ. The subscript is used only when the specification of Υ is not obvious.

When the term represented by γ is generated by the intruder it can take the
whole set of values Υ̂(γ), and a different subsequent behavior is possible for each of
these. However, for the purpose of testing equivalence, such behaviors are indistin-
guishable from one another, and can be represented as a single symbolic behavior
until the occurrence of some operation is conditioned by the value that was initially
exchanged. Whenever this happens, only the behaviors corresponding to values
that satisfy the condition are allowed to proceed and this is symbolically described
by narrowing the set of terms represented by each unspecialized generic term γ

down to the largest subset of Υ̂(γ) compatible with the operations performed. In
most cases, a narrowing of this kind is equivalent to the substitution of one or more
unspecialized generic terms with corresponding specialized generic terms or con-
crete terms. For example, a pair-splitting operation on a generic term γ narrows
the set of concrete terms represented by γ so as to include only pairs of elements
of Υ̂(γ). This is equivalent to applying the substitution ⟨(γ ′, γ′′)/γ⟩, where γ′ and
γ′′ are two new unspecialized generic terms representing the two components of the
pairs. Naturally, new generic terms γ ′ and γ′′ must be assigned the same knowledge
function of γ. Similarly, if γ is a generic term such that Υ(γ) ⊢ m, the match oper-
ation [m is γ] narrows Υ̂(γ) down to {m}, which is represented by the substitution
⟨m/γ⟩. Substitutions such as those above are called specializations, because they
substitute unspecialized generic terms with corresponding specialized or concrete
terms. Specializations are formally defined by substitution lists taking the form
⟨η1/γ1, ..., ηn/γn⟩, where, for each i, j ∈ {1, ..., n},

γi ∈ dom(Υ) , Υ(γi) ⊢ ηi , γi ̸≼ ηj (82)

The requirement γi ̸≼ ηj means that specializations completely eliminate generic
terms γ1, ..., γn. In the remainder of this paper, ξ ranges over specializations, and ∆
over sets of specializations. The (possibly empty) set of new unspecialized generic
terms introduced by a specialization is defined as newΥ(⟨η1/γ1...ηn/γn⟩) = {γ′ ∈
Γ \ dom(Υ) | γ′ ≼ ηi for some i ∈ {1, ..., n}}, whereas the set of terms replaced
by a specialization is defined as oldΥ(⟨η1/γ1...ηn/γn⟩) = {γ1, ..., γn}. The null
substitution ⊤ is also a specialization, with newΥ(⊤) = oldΥ(⊤) = ∅. When a
specialization ξ is applied to a symbolic state, function Υ is updated accordingly,
because some old unspecialized generic terms are eliminated from the state while
one or more new unspecialized generic terms may be introduced. The new generic
term interpretation function is denoted by Υ{ξ}. Its new domain is dom(Υ{ξ}) =
dom(Υ)∪newΥ(ξ)\oldΥ(ξ). For γ ∈ dom(Υ)\oldΥ(ξ), we have Υ{ξ}(γ) = Υ(γ)[ξ],
whereas for γ ∈ newΥ(ξ), Υ{ξ}(γ) is the largest minimal closure seed compatible
with (82). For example, if ξ = ⟨(γ ′, γ′′)/γ⟩ is the specialization deriving from a
pair splitting on γ, we have: newΥ(ξ) = {γ′, γ′′}, oldΥ(ξ) = {γ}, and Υ{ξ}(γ ′) =
Υ{ξ}(γ′′) = Υ(γ). If instead ξ = ⟨γ1/γ2⟩ is the specialization derived from a match
[γ1 is γ2], we have newΥ(ξ) = ∅, and oldΥ(ξ) = {γ2}. It can be realized that
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the knowledge function associated with each new generic term is always one of the
knowledge functions associated with the substituted generic terms.

The set of all possible specializations can change from state to state, and, as it
depends only on Υ, it is denoted SΥ. Two elements of SΥ that are equal up to
a renaming of new unspecialized generic terms must be considered indistinguish-
able. Therefore, in the remainder of the paper, equality between specializations is
intended in this broader sense. Moreover, as the set of terms that can occur in a
symbolic state is M(A ∪ I ∪ dom(Υ)), each ξ ∈ SΥ can be regarded as a mapping
from M(A ∪ I ∪ dom(Υ)) to the new set of terms M(A ∪ I ∪ dom(Υ{ξ})).

It is possible to introduce a partial order ⊂ on SΥ, such that ξ1 ⊂ ξ2 if ξ1 is
more restrictive than ξ2. Formally, ξ1 ⊂ ξ2 if and only if a non-null generic term
specialization ξ ∈ SΥ{ξ2} exists such that ξ1 = ξ2ξ. In other words, ξ1 ⊂ ξ2 means
that ξ1 can be obtained as the composition of ξ2 with a further non-null special-
ization ξ. We also say that ξ1 can be produced by ξ2. If ξ1 and ξ2 are represented
by finite substitution lists, it is possible to algorithmically decide if ξ1 ⊂ ξ2. For
example, if γ′, γ′′ ̸∈ dom(Υ) are new generic terms, ⟨{(γ ′, γ′′)}m/γ1⟩ ⊂ ⟨{γ′

1}m/γ1⟩
because a further specialization of γ ′

1 in the right hand side can make the second
specialization equal to the first, i.e., ⟨{γ ′

1}m/γ1⟩⟨(γ′′
1 , γ′′

2 )/γ′
1⟩ = ⟨{(γ′′

1 , γ′′
2 )}m/γ1⟩,

and, because equality of specializations is defined up to a renaming of new un-
specialized generic terms, ⟨{(γ ′′

1 , γ′′
2 )}m/γ1⟩ = ⟨{(γ′, γ′′)}m/γ1⟩. Another example

is ⟨{γ′
1}m/γ1, m/γ2⟩ ⊂ ⟨m/γ2⟩, because ⟨m/γ2⟩⟨{γ′

1}m/γ1⟩ = ⟨{γ′
1}m/γ1, m/γ2⟩.

The set SΥ with the partial order ⊂ is a join-semilattice. This can be easily shown,
because at least one upper bound exists for any two elements of SΥ (⊤ is an upper
bound for any pair of elements).

If ∆ ⊆ SΥ is a set of specializations and ξ ∈ SΥ, we say that ξ can be produced
by ∆, denoted ξ ⊂ ∆ iff ξ can be produced by one of the elements of ∆, i.e., ξ ⊂ ξi

for some ξi ∈ ∆.
The set of all concrete terms represented by a generic term ηΥ is the set of all

concrete terms that can be obtained by applying any possible specialization to η,
i.e., {η[ξ] ∈ M(A∪I) | ξ ∈ SΥ}. For example, if η = {γ}m, then the specializations
ξ ∈ SΥ such that η[ξ] ∈ M(A ∪ I) are all those that substitute γ with a concrete
term that can be produced by Υ(γ).

When a specialization ξ is applied, the set of concrete terms represented by any
generic term ηΥ is narrowed. Moreover, if ξ1 ⊆ ξ2, the application of ξ1 yields a set
of concrete terms that is a subset of the set of terms originated by ξ2. Because a
specialization represents a particular narrowing of the concrete values represented
by generic terms, a set of specializations ∆ ⊆ SΥ represents a family of such
narrowings. A set ∆ ⊆ SΥ is said to be irredundant if it contains only maximal
elements, i.e., it does not contain any two elements ξ1, ξ2 such that ξ1 ⊂ ξ2.
For example, if we have dom(Υ) = {γ1, γ2} and Υ(γ1) = Υ(γ2) = {m}, then
the set ∆ = {⟨H(γ′

1)/γ1, m/γ2⟩, ⟨m/γ2⟩, ⟨H(m)/γ1, m/γ2⟩} is redundant because
⟨H(m)/γ1, m/γ2⟩ ⊂ ⟨H(γ′

1)/γ1, m/γ2⟩ ⊂ ⟨m/γ2⟩. Any redundant subset of SΥ can
be transformed into a corresponding irredundant subset by eliminating redundant
(i.e., non-maximal) elements. For example, the irredundant set corresponding to
the set that has just been introduced is ∆′ = {⟨m/γ2⟩}.

Naturally, the elimination of redundant elements from a set ∆ does not change
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the set of all the concrete terms that can be obtained by specializing η with all the
specializations that can be produced by ∆. In the remainder of this paper only
irredundant sets of specializations are considered.

Specializations are adequate to describe symbolic representation narrowings re-
lated to operations performed by the process, but they are not precise enough to
describe narrowing deriving from operations on symbolic intruder knowledge. For
example, consider the intruder knowledge

K = {(c, l0), (d, l1), ({(c, d)}k1 , l2), ({{(γ0, γ1)}k1}k2 , l3)} (83)

with dom(Υ) = {γ0, γ1} and Υ(γ0) = Υ(γ1) = {c, d}, and process P = (νk2)c⟨k2⟩.
P ′. It is clear that the output of k2 allows the intruder to decode {{(γ0, γ1)}k1}k2 ,
therefore obtaining {(γ0, γ1)}k1 . Then, {{(γ0, γ1)}k1}k2 is removed from the
knowledge, and two different final knowledge representations can be reached, de-
pending on the concrete values considered for γ0 and γ1. If we consider the behaviors
where γ0 and γ1 are equal to c and d, respectively, only k2 is added to dom(K),
because the message extracted from {{(γ0, γ1)}k1}k2 is already known to the in-
truder. If instead we consider the behaviors where γ0 and γ1 take other values,
{(γ0, γ1)}k1 is a new data item for the intruder, and it is added to the intruder
knowledge along with k2. In the symbolic ES-LTS, this situation is represented as
having two symbolic transitions, leading respectively to the two knowledge repre-
sentations

K ′
1 = {(c, l0), (d, l1), ({(c, d)}k1 , l2), (k2, l4)} (84)

K ′
2 = {(c, l0), (d, l1), ({(c, d)}k1 , l2), (k2, l4), ({(γ0, γ1)}k1 , l5)} (85)

If the first transition is taken, the sets of terms represented by γ0 and γ1 are
narrowed by specialization ⟨c/γ0, d/γ1⟩. If instead the second transition is taken,
it is necessary to narrow the set of terms represented by γ0 and γ1 so as to exclude
the fact that (γ0, γ1) = (c, d). This ensures that the resulting knowledge K ′

2 is a
meaningful symbolic knowledge function. This second form of narrowing cannot
be expressed by a specialization, but it can be described by specifying that some
specializations will never be applied. Formally, we define an extended narrowing
specification as a pair ⟨ξ, δΛ⟩, where ξ is a specialization that must be applied,
and δΛ = {ξ1, . . . ξk} is an irredundant set of forbidden further specializations.
In the previous example, the second narrowing can be expressed by the extended
narrowing specification ⟨⊤, {⟨c/γ0, d/γ1⟩}⟩. Of course, ⟨ξ, ∅⟩ = ξ.

By analogy with what has been done for simple specializations, it is also possible
to introduce a partial order on the set of extended narrowings, therefore obtaining a
join-semilattice, which extends SΥ. As long as the computation proceeds, forbidden
specializations are added, and we denote as Λ the irredundant set of specializations
obtained as the union of all forbidden specializations accumulated up to the current
state.

A specialization ξ is compatible with the prohibitions imposed by Λ if ξ ̸⊂ Λ, i.e.,
at least one of the generic term assignments it yields cannot be produced by the
elements of Λ. In other words, ξ ̸⊂ Λ means that there is at least one specialization
that can be applied after ξ without violating the prohibitions imposed by Λ. For
example, ⟨c/γ0⟩ is compatible with Λ = {⟨c/γ0, d/γ1⟩}, i.e., ⟨c/γ0⟩ ̸⊂ Λ, because
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any further specialization of γ1 different from ⟨d/γ1⟩, such as, for example, H(d)/γ1,
can be applied after ⟨c/γ0⟩ without violating the prohibitions imposed by Λ.

The set of specializations compatible with Λ is denoted SΥ,Λ = {ξ ∈ SΥ | ξ ̸⊂ Λ}.
A generic term η to be interpreted according to Υ, but with the limitations imposed
by Λ, is denoted ηΥ,Λ.

Given two generic terms σ and ρ, we define their unification, denoted σ•ρ, as the
irredundant set of specializations compatible with Λ that make σ and ρ equal, i.e.,
σ • ρ = {ξ ∈ SΥ,Λ | σ[ξ] = ρ[ξ]}. If σ and ρ are unconditionally equal (i.e., σ = ρ),
σ • ρ = {⊤}, whereas if they cannot be equal, σ • ρ = ∅. If σ, ρ, and Λ are finite,
and im(Υ) includes only finite sets, then the computation of σ •ρ can be performed
in a finite number of steps. As an example, compute γ0 • {γ1}γ2 , which is useful to
specify which behaviors can successfully execute the match operation [γ0 is {γ1}γ2 ].
Let Υ(γ0) = {{m}d, {m}e}, and Υ(γ1) = Υ(γ2) = {m, d, e}. It is clear that γ0

needs to be specialized into a shared-key encrypted term, and the computation
of γ0 • {γ1}γ2 gives three possible specializations: ξ1 = ⟨{m}d/γ0, m/γ1, d/γ2⟩,
ξ2 = ⟨{m}e/γ0, m/γ1, e/γ2⟩, and ξ3 = ⟨{γ′

0}γ′′
0
/γ0, γ′

0/γ1, γ′′
0 /γ2⟩, with Υ(γ′

0) =
Υ(γ′′

0 ) = Υ(γ0). Note that the sets of concrete terms obtained from specializations
ξ1, ξ2, and ξ3 are all disjoint, because m ̸∈ Υ̂(γ′

0) and {d, e} ̸⊆ Υ̂(γ′′
0 ).

If a specialization ξ ∈ SΥ,Λ is applied to a symbolic state, Λ is updated accord-
ingly, and the resulting set is

Λ{ξ} = {ξ′ ∈ SΥ{ξ} | ξξ′ ⊂ Λ} (86)

i.e., the new forbidden specializations ξ′ are all those that, if applied after ξ, yield
an overall specialization ξξ′ that is not compatible with Λ. If ξ and the for-
bidden specializations Λ are represented as finite substitution lists, Λ{ξ} can be
computed algorithmically. For example, the application of ⟨c/γ0⟩ in the example
above (with Λ = {⟨c/γ0, d/γ1⟩}) leads to the new set of forbidden specializations
Λ′ = Λ{⟨c/γ0⟩} = {⟨d/γ1⟩}, and the further application of ⟨H(d)/γ1⟩ leads to
Λ′′ = Λ′{H(d)/γ1} = ∅.

The notation introduced for generic terms can also be extended to symbolic
knowledge functions and process descriptions. Specifically, KΥ,Λ, PΥ,Λ, and (K ✄

P )Υ,Λ are symbolic elements to be interpreted according to the pair (Υ, Λ). If
Υ = ∅ and Λ = ∅, the current state is concrete, i.e., it does not contain generic
terms.

We say that K is consistent with (Υ, Λ) if it includes only terms in M(A ∪ I ∪
dom(Υ)) and, for each ξ ∈ SΥ,Λ, K[ξ] is a knowledge function, i.e., it satisfies the
properties of functions, it is bijective, and its domain is a minimal closure seed.
Of course, KΥ,Λ is a meaningful symbolic representation only if K is consistent
with (Υ, Λ), and such consistency is guaranteed if each transition that modifies
the intruder knowledge updates Λ so as to include in it any specialization that
invalidates the resulting symbolic intruder knowledge function. A process P is
consistent with Υ, Λ if the terms it contains are in the set M(A ∪ I ∪ dom(Υ)). In
the remainder of the paper, the sets of all the symbolic knowledge functions and
processes consistent with the interpretation given by (Υ, Λ) are denoted KΥ,Λ and
PΥ,Λ, respectively.

In conclusion, each symbolic ES-LTS state, denoted (K ✄ P )Υ,Λ, is made up of
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a current generic term interpretation Υ, Λ, a current symbolic knowledge function
K consistent with it, and a current symbolic process behavior expression P that is
also consistent with it.

3.5 The symbolic ES-LTS derivation system

Each symbolic transition represents an infinite set of corresponding concrete tran-
sitions, all of the same type. Therefore, symbolic transitions can be categorized
into reaction, input, and output transitions, in the same way as concrete transi-
tions. The labels of symbolic transitions are similar to the corresponding concrete
labels, but they may contain generic terms. Moreover, complementary action labels
may include an additional field that specifies a narrowing on the possible behaviors
and can take either the form of a pure specialization ξ or the form of an extended
narrowing specification ⟨ξ, δΛ⟩.

Specifically, the general forms taken by symbolic transitions are:

(K ✄ P )Υ,Λ
τ4−→

ξ[K′]
(K ′ ✄ P ′)Υ′,Λ′ (87)

(K ✄ P )Υ,Λ 4 σ[ξ][K′]−−−−−−−−−−→
⟨ξ,δΛ⟩[K′],δK(ρ)

(K ′ ✄ P ′)Υ′,Λ′ (88)

(K ✄ P )Υ,Λ 4 σ[K]−−−→
γ

(K ✄ P ′)Υ′,Λ (89)

Reaction transitions (87) may contain narrowing specifications, which always take
the form of pure specializations. A reaction transition that contains a non-null
specialization is referred to as a specialization transition, and is associated with
internal operations, such as pair splittings, comparisons, or decryptions, which
allow only a restricted set of concrete behaviors to proceed. The execution of a
specialization transition labeled by ξ[K ′] can change any state component, the new
resulting state being:

(K ✄ P )Υ,Λ{ξ} = (K[ξ] ✄ P [ξ])Υ{ξ},Λ{ξ} = (K ′ ✄ P ′)Υ′,Λ′ (90)

The same state transformation also occurs in output transitions (88), where, how-
ever, the state is also subject to the knowledge update described by δK(ρ), and to
the unallowed specializations update implied by δΛ.

It should be noted that the complementary action label of input transitions (89)
is no longer a concrete term, but a new unspecialized generic term γ that repre-
sents any data term that the intruder can generate. Input transitions are never
characterized by narrowing specifications.

The derivation system for the symbolic ES-LTS, by analogy with that for the
concrete ES-LTS, includes all the original spi reaction relation definition axioms
and rules. Although generic terms are new, with respect to the original spi calculus,
we assume that the derivation rules as defined in [Abadi and Gordon 1999] apply
to the extended set of names A ∪ Γ.

Following the analogy with the concrete ES-LTS, the symbolic derivation system
includes the equivalent of rules (74)-(77), the only difference being the presence of
the new state subscript Υ, Λ.

Rules (78) and (79) are substituted by their symbolic counterparts:
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(K ✄ (νk2)c⟨k2⟩.P ′)Υ,Λ

Υ =
(γ0, {c, d}),
(γ1, {c, d})

Λ = ∅

(K ′
1 ✄ P ′[⟨l0/γ0, l1/γ1⟩])Υ′

1,Λ′
1

Υ′
1 = ∅

Λ′
1 = ∅

(K ′
2 ✄ P ′)Υ′

2,Λ′
2

Υ′
2 =

(γ0, {c, d}),
(γ1, {c, d})

Λ′
2 = {⟨c/γ0, d/γ1⟩}

✲

✲l0

⟨⊤, {⟨l0/γ0, l1/γ1⟩}⟩, ⟨{⟨{l5}l4 , l3⟩}, ∅, l4⟩

l0

⟨⟨l0/γ0, l1/γ1⟩, ∅⟩, ⟨{⟨{l2}l4 , l3⟩}, ∅, l4⟩

Fig. 9. An example with two symbolic transitions

K⊢σ ⟨ξ,δΛ⟩∈Θ(ρ,KΥ,Λ) K′
Υ′,Λ′=f⟨ξ,δΛ⟩(ρ,KΥ,Λ)

(K ✄ σ⟨ρ⟩.P )Υ,Λ (
σ[ξ][K′]−−−−−−−−−−−−−−−−−−−−→

⟨ξ,δΛ⟩[K′],⟨δ−K(ρ), δ=
K (ρ), ρ⟩[K′]

(K′ ✄ P [ξ])Υ′,Λ′

(91)

K⊢σ γ ̸∈dom(Υ)

(K ✄ σ(x).P )Υ,Λ (
σ[K]−−−→

γ
(K ✄ P [γ/x])Υ∪{(γ,dom(K))},Λ

(92)

where

f⟨ξ,δΛ⟩(ρ, KΥ,Λ) = f(ρ[ξ], K[ξ])Υ{ξ},(Λ∪δΛ){ξ} (93)
Θ(ρ, KΥ,Λ) = {⟨ξ, δΛ⟩ | ξ ∈ SΥ,Λ, δΛ ∈ SΥ, f⟨ξ,δΛ⟩(ρ, KΥ,Λ) ∈ KΥ,Λ} (94)

Function f⟨ξ,δΛ⟩ is the symbolic version of function f after the application of the
narrowing specified by ⟨ξ, δΛ⟩. As seen in (93), this results from the composition
of the knowledge transformation implied by the application of ξ (and described
by (90)), the addition of δΛ to Λ, and the knowledge transformation described by
function f(). Θ(ρ, KΥ,Λ) is the irredundant set of narrowings ⟨ξ, δΛ⟩ that make
f⟨ξ,δΛ⟩(ρ, KΥ,Λ) a valid knowledge function. Note that it is possible that the new
knowledge function K ′

Υ′,Λ′ reached after the output of ρ depends on how the generic
terms are specialized. Therefore, there may be more than one possible K ′

Υ′,Λ′ , each
corresponding to a different transition and to a different element of Θ(ρ, KΥ,Λ). For
example, if the intruder knowledge is that reported in (83) and P = (νk2)c⟨k2⟩.P ′,
we have already noted that there are two possible resulting symbolic knowledge
functions ((84) and (85)). Therefore, in this example, Θ(ρ, KΥ,Λ) includes two dif-
ferent extended narrowings. The first is ⟨ξ1, δΛ1⟩ = (⟨c/γ0, d/γ1⟩, ∅), which leads
to knowledge function (84), with Υ′

1 = ∅ and Λ′
1 = ∅. In this case, the correspond-

ing process action label is σ[ξ1][K ′
1] = l0, and the two items of the complementary

action label are ⟨ξ1, δΛ1⟩[K ′
1] = (⟨l0/γ0, l1/γ1⟩, ∅) and

〈
δ−K(ρ), δ=

K(ρ), ρ
〉
[K ′

1] =
⟨{⟨{l2}l4 , l3⟩} , ∅, l4⟩. This means that, after the arrival of k2, the piece of knowl-
edge previously labeled l3 can be seen as {l2}l4 . The second element of Θ(ρ, KΥ,Λ)
is ⟨ξ2, δΛ2⟩ = (∅, {⟨c/γ0, d/γ1⟩}), which leads to knowledge function (85), with
Υ′

2 = Υ and Λ′
2 = {⟨c/γ0, d/γ1⟩}. In this case, the corresponding process ac-

tion is again σ[ξ2][K ′
2] = l0, whereas the two items of the complementary ac-

tion label are ⟨ξ2, δΛ2⟩[K ′
2] = (∅, {⟨l0/γ0, l1/γ1⟩}) and

〈
δ−K(ρ), δ=

K(ρ), ρ
〉
[K ′

2] =
⟨{⟨{l5}l4 , l3⟩} , ∅, l4⟩. This means that, after the arrival of k2, the piece of knowl-
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edge named l3 can be seen as {l5}l4 , where l5 is a new piece of knowledge. The two
complete resulting transitions and states are shown in Figure 9.

The semantics of specialization transitions are defined by the rules:

(K ✄ P )Υ,Λ (
τ−−−−→

ξ[K[ξ]]
(K ✄ P ′)Υ,Λ{ξ}

(K ✄ (P |Q))Υ,Λ (
τ−−−−→

ξ[K[ξ]]
(K ✄ (P ′|Q))Υ,Λ{ξ}

(95)

ξ∈σ•ρ ξ ̸=⊤
(K✄(σ⟨θ⟩.P | ρ(x).Q))Υ,Λ (

τ−−−−→
ξ[K[ξ]]

(K ✄ (σ⟨θ⟩.P | ρ(x).Q))Υ,Λ{ξ}
(96)

ξ∈σ•ρ ξ ̸=⊤
(K ✄ ([σ is ρ]P ))Υ,Λ (

τ−−−−→
ξ[K[ξ]]

(K ✄ [σ is ρ]P )Υ,Λ{ξ}
(97)

γ′,γ′′ ̸∈dom(Υ)

(K ✄ (let (x,y)= γ in P ))Υ,Λ (
τ−−−−−−→

(γ′,γ′′)/γ
(K✄(let (x,y)= γ in P ))Υ,Λ{(γ′,γ′′)/γ}

(98)

−
(K ✄ (case γ of 0:P suc(x):Q))Υ,Λ (

τ−−→
0/γ

(K✄(case γ of 0:P suc(x):Q))Υ,Λ{0/γ}
(99)

γ′ ̸∈dom(Υ)

(K ✄ (case γ of 0:P suc(x):Q))Υ,Λ (
τ−−−−−−→

suc(γ′)/γ
(K✄(case γ of 0:P suc(x):Q))Υ,Λ{suc(γ′)/γ}

(100)

ξ∈η◦ρ ξ ̸=⊤
(K ✄ (case η of {x}ρ in P ))Υ,Λ (

τ−−−−→
ξ[K[ξ]]

(K ✄ (case η of {x}ρ in P ))Υ,Λ{ξ}
(101)

ξ∈η⊕ρ ξ ̸=⊤
(K ✄ (case η of {[x]}ρ in P ))Υ,Λ (

τ−−−−→
ξ[K[ξ]]

(K ✄ (case η of {[x]}ρ in P ))Υ,Λ{ξ}
(102)

ξ∈η⊖ρ ξ ̸=⊤
(K ✄ (case η of [{x}]ρ in P ))Υ,Λ (

τ−−−−→
ξ[K[ξ]]

(K ✄ (case η of [{x}]ρ in P ))Υ,Λ{ξ}
(103)

Rule (95) specifies how the parallel operator is treated, whereas the other rules
specify all the situations in which specialization transitions can occur. Note that,
according to (90), the new knowledge after specialization ξ is K ′ = K[ξ], which
means that ξ[K ′] = ξ[K[ξ]]. Moreover, because ξ ∈ SΥ,Λ, this means that ξ[K ′] ∈
SΥ[K′],Λ[K′], i.e., the canonical representation of a specialization ξ with respect to
K ′ is also a specialization, according to the interpretation given by Υ[K ′] and Λ[K ′].
Note also that specialization transitions do not execute a spi calculus process action
but they only apply a specialization, which enables further evolutions according to
the other rules. For example, rule (96) applies a specialization ξ ∈ σ • ρ, which
makes σ and ρ equal, therefore enabling an internal synchronization between σ⟨θ⟩.P
and ρ(x).Q.

The operators ◦, ⊕, and ⊖ denote unifications similar to •. η ◦ ρ is the set of
specializations that must be applied to η and ρ to make η a term encrypted under
key ρ, whereas ⊕ and ⊖ are the public-key and private-key variants of ◦. The formal
definition of ◦ is: η ◦ ρ =

{
ξ ∈ SΥ,Λ | ∃ σ | η[ξ] = {σ}ρ[ξ]

}
.
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0 c

l0

c⟨{M}k⟩. c(x). [x is H(M)] F (M)

| c(y1). case y1 of {y2}k in c⟨H(y2)⟩. 0

1.1 c

l0

{M}k

l1

c(x). [x is H(M)] F (M)

| c(y1). case y1 of {y2}k in c⟨H(y2)⟩. 0

2.1 c

l0

{M}k

l1

[γ0 is H(M)] F (M)

| c(y1). case y1 of {y2}k in c⟨H(y2)⟩. 0

3.1 c

l0

{M}k

l1

[γ0 is H(M)] F (M)

| case γ1 of {y2}k in c⟨H(y2)⟩. 0

3.1.a c

l0

{M}k

l1

[γ0 is H(M)] F (M)

| c⟨H(M)⟩. 0

4.1 c

l0

{M}k

l1

H(M)

l2

[γ0 is H(M)] F (M)

2.2 c

l0

{M}k

l1

c(x). [x is H(M)] F (M)

| case γ0 of {y2}k in c⟨H(y2)⟩. 0

2.2.a c

l0

{M}k

l1

c(x). [x is H(M)] F (M)

| c⟨H(M)⟩. 0

3.2 c

l0

{M}k

l1

H(M)

l2

c(x). [x is H(M)] F (M)

4.2 c

l0

{M}k

l1

H(M)

l2

[γ1 is H(M)] F (M)

4.2.a c

l0

{M}k

l1

H(M)

l2

F (M)

3.3.a’ c

l0

{M}k

l1

[γ1 is H(M)] F (M)

| c⟨H(M)⟩. 0

4.3’ c

l0

{M}k

l1

H(M)

l2

[γ1 is H(M)] F (M)

3.3 c

l0

{M}k

l1

[γ1 is H(M)] F (M)

| case γ0 of {y2}k in c⟨H(y2)⟩. 0

3.3.a c

l0

{M}k

l1

[γ1 is H(M)] F (M)

| c⟨H(M)⟩. 0

4.3 c

l0

{M}k

l1

H(M)

l2

[γ1 is H(M)] F (M)

1.2 c

l0

c⟨{M}k⟩. c(x). [x is H(M)] F (M)

| case γ0 of {y2}k in c⟨H(y2)⟩. 0

2.3 c

l0

{M}k

l1

c(x). [x is H(M)] F (M)

| case γ0 of {y2}k in c⟨H(y2)⟩. 0

3.4 c

l0

{M}k

l1

[γ1 is H(M)] F (M)

| case γ0 of {y2}k in c⟨H(y2)⟩. 0

✙
l0 ⟨⊤,∅⟩⟨∅,∅,l1⟩

✙
l0 γ0

❄
l0 γ1

❄
τ l1/γ1

❄
l0 ⟨⊤,∅⟩⟨∅,∅,l2⟩

❥
l0

γ0

✠
τ l1/γ0

✠
l0 ⟨⊤,∅⟩⟨∅,∅,l2⟩

❄
l0 γ1

❄
τ l2/γ1

❘
l0

γ1

❄
l0 ⟨⊤,∅⟩⟨∅,∅,l2⟩

③
l0

γ1

❄
τ l1/γ0

❄
l0 ⟨⊤,∅⟩⟨∅,∅,l2⟩

%
l0

γ0

%
l0

⟨⊤,∅⟩⟨∅,∅,l1⟩

❄

l0 γ1

Figure 9: A simple protocol: symbolic ES-LTS with states and transitions

execute a spi calculus process action but they only apply a specialization, which enables further evolutions

according to the other rules. For example, rule (96) applies a specialization ξ ∈ σ • ρ, which makes σ and ρ

equal, therefore enabling an internal synchronization between σ⟨θ⟩.P and ρ(x).Q.

The operators ◦, ⊕, and ⊖ denote unifications similar to •. η ◦ ρ is the set of specializations that must be

applied to η and ρ to make η a term encrypted under key ρ, whereas ⊕ and ⊖ are the public- and private-key

variants of ◦. The formal definition of ◦ is: η ◦ ρ =
{
ξ ∈ SΥ,Λ | ∃ σ | η[ξ] = {σ}ρ[ξ]

}
.

Figure 9 shows the symbolic ES-LTS for the example of Figure 1, where, for simplicity, reaction transitions

and their subsequent behaviors are omitted. The state numbering follows that of Figure 10, in the sense that the

number associated with each symbolic state in Figure 9 is the same as that in Figure 10 and was assigned to the

corresponding concrete state. However, because the symbolic ES-LTS also includes specialization transitions,

some concrete states of Figure 10 are represented by more than one symbolic state in Figure 9. Different

symbolic states representing the same concrete state of Figure 10 are distinguished by a letter, which is added

after the state number. The states represented by dashed boxes come from the interleaving introduced by

33

Fig. 10. A simple protocol: symbolic ES-LTS with states and transitions

Figure 10 shows the symbolic ES-LTS for the example of Figure 2, where, for
simplicity, reaction transitions and their subsequent behaviors are omitted. The
state numbering follows that of Figure 8, in the sense that the number associated
with each symbolic state in Figure 10 is the same that in Figure 8 was assigned
to the corresponding concrete state. However, because the symbolic ES-LTS also
includes specialization transitions, some concrete states of Figure 8 are represented
by more than one symbolic state in Figure 10. Different symbolic states representing
the same concrete state of Figure 8 are distinguished by a letter, which is added
after the state number. The states represented by dashed boxes come from the
interleaving introduced by specialization transitions. The path starting from state
2.2 and ending with state 4.3′ differs from that starting from 2.2 and ending with
4.3 only in the order of the first two transitions ((l0, γ1), (τ, l1/γ0) vs. (τ, l1/γ0),
(l0, γ1)).

The set of forbidden specializations Λ is not shown because it is always empty
in this example, whereas Υ is not explicitly represented because it can be easily
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deduced from the state where each generic term is generated.
Analyze the run highlighted with bold state numbers and thick arrows. The

initial state (state 0) is the same as that in the concrete ES-LTS. The first transi-
tion is the output of {M}k, which leads to state 1.1. This is a concrete transition,
because, up to this state, no generic term has been introduced. The process ac-
tion label is l0, as in the concrete ES-LTS, whereas the environment action label is
⟨ξ, δΛ⟩ ⟨δ−K(ρ), δ=

K(ρ), ρ⟩[K ′] = ⟨⊤, ∅⟩ ⟨∅, ∅, l1⟩, which corresponds to the concrete
ES-LTS label ⟨∅, ∅, l1⟩. Starting from this state, state 2.2 can be reached by means
of an input transition. This is the first really symbolic transition, because it intro-
duces generic term γ0, which symbolically represents any data that can be sent to
the process. Naturally, Υ(γ0) = {c, {M}k} is the domain of the intruder knowledge
associated with state 1.1. Starting from state 2.2, two transitions are possible, en-
abled by rules (92) and (101). The input transition leads to state 3.3. Here, the
operation [γ1 is H(M)] cannot be successfully executed, because γ1 • H(M) = ∅,
because Υ(γ1) = {c, {M}k}. On the other hand, {M}k belongs to Υ(γ0), which
allows the operation case γ0 of {y2}k in · · · to be executed successfully. Then, a
specialization transition with labels τ and ⟨l1/γ0⟩ is enabled, which leads to state
3.3.a. Finally, only an output transition is possible, leading to state 4.3. The tran-
sition label of such a transition has the same structure as the previously described
output transition, where ρ = H(M) (labeled with l2) substitutes ρ = {M}k (labeled
with l1). At this point the behavior cannot evolve any more.

The behavior starting from state 2.2 and ending in state 4.2.a, where the process
becomes ready to behave as F (M), has more states because the output of H(M)
(l2) precedes the input event, therefore making the match [γ1 is H(M)] successful
after specialization ⟨H(M)/γ1⟩.

3.6 Traces

A trace is a string of symbols representing a sequence of observable computation
steps in an ES-LTS. It is possible to define concrete traces and symbolic traces,
according to which ES-LTS is considered. In any case, trace symbols take the form
(µ, φ), where µ and φ are the process action and the complementary action labels
of the executed transitions. In the concrete ES-LTS, all computation steps except
internal steps (i.e., input and output transitions) are observable. In the symbolic
ES-LTS, input and output transitions are always observable, and pure reactions
are unobservable, whereas specialization transitions are considered observable only
if followed by input or output transitions. If a specialization is not followed by an
input or output operation, the intruder has no way of realizing that it has taken
place, and this is the reason it is considered unobservable. For example, the ES-LTS
of process c(x).[x is m].0 with an initial intruder knowledge domain including c and
m, gives an input transition followed by an unobservable specialization transition.
This is consistent with the intruder being unable to distinguish the above process
from process c(x).0.

In the following, if not otherwise specified, t and t′ denote traces, ϵ denotes the
empty trace, a and a′ denote trace symbols, t.t′ denotes trace t concatenated with
trace t′, and a.t and t.a denote the traces obtained prepending and appending
symbol a to trace t, respectively. Finally, π denotes the process action label of an
input or output transition.
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) l0−−−−−−−−−−−→
⟨⊤, ∅⟩, ⟨∅, ∅, l1⟩

) l0−−→
γ0

) l0−−→
γ1

) τ−−−−→
l1/γ0

) l0−−−−−−−−−−−→
⟨⊤, ∅⟩, ⟨∅, ∅, l2⟩

) (τ,⊤).(l0, ⟨⟨⊤, ∅⟩, ⟨∅, ∅, l1⟩⟩)====================⇒ ) (τ,⊤).(l0, γ0)
=========⇒ ) (τ,⊤).(l0, γ1)

=========⇒ ) (τ, l1/γ0).(l0, ⟨⟨⊤, ∅⟩, ⟨∅, ∅, l2⟩⟩)======================⇒

Fig. 11. An example of a symbolic trace

To formally define the traces of an ES-LTS, we introduce the binary relation
t

|=⇒
on the set of states of an ES-LTS such that S1

t
|=⇒ S2 iff t is a trace starting from

state S1 and ending with state S2.
First consider the concrete ES-LTS. After defining

ϵ
|=⇒ as the reflexive and tran-

sitive closure of
τ4−→
− , we inductively define

t.(π,φ)
|=⇒ as

t
|=⇒

ϵ
|=⇒ π4−→

φ

ϵ
|=⇒.

For the symbolic ES-LTS, we have a similar inductive definition, where
ϵ

|=⇒ is de-

fined as for the concrete ES-LTS, and (K ✄P )Υ,Λ

t.(τ,ξ).(π,φ)
|=⇒ (K ′✄P ′)Υ′,Λ′ iff either

ξ = ⊤ and (K ✄ P )Υ,Λ
t

|=⇒
ϵ

|=⇒ π4−→
φ

ϵ
|=⇒ (K ′ ✄ P ′)Υ′,Λ′ , or there exist ξ1, . . . , ξn

such that ξ = ξ1 . . . ξn, and (K ✄ P )Υ,Λ
t

|=⇒ τ4−→
ξ1

. . .
τ4−→
ξn

π4−→
φ

ϵ
|=⇒ (K ′ ✄ P ′)Υ′,Λ′ .

This definition takes into account the fact that if two different sequences of spe-
cializations yield the same overall specialization then they must be considered in-
distinguishable. Moreover, each input/output symbol (π, φ) is preceded by a spe-
cialization symbol (τ, ξ), describing the net effect of the (possibly empty) sequence
of specialization transitions that are executed before the input/output transition.
Specializations not followed by input/output operations are not considered because
they are unobservable. Concrete traces can be regarded as symbolic traces where
all the specializations and the extended narrowing specifications are null.

The concrete traces of a spi process P with an initial intruder knowledge K are
defined as:

ctr(P, K) = {t | ∃ P ′, K ′ | K ✄ P
t

|=⇒ K ′ ✄ P ′} (104)

The most conservative assumption about the initial knowledge of the intruder
is that the intruder initially knows any free name of P . In a similar manner, we
define the symbolic traces of P :

str(P, K) = {t | ∃ P ′, K ′, Υ′, Λ′ | (K ✄ P )∅,∅
t

|=⇒ (K ′ ✄ P ′)Υ′,Λ′} (105)

Note that the initial state of a symbolic ES-LTS is concrete, and this is the reason
initially Υ = ∅ and Λ = ∅.

As an example, the symbolic trace corresponding to the thick-lined run of Fig-
ure 10 is shown in Figure 11, below the corresponding sequence of transitions.

Note that the null specialization symbol (τ,⊤) has been added before those of the
first three transitions, because they are not preceded by specialization transitions.
For simplicity, in the remainder of the paper we omit null specializations and null
narrowing specifications in symbolic traces.

The information on a symbolic trace t makes it possible to compute some elements
of the ES-LTS state that is reached after the execution of t. Specifically, if (K ′ ✄
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imt1
K = {l0, l1, l2, l4}

Υt1
K = ∅

Λt1
K = ∅

(τ,

ξ1

⊤ ).(

σ

l0 , ⟨

ξ2

⟨l0/γ0, l1/γ1⟩,

δΛ

∅ ⟩,

δK

⟨

δ−

{⟨{l2}l4 , l3⟩},

δ=

∅ ,

ρ

l4 ⟩)

imt′
K = {l0, l1, l2, l3}

Υt′
K =

(γ0, {l0, l1}),
(γ1, {l0, l1})

Λt′
K = ∅

(τ,

ξ1

⊤ ).(

σ

l0 , ⟨

ξ2

⊤ ,

δΛ

{⟨l0/γ0, l1/γ1⟩}⟩,

δK

⟨

δ−

{⟨{l5}l4 , l3⟩},

δ=

∅ ,

ρ

l4 ⟩)
imt2

K = {l0, l1, l2, l4, l5}

Υt2
K =

(γ0, {l0, l1}),
(γ1, {l0, l1})

Λt2
K = {⟨l0/γ0, l1/γ1⟩}

Fig. 12. An example with two symbolic traces

P ′)Υ′,Λ′ is such a state and if the image of the initial intruder knowledge is known, it
is possible to compute im(K ′), Υ′[K ′], and Λ′[K ′]. Such elements are respectively
denoted as imt

K , Υt
K , and Λt

K , where K is the initial intruder knowledge. On the
basis of the symbolic ES-LTS derivation rules, they can be computed as follows:

imt
K =

⎧
⎨

⎩

im(K) if t = ϵ
imt′

K if t = t′.(τ, ξ1).(σ, γ)
imt′

K ∪ n(δK) \ old(δK) if t = t′.(τ, ξ1).(σ, ⟨ξ2, δΛ⟩, δK)
(106)

Υt
K =

⎧
⎨

⎩

∅ if t = ϵ
Υt′

K{ξ1} ∪ ⟨γ, imt′

K⟩ if t = t′.(τ, ξ1).(σ, γ)
Υt′

K{ξ1ξ2}[λδK ] if t = t′.(τ, ξ1).(σ, ⟨ξ2, δΛ⟩, δK)
(107)

Λt
K =

⎧
⎨

⎩

∅ if t = ϵ
Λt′

K{ξ1} if t = t′.(τ, ξ1).(σ, γ)
Λt′

K{ξ1ξ2}[λδK ] ∪ {δΛ} if t = t′.(τ, ξ1).(σ, ⟨ξ2, δΛ⟩, δK)
(108)

where n(δK)2 is the set of names occurring in δK , and, if δK = ⟨δ−δ=ρ⟩, old(δK) =
{θ | (θ′, θ) ∈ δ− for some θ′} is the set of indexes removed from the intruder
knowledge image in an output transition having environment label δK . Moreover,
λδK = {θ/θ′ | ⟨θ, θ′⟩ ∈ δ−} is the substitution that converts any canonical rep-
resentation θ[K] into θ[K ′], where K and K ′ are the knowledge functions before
and after an output transition with environment label δK , respectively. For ex-
ample consider the traces t1 = t′.(τ,⊤).(l0, ⟨⟨l0/γ0, l1/γ1⟩, ∅⟩, ⟨{⟨{l2}l4 , l3⟩}, ∅, l4⟩)
and t2 = t′.(τ,⊤). (l0, ⟨⊤, ⟨l0/γ0, l1/γ1⟩⟩, ⟨{⟨{l5}l4 , l3⟩}, ∅, l4⟩), derived from the
transitions shown in Figure 9, where t′ is the common prefix leading to state
(K ✄ (νk2)c⟨k2⟩.P ′)Υ,Λ. Starting from imt′

K , Υt′

K , and Λt′

K , and applying (106),
(107), and (108), imt1

K , Υt1
K , Λt1

K and imt2
K , Υt2

K , Λt2
K can be computed as shown in

2In the remainder of the paper, for simplicity, δK(ρ) is written δK .
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Figure 12. To improve readability, each label of the two traces has been tokenized
and related to each meaningful object of formulas (106), (107), and (108).

For the first trace, n(δK) = {l2, l3, l4}, old(δK) = {l3} and λδK = ⟨{l2}l4/l3⟩.
Consequently, imt1

K = imt′

K ∪ {l2, l3, l4} \ {l3} = {l0, l1, l2, l4}, Υt1
K = Υt′

K{⟨l0/γ0,

l1/γ1⟩}[{l2}l4/l3] = ∅, and, because Λt′

K = ∅ and δΛ = ∅, then Λt1
K = ∅.

For the second trace, n(δK) = {l3, l4, l5}, old(δK) = {l3} and λδK = ⟨{l5}l4/l3⟩.
Then, imt2

K = {l0, l1, l2, l4, l5}. In this case, ξ2 = ⊤ and Υt2
K = Υt′

K{⊤}[{l5}l4/l3] =
Υt′

K , because Υt′

K does not contain l3 and remains unaffected by the substitution.
Because Λt′

K = ∅, the only contribution to Λt2
K is given by δΛ = {⟨l0/γ0, l1/γ1⟩},

i.e., Λt2
K = {⟨l0/γ0, l1/γ1⟩}.

Each symbolic trace t with an initial intruder knowledge K represents a set of
corresponding concrete traces, denoted concrK(t). To formally define this set, first
define the subset of SΥ,Λ that includes all the specializations that convert symbolic
states into concrete states. Such a subset is formally defined as Sc

Υ,Λ = {ξ ∈ SΥ,Λ |
Υ{ξ} = ∅}, where it is worth noting that Υ{ξ} = ∅ implies Λ{ξ} = ∅.

If ξ ∈ Sc
Υt

K ,Λt
K

, then denote act(t, ξ) as the concrete trace represented by t that
is obtained by applying ξ to t. Formally, the inductive definition of act(t, ξ) is:

act(t, ξ) =
{

ϵ if t = ϵ
act(t′, bt(ξ)).a{ξ} if t = t′.(τ, ξ1).a

(109)

where a{ξ} is trace symbol a updated according to specialization ξ, i.e., (σ, γ){ξ} =
(σ, γ)[ξ] and (σ, ⟨ξ2, δΛ⟩, δK){ξ} = (σ[ξ], ⟨ξ2[ξ], δΛ{ξ}⟩, δK [ξ]), while, if t = t′.(τ, ξ1).
a, bt(ξ) is the specialization that must be applied to t′ (i.e., to the prefix of t) in order
to obtain the concrete trace. Naturally, bt(ξ) must incorporate ξ1, any specialization
occurring in a, and ξ. Moreover, such specializations must be properly converted
into valid elements of SΥt′

K ,Λt′
K

, as explained below. The formal definition of bt(ξ)
is then:

bt(ξ) =
{

(ξ1ξ) \ dom(Υt′

K) if t = t′.(τ, ξ1).(σ, γ)
(ξ1((ξ2ξ)[λ−1

δK
[ξ]])) \ dom(Υt′

K) if t = t′.(τ, ξ1).(σ, ⟨ξ2, δΛ⟩, δK)
(110)

where, ξ \ dom(Υt′

K) is ξ restricted to the set of generic terms dom(Υt′

K), i.e., the
specialization that substitutes each γ ∈ dom(Υt′

K) with γ[ξ]. If t = t′.(τ, ξ1).(σ, γ)
and ξ is applied to t, t′ is subject to ξ1 followed by ξ, where such specializations are
restricted to the domain of Υt′

K . If instead t = t′.(τ, ξ).(σ, ⟨ξ2, δΛ⟩, δK), t′ is subject
to specializations ξ1, ξ2, and ξ. The additional transformation [λ−1

δK
[ξ]] applied

to ξ2ξ is needed because ξ2 and ξ are expressed as canonical representations with
respect to the final intruder knowledge, whereas the specializations that are applied
to t′ must be expressed with respect to the knowledge the intruder had before the
output statement. If we denote as K the knowledge before the output statement
and as K ′ the final knowledge, the transformation that, for any θ, converts θ[K ′]
into θ[K], is λ−1

δK
[ξ]. Therefore, (ξ2ξ)[λ−1

δK
[ξ]] is the same as ξ2ξ, but expressed with

respect to the knowledge that the intruder had before the output statement.
As an example, consider the symbolic trace t of Figure 11 which corresponds to

the thick run of Figure 10. The left table of Figure 13 shows how imt
K , Υt

K , and
Λt

K are computed, whereas the right hand table shows how act(t, ξ) is computed
for ξ = ⟨η/γ′

1⟩, where η is any concrete term that can be built using l0 and l1. It is
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(τ, ⊤).(l0, ⟨⟨⊤, ∅⟩, ⟨∅, ∅, l1⟩⟩)

t′′′

.(τ, ⊤).(l0, γ0)

t′′

.(τ, ⊤).(l0, γ1)

t′

.(τ, ⟨l1/γ0⟩).(l0, ⟨⟨⊤, ∅⟩, ⟨∅, ∅, l2⟩⟩)

t

imt
K Υt

K Λt
K ξ bt(ξ) act(t, ξ)

ϵ {l0} ∅ ∅ ϵ ⊤ ϵ

t′′′ {l0, l1} ∅ ∅ t′′′ ⊤ ⊤ ϵ.(l0, ⟨∅, ∅, l1⟩)

t′′ {l0, l1} {(γ0, {l0, l1})} ∅ t′′ ⟨l1/γ0⟩ ⊤ act(t′′′,⊤).(l0, l1)

t′ {l0, l1}
{(γ0, {l0, l1}),
(γ1, {l0, l1})}

∅ t′ ⟨η/γ1 , l1/γ0⟩ ⟨l1/γ0⟩
act(t′′, ⟨l1/γ0⟩).
(l0, η)

t {l0, l1, l2} {(γ1, {l0, l1}} ∅ t ⟨η/γ1⟩ ⟨η/γ1, l1/γ0⟩
act(t′, ⟨η/γ1, l1/γ0⟩).
(l0, ⟨∅, ∅, l2⟩)

act(t, η/γ1) = (l0, ⟨∅, ∅, l1⟩).(l0, l1).(l0, η).(l0, ⟨∅, ∅, l2⟩)

Fig. 13. An example of the computation of act(t, ξ)

worth noting that the computation of imt
K , Υt

K , and Λt
K proceeds top-down in the

table, whereas the computation of act(t, ξ) proceeds backwards. Each allowable
value of η gives a concrete trace of concrK(t): for example, η = {l0}l1 gives the
concrete trace corresponding to the run from state 0 to state 4.3 in Figure 8.

Having defined function act(), the concrete traces represented by a symbolic trace
t that starts from an initial intruder knowledge K can be defined as:

concrK(t) = {act(t, ξ) | ξ ∈ Sc
Υt

K ,Λt
K
} (111)

Function concrK() can be extended to sets of traces in the obvious manner: there-
fore, concrK(str(P, K)) is the whole set of concrete traces represented by the sym-
bolic traces of P .

Following the analogy with the other symbolic elements, it is possible to define
a partial order on the set of the symbolic traces interpreted according to a given
initial intruder knowledge K. Such a partial order is denoted ⊆K , and is defined
in such a way that concrK(t1) ⊆ concrK(t2) iff t1 ⊆K t2.

More precisely, the partial order ⊆K can be considered as a special case of a
more general partial order that is denoted in the same way but is defined on the
set of pairs ⟨t, ξ⟩, where t is a trace and ξ ∈ SΥt

K ,Λt
K

is the environment label of a
specialization that can be applied to t. The relationship ⟨t1, ξ1⟩ ⊆K ⟨t2, ξ2⟩ means
that all the concrete traces that are obtained from t1 via specializations compatible
with ξ1 can also be obtained from t2 via specializations compatible with ξ2. Then,
t1 ⊆K t2 is defined as ⟨t1,⊤⟩ ⊆K ⟨t2,⊤⟩.

The formal definition of ⟨t1, ξ1⟩ ⊆K ⟨t2, ξ2⟩ is inductive. The base, which applies
to traces of length 0, is the axiom:

⟨ϵ,⊤⟩ ⊆K ⟨ϵ,⊤⟩ (112)
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while the induction step states that, for any t1 = t′1.(τ, ξ1
1).a1 and t2 = t′2.(τ, ξ2

1).a2,

⟨t1, ξ1⟩ ⊆K ⟨t2, ξ2⟩ ⇐⇒ ∃ξ ∈ SΥ
t2
K {ξ2},Λ

t2
K {ξ2} | a1{ξ1} = a2{ξ2ξ} ∧

⟨t′1, bt1(ξ1)⟩ ⊆K ⟨t′2, bt2(ξ2ξ)⟩ (113)

As an example, let t1 be the symbolic trace corresponding to the run from state
0 to state 4.3′ in Figure 10, and let t2 be the symbolic trace of Figure 11, which
corresponds to the thick run of Figure 10. From the above definitions it follows
that ⟨t1, ⊤⟩ ⊆K ⟨t2, ⊤⟩, i.e., t1 ⊆K t2. This can be verified because, if t′1 and t′2 are
the prefixes of t1 and t2, respectively, then ⟨t1, ⊤⟩ ⊆K ⟨t2, ⊤⟩ can be re-written as

⟨t′1.(τ, ⊤︸︷︷︸
ξ1
1

).

a1︷ ︸︸ ︷
( l0︸︷︷︸

σ1

, ⟨ ⊤︸︷︷︸
ξ1
2

, ∅︸︷︷︸
δ1
Λ

⟩, ⟨∅, ∅, l2︸ ︷︷ ︸
δ1

K

⟩)

︸ ︷︷ ︸
t1

, ⊤︸︷︷︸
ξ1

⟩ ⊆K

⟨t′2.(τ, ⟨l1/γ0︸ ︷︷ ︸
ξ2
1

).

a2︷ ︸︸ ︷
( l0︸︷︷︸

σ2

, ⟨ ⊤︸︷︷︸
ξ2
2

, ∅︸︷︷︸
δ2
Λ

⟩, ⟨∅, ∅, l2︸ ︷︷ ︸
δ2

K

⟩)

︸ ︷︷ ︸
t2

, ⊤︸︷︷︸
ξ2

⟩

Because a1 = a2 and ξ1 = ξ2 = ⊤, it follows that ξ = ⊤ trivially satisfies a1{ξ1} =
a2{ξ2ξ}. Then, it remains to verify that ⟨t′1, bt1(ξ1)⟩ ⊆K ⟨t′2, bt2(ξ2ξ)⟩. From (110),
it transpires that bt1(ξ1) = (ξ1

1((ξ2
1ξ1)[λ−1

δ1
K

[ξ1]])) \ dom(Υt′1
K) = ⊤, because δ−K = ∅.

Consequently, [λ−1
δ1

K
] = ⊤ and ξ1

1 = ξ1
2 = ξ1 = ⊤. Similarly, we have bt2(ξ2ξ) =

(ξ2
1((ξ2

2ξ2ξ)[λ−1
δ2

K
[ξ2ξ]])) \ dom(Υt′2

K) = ⟨l1/γ0⟩, because ξ2
1 = ⟨l1/γ0⟩. Then, the

previous formula reduces to ⟨t′1, ⊤⟩ ⊆K ⟨t′2, ⟨l1/γ0⟩⟩, i.e., denoting the prefixes of
t′1 and t′2 as t′′1 and t′′2 ,

⟨t′′1 .(τ, ⟨l1/γ0⟩︸ ︷︷ ︸
ξ1
1

).

a1︷ ︸︸ ︷
( l0︸︷︷︸

σ1

, γ1︸︷︷︸
γ1

)

︸ ︷︷ ︸
t′1

, ⊤︸︷︷︸
ξ1

⟩ ⊆K ⟨t′′2 .(τ, ⊤︸︷︷︸
ξ2
1

).

a2︷ ︸︸ ︷
( l0︸︷︷︸

σ2

, γ1︸︷︷︸
γ2

)

︸ ︷︷ ︸
t′2

, ⟨l1/γ0⟩︸ ︷︷ ︸
ξ2

⟩

The equation a1{ξ1} = a2{ξ2ξ} can be written as (l0, γ1){⊤} = (l0, γ1){⟨l1/γ0⟩ξ},
which, again, holds for ξ = ⊤. Moreover, bt′1

(ξ1) = (ξ1
1ξ1)\dom(Υt′′1

K ) = ⟨l1/γ0⟩, and

bt′2
(ξ2ξ) = (ξ2

1ξ2ξ) \ dom(Υt′′2
K ) = ⟨l1/γ0⟩. Then we recursively have to verify that

⟨t′′1 , ⟨l1/γ0⟩⟩ ⊆K ⟨t′′2 , ⟨l1/γ0⟩⟩, but t′′1 and t′′2 are equal (as can be seen in Figure 10),
and thus their preorder relationship is trivially verified. In a similar way it can be
verified that t2 ⊆K t1 also holds.

The preorder ⊆K can be extended to sets of symbolic traces: if T1 and T2 are two
sets of symbolic traces starting from the same initial knowledge K, then T1 ⊆K T2

iff ∀t1 ∈ T1 ∃t2 ∈ T2 | t1 ⊆K t2.
Trace equivalence on sets of symbolic traces is defined as the kernel of the preorder

⊆K , i.e., ⊆K ∩ ⊆−1
K .
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The last part of this section is devoted to proving the coincidence between trace
equivalence defined over sets of concrete traces (which is simply defined as set
equality) and trace equivalence defined over sets of symbolic traces. The proof
requires some preliminary results.

The first preliminary result is that trace inclusion is equivalent to the inclusion
of the corresponding sets of represented concrete traces, which is formalized in the
following theorem.

Theorem 3.8. If t1 and t2 are symbolic traces, then t1 ⊆K t2 ⇐⇒ concrK(t1)
⊆ concrK(t2).

Proof. Theorem 3.8 is a special case of the following proposition, which can be
proved by induction:

⟨t1, ξ1⟩ ⊆K ⟨t2, ξ2⟩ ⇐⇒
(∀ξc

1 ∈ Sc
Υ

t1
K ,Λ

t1
K

| ξc
1 ⊆ ξ1) ∃ξc

2 ∈ Sc
Υ

t2
K ,Λ

t2
K

| ξc
2 ⊆ ξ2 ∧ act(t1, ξc

1) = act(t2, ξc
2) (114)

The base (for t1 and t2 of length 0, i.e., t1 = t2 = ϵ) is trivially true.
To prove the induction step, assume that (114) holds for traces of length n. Let

t1 and t2 be any traces of length n, and let t′1 = t1.(τ, ξ1
1).a1 and t′2 = t2.(τ, ξ2

1).a2

be any traces of length n + 1. We have to prove that (114) holds for t′1 and t′2 also.
The two implications in (114) are proved separately.

First, assume that ⟨t′1, ξ′1⟩ ⊆K ⟨t′2, ξ′2⟩, with ξ′1 ∈ S
Υ

t′1
K ,Λ

t′1
K

, and ξ′2 ∈ S
Υ

t′2
K ,Λ

t′2
K

, and

let ξc
1
′ ∈ Sc

Υ
t′1
K ,Λ

t′1
K

, with ξc
1
′ ⊆ ξ′1.

By the initial assumption and by the definition of ⊆K , it follows that

∃ξ ∈ S
Υ

t′2
K {ξ′

2},Λ
t′2
K {ξ′

2}
| a1{ξ′1} = a2{ξ′2ξ} ∧ ⟨t1, bt′1

(ξ′1)⟩ ⊆K ⟨t2, bt′2
(ξ′2ξ)⟩ (115)

Because t1 and t2 are of length n, equation (114) holds. In particular, considering
that ξc

1
′ ⊆ ξ′1 implies bt′1

(ξc
1
′) ⊆ bt′1

(ξ′1), from (114) with ξc
1 = bt′1

(ξc
1
′) it follows that

∃ξc
2 ∈ SΥ

t2
K ,Λ

t2
K

| ξc
2 ⊆ bt′2

(ξ′2ξ) ∧ act(t1, ξc
1) = act(t2, ξc

2) (116)

Because ξc
2 ⊆ bt′2

(ξ′2ξ), then a specialization ξ∗2 must exist so that ξc
2 = bt′2

(ξ′2ξξ∗2).
Let ξ∗1 be the specialization that substitutes only the new generic terms introduced
in (τ, ξ1

1).a1, and replaces them in the same way as ξc
1
′. Then, taking ξc

2
′ = ξ′2ξξ

∗
2ξ∗1 ,

it follows that ξc
2
′ ∈ S

Υ
t′2
K ,Λ

t′2
K

and bt′2
(ξc

2
′) = bt′2

(ξ′2ξξ∗2) (because the names replaced

by ξ∗1 are not included in dom(Υt2
K)). Using the previous results, we have that

act(t′1, ξ
c
1
′) = act(t1, bt′1

(ξc
1
′)).a1{ξc

1
′} = act(t1, ξc

1).a1{ξc
1
′} (117)

act(t′2, ξ
c
2
′) = act(t2, bt′2

(ξc
2
′)).a2{ξc

2
′} = act(t2, ξc

2).a1{ξ′1ξ∗2ξ∗1} (118)

Because by (116) act(t1, ξc
1) = act(t2, ξc

2), t1 and t2 must have the same structure
and must contain the same generic terms. Moreover, all such generic terms are
substituted in the same way by ξc

1 and ξc
2. Consequently, they are also substituted

in the same way by ξc
1
′ and ξc

2
′. Moreover, because ξ∗1 substitutes the new generic

terms in the same way as by ξc
1
′, it follows that a1{ξc

1
′} = a1{ξ′1ξ∗2ξ∗1}, which means

that the direct implication in (114) holds.
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To prove the reverse implication of formula (114), the initial assumption is:

(∀ξc
1
′ ∈ Sc

Υ
t′1
K ,Λ

t′1
K

| ξc
1
′ ⊆ ξ′1) ∃ξc

2
′ ∈ Sc

Υ
t′2
K ,Λ

t′2
K

| ξc
2
′ ⊆ ξ′2 ∧ act(t′1, ξ

c
1
′) = act(t′2, ξ

c
2
′)

(119)
From the above assumption it follows that for any ξ∗1

′ such that ξ′1ξ
∗
1
′ ∈ Sc

Υ
t′1
K ,Λ

t′1
K

,

there exists a ξ∗2
′ such that ξ′2ξ

∗
2
′ ∈ Sc

Υ
t′2
K ,Λ

t′2
K

and act(t′1, ξ′1ξ∗1
′) = act(t′2, ξ′2ξ∗2

′). From

the definition of act(), this implies that a1{ξ′1ξ∗1
′} = a2{ξ′2ξ∗2

′}. Because this holds
for any ξ∗1

′, there must exist a specialization ξ∗ such that a2{ξ′2ξ∗} = a1{ξ′1}.
To prove that ⟨t1, ξ1⟩ ⊆K ⟨t2, ξ2⟩, we have to prove that ⟨t1, bt′1

(ξ′1)⟩ ⊆K ⟨t2,
bt′2

(ξ′2ξ∗)⟩. Let ξc
1 ∈ Sc

Υ
t1
K ,Λ

t1
K

with ξc
1 ⊆ bt′1

(ξ′1), and let ξc
1
′ ⊆ ξ′1 be the specialization

such that bt′1
(ξc

1
′) = ξc

1. Then our initial assumption (119) means that ∃ξc
2
′ ∈

Sc

Υ
t′2
K ,Λ

t′2
K

| ξc
2
′ ⊆ ξ′2∧act(t′1, ξc

1
′) = act(t′2, ξc

2
′). This implies that, taking ξc

2 = bt′2
(ξc

2
′),

act(t1, ξc
1) = act(t2, ξc

2). Then, because (114) is true for traces of length n, we also
have that ⟨t1, bt′1

(ξ′1)⟩ ⊆K ⟨t2, bt′2
(ξ′2ξ∗)⟩.

Before proving the final theorem, we need to formally prove that concrK(str(P,
K)) really computes the concrete traces of P , as previously claimed. This is ex-
pressed by the following lemma.

Lemma 3.9. For any knowledge function K and process P such that fn(P ) ⊆
dom(K), concrK(str(P, K)) = ctr(P, K).

Proof. We have to prove that, for each concrete trace tc, tc ∈ ctr(P, K) ⇐⇒
tc ∈ concrK(str(P, K)). Because tc ∈ ctr(P, K) is equivalent to ∃Kc, Pc | (K ✄

P )
tc

|=⇒ (Kc ✄ Pc), and tc ∈ concrK(str(P, K)) is equivalent to ∃t ∈ str(P, K), ξ |
tc = act(t, ξ), which in turn is equivalent to ∃Ks, Ps, Υ, Λ, t, ξ | (K ✄ P )∅,∅

t
|=⇒

(Ks ✄ Ps)Υ,Λ ∧ tc = act(t, ξ), then we finally have to prove that, for each concrete
trace tc,

(∃Kc, Pc | (K ✄ P )
tc

|=⇒ (Kc ✄ Pc)) ⇐⇒

(∃Ks, Ps, Υ, Λ, t, ξ | (K ✄ P )∅,∅
t

|=⇒ (Ks ✄ Ps)Υ,Λ ∧ tc = act(t, ξ)) (120)

Because it is useful for the proof, we also claim that if the right and left hand
sides of (120) are true, then

(Ks ✄ Ps)Υ,Λ{ξ[K−1
c ]} = (Kc ✄ Pc) (121)

Now we prove by induction on concrete traces tc that (120) and (121) hold. For
tc = ϵ, both sides of (120) are trivially true with ξ = ⊤, and (121) is also trivially
true. Then, we have to prove that (120) and (121) hold for any t′c.(πc, φc), assuming
that they hold for t′c, i.e., that:

(∃K ′
c, P

′
c | (K ✄ P )

t′c
|=⇒ (K ′

c ✄ P ′
c)) ⇐⇒

(∃K ′
s, P

′
s, Υ

′, Λ′, t′, ξ′ | (K ✄ P )∅,∅
t′

|=⇒ (K ′
s ✄ P ′

s)Υ′,Λ′ ∧ t′c = act(t′, ξ′)) (122)
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and that, if both sides of (122) are true, then

(K ′
s ✄ P ′

s)Υ′,Λ′{ξ′[K ′−1
c ]} = (K ′

c ✄ P ′
c) (123)

When both sides of (122) are false, it also results in both sides of (120) being
false, and then (120) holds. Consider now the case in which both sides of (122) are
true. Because by (123) (K ′

c✄P ′
c) is a specialization of symbolic state (K ′

s✄P ′
s)Υ′,Λ′ ,

it can be verified by inspection that any axiom or rule of the concrete semantics
can be applied to state (K ′

c ✄ P ′
c) iff a corresponding axiom or rule of the symbolic

semantics can be applied either to state (K ′
s ✄P ′

s)Υ′,Λ′ or to a state that is reached
from (K ′

s ✄ P ′
s)Υ′,Λ′ after one or more applications of rules (95)-(103). Therefore,

it follows that for any concrete trace symbol (πc, φc),

∃Kc, Pc | (K ′
c ✄ P ′

c)
(πc,φc)
|=⇒ (Kc ✄ Pc) ⇐⇒

∃Ks, Ps, Υ, Λ, ξ1, πs, φs | (K ′
s ✄ P ′

s)Υ′,Λ′
(τ,ξ1).(πs,φs)

|=⇒ (Ks ✄ Ps)Υ,Λ (124)

where (πc, φc) and (πs, φs) derive from the application of corresponding input or
output rules and ξ1 must be compatible with ξ′ (i.e., ξ1 ⊆ ξ′). This means that
an intermediate symbolic state (K ′′

s ✄ P ′′
s )Υ′′,Λ′′ exists that is reached from (K ′

s ✄

P ′
s)Υ′,Λ′ after the application of specialization ξ1. If ξ0 is the specialization such

that ξ1ξ0 = ξ′, the state reached from (K ′′
s ✄ P ′′

s )Υ′′,Λ′′ applying ξ0 is the same as
that reached from (K ′

s ✄ P ′
s)Υ′,Λ′ applying ξ1ξ0, i.e., (K ′′

s ✄ P ′′
s )Υ′′,Λ′′{ξ0[K ′−1

c ]} =
(K ′

s ✄ P ′
s)Υ′,Λ′{ξ1ξ0[K ′−1

c ]} = (K ′
c ✄ P ′

c). As a consequence, if πs = σs[K ′′
s ] and

πc = σc[K ′
c] (or πs = σs[K ′′

s ] and πc = σc[K ′
c]), then σc = σs[ξ0[K ′−1

c ]].
We must now distinguish the input and output cases. If (πc, φc) is an input,

then by the concrete semantics we have that K ′
c = Kc, K ′′

s = Ks, and (πc, φc) =
(σc[K ′

c], ρc[K ′
c]), and it also follows that (πs, φs) = (σs[K ′′

s ], γ). Now, we claim that
t′c.(πc, φc) = act(t′.(τ, ξ1).(πs, φs), ξ0⟨ρ/γ⟩). Putting together (122), (124), and this
claim, we can conclude that (120) holds for tc = t′c.(πc, φc). To prove that the claim
is true, by the definition of act() we have to prove the equality σs[K ′′

s ][ξ0] = σc[K ′
c],

which, after the substitution σc = σs[ξ0[K ′−1
c ]], can be rewritten as

σs[K ′′
s ][ξ0] = σs[ξ0[K ′−1

c ]][K ′
c] (125)

To prove this, first consider the cases σs ∈ dom(K ′′
s ) and σs ∈ Γ. If σs ∈ dom(K ′′

s ),
and σs[K ′′

s ] is an index, then the left hand side of (125) is σs[K ′′
s ][ξ0] = σs[K ′′

s ].
Moreover, it follows that σs[ξ0[K ′−1

c ]] ∈ dom(K ′′
s [ξ0[K ′−1

c ]]), and σs[ξ0[K ′−1
c ]] is

mapped by K ′′
s [ξ0[K ′−1

c ]] = K ′
c in exactly the same way as σs is mapped by K ′′

s , i.e.,
σs[ξ0[K ′−1

c ]][K ′
c] = σs[K ′′

s ]. Then, (125) holds. If instead σs ∈ Γ, it means that the
left hand side of (125) is σs[K ′′

s ][ξ0] = σs[ξ0], because σs ̸∈ dom(K ′′
s ), while the right

hand side is σs[ξ0[K ′−1
c ]][K ′

c] = σs[ξ0[K ′−1
c ][K ′

c]] = σs[ξ0], because σs ̸∈ dom(K ′
c).

Then, (125) holds. Finally, if σs ̸∈ dom(K ′′
s ) ∪ Γ, it means that, because K ′′

s ⊢ σs,
σs can be built using only elements of dom(K ′′

s ) ∪ Γ, and, because such elements
are all substituted in the same way by substitutions [K ′′

s ][ξ0] and [ξ0[K ′−1
c ]][K ′

c], we
have that σs is also substituted in the same way.

Now that we have proved (120) for tc = t′c.(σc[K ′
c], ρc), it is simple to prove that

(121) also holds because from (79) and (92), it follows that (Kc ✄ Pc) = (K ′
c ✄

P ′
c[ρc/x]) and (Ks ✄ Ps)Υ,Λ = (K ′′

s ✄ P ′′
s [γ/x])Υ,Λ, then, (Ks ✄ Ps)Υ,Λ{(ξ0⟨ρc/γ⟩)
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[K−1
c ]} = (K ′′

s ✄ P ′′
s [γ/x])Υ,Λ{ξ0[K ′−1

c ]⟨ρc/γ⟩} = (K ′′
s [ξ0[K ′−1

c ]] ✄ P ′′
s [ρc/x])Υ,Λ =

(Kc ✄ Pc).
The proof for the output case is similar, and is left to the reader.

The coincidence between equality of sets of concrete traces and trace equiva-
lence defined over sets of symbolic traces is derived from the equivalence of the
corresponding preorders. This is expressed by the following, final, theorem.

Theorem 3.10. Let P and Q be two spi processes, and K be a knowledge
function with dom(K) = fn(P ) ∪ fn(Q). Then, ctr(P, K) ⊆ ctr(Q, K) ⇐⇒
str(P, K) ⊆K str(Q, K).

Proof. Because by lemma 3.9 it follows that ctr(P, K) = concrK(str(P, K))
and ctr(Q, K) = concrK(str(Q, K)), the proof of theorem 3.10 reduces to proving
that concrK(str(P, K)) ⊆ concrK(str(Q, K)) ⇐⇒ str(P, K) ⊆K str(Q, K) The
two implications are proved separately:
1) Proof of str(P, K) ⊆K str(Q, K) ⇒ concrK(str(P, K)) ⊆ concrK(str(Q, K))

Let tc ∈ concrK(str(P, K)). Then, by the definition of concrK , tc ∈ concrK(t)
for some t ∈ str(P, K). Moreover, from str(P, K) ⊆K str(Q, K) it follows that
∃t′ ∈ str(Q, K) | t ⊆K t′. Finally, by theorem 3.8, concrK(t) ⊆ concrK(t′) ⊆
concrK(str(Q, K)), which implies that tc ∈ concrK(str(Q, K))
2) Proof of concrK(str(P, K)) ⊆ concrK(str(Q, K)) ⇒ str(P, K) ⊆K str(Q, K)

Let t ∈ str(P, K). Then, by the definition of concrK , it follows that concrK(t) ⊆
concrK(str(P, K)) ⊆ concrK(str(Q, K)). This implies that there must exist a
symbolic trace t′ ∈ str(Q, K) such that concrK(t) ⊆ concrK(t′). Were this not true,
we would have a set of traces {t1, ...tn} ⊂ str(P, K) such that ti ̸⊆K tj ∀i, j ∈ [1, ..n],
concrK(t) ̸⊆ concrK(ti) ∀i ∈ [1, .., n], and concrK(t) ⊆ concrK({t1, ...tn}), which is
impossible. By theorem 3.8 it follows that t ⊆K t′. Because this reasoning holds
for any t ∈ str(P, K), it means that t ∈ str(Q, K).

Note that the set str(P, K) can be redundant, because it is possible that one
of the symbolic traces of P represents concrete traces that are already represented
by another symbolic trace. More precisely, a trace t ∈ str(P, K) is redundant if
∃t′ ∈ str(P, K) | t ⊆K t′. Redundant traces can be found by the trace inclusion
definition and can be safely eliminated from the set of symbolic traces, therefore
making the symbolic trace preorder check simpler.

For example, the trace corresponding to the path in the ES-LTS of Figure 10 that
includes the dashed boxes (the path that leads to state 4.3’) can be safely eliminated
from the set of symbolic traces, because, as was shown above, it is included in the
trace that corresponds to the path ending in state 4.3.

4. SOUNDNESS AND COMPLETENESS

In this section we prove that our concrete trace semantics is adequate to check test-
ing equivalence, i.e., that two spi processes are testing equivalent iff they have
the same set of concrete traces. This result is proved by showing the coinci-
dence of the testing equivalence preorder P ⊑ Q and the corresponding trace
preorder ctr(P, K) ⊆ ctr(Q, K), where K is an initial knowledge function with
dom(K) = fn(P ) ∪ fn(Q). Soundness (i.e., ctr(P, K) ⊆ ctr(Q, K) ⇒ P ⊑ Q)
and completeness (i.e., P ⊑ Q ⇒ ctr(P, K) ⊆ ctr(Q, K)) are proved separately.
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4.1 Soundness

Theorem 4.1. (Soundness) Let P and Q be any two spi processes, and K an
initial knowledge function with dom(K) = fn(P ) ∪ fn(Q). Then ctr(P, K) ⊆
ctr(Q, K) ⇒ P ⊑ Q.

From the definition of P ⊑ Q, given in (28), we must prove that the two condi-
tions:

ctr(P, K) ⊆ ctr(Q, K) (126)
and R is any test process such that (P |R) ⇓ ω (127)

also imply

(Q|R) ⇓ ω (128)

From (127) and from the definition and properties of ⇓ ω, given in (27) and (24)-
(26), it follows that there exist R0 . . . Rn and P0 . . . Pn such that, R0 = R, P0 = P ,
and

(Pi|Ri) → (Pi+1|Ri+1) ∀ 0 ≤ i < n (129)
and Rn ↓ ω (130)

We claim that there must also exist R′
0 . . . R′

n and Q0 . . .Qn such that, R′
0 = R0,

Q0 = Q, and

(Qi|R′
i)(→) ∗ (Qi+1|R′

i+1) ∀ 0 ≤ i < n (131)
and R′

n ↓ ω (132)

If this claim is true, (128) is also true by definition.
To prove this claim, we first introduce the relation ≈, which binds pairs (K, R),

where the first component K is an intruder knowledge function and the second
component R is a test process. We set (K1, R1) ≈ (K2, R2) iff

im(K1) = im(K2) (133)
∃R∗ | R1 = R∗[K−1

1 ] ∧ R2 = R∗[K−1
2 ] (134)

Intuitively, (K1, R1) ≈ (K2, R2) means that R1 and R2 can be obtained by apply-
ing the substitutions [K−1

1 ] and [K−1
2 ], respectively, to a common expression R∗

(containing free names that are identifiers of the set im(K1)).
We can now express the following lemma:

Lemma 4.2. If (126) holds and there exist R0 . . . Rn and P0 . . . Pn such that
R0 = R, P0 = P , and (129) holds, then R′

0 . . . R′
n, Q0 . . . Qn, K0, . . . Kn and

K ′
0, . . .K

′
n also exist such that R′

0 = R0, Q0 = Q, (131) holds, K0 = K ′
0 = K, and:

∀i ∈ [0, n] (Ki, Ri) ≈ (K ′
i, R

′
i) (135)

∀i ∈ [0, n] Ki ✄ Pi

(µi,φi)
|=⇒ Ki+1 ✄ Pi+1 ⇒ K ′

i ✄ Qi

(µi,φi)
|=⇒ K ′

i+1 ✄ Qi+1(136)

The proof of our initial claim descends directly from this lemma, because the
relationship (Kn, Rn) ≈ (K ′

n, R′
n) implies that ∃R∗ such that Rn = R∗

n[K−1
n ] and

R′
n = R∗

n[K ′
n
−1], and, because substitutions [K−1

n ] and [K ′
n
−1] cannot affect pred-

icate R∗
n ↓ ω, it follows that Rn ↓ ω iff R′

n ↓ ω.
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Proof of Lemma 4.2. By induction on n.
Base (n=0). To prove the base it is sufficient to show that equation (135) holds

for n = 0, i.e., (K0, R0) ≈ (K ′
0, R

′
0). Because K ′

0 = K0 and R′
0 = R0 = R, we

have that trivially im(K0) = im(K ′
0) and we can write R′

0 = R0 = R∗[K−1
0 ], where

R∗ = R0[K0] (i.e., R∗ is R0 with each occurrence of terms in the domain of K0

replaced by its unique identifier).
Induction. To prove the induction step, we assume that the lemma holds for

a given n = k and prove that it holds for n = k + 1 as well. Assume that the

precondition of (136) with n = k+1 for i = k holds, i.e., Kk✄Pk

(µk,φk)
|=⇒ Kk+1✄Pk+1.

Because all the traces of P are also traces of Q by (126), and because (136) holds

for n = k, it follows that there must exist Qk+1 and K ′
k+1 such that K ′

k ✄Qk

(µk,φk)
|=⇒

K ′
k+1 ✄Qk+1, which implies that equation (136) also holds for n = k+1. Moreover,

by the definition of
(µk,φk)

|=⇒ , we have that there must exist a Q′
k and a Q′

k+1 such
that

K ′
k ✄ Qk

ϵ
|=⇒ K ′

k ✄ Q′
k

µk4−→
φk

K ′
k+1 ✄ Q′

k+1

ϵ
|=⇒ K ′

k+1 ✄ Qk+1. (137)

To prove that equations (131) and (135) also hold for n = k+1 we must distinguish
two cases, according to the type of transition represented by label (µk, φk).

The first case corresponds to an input transition. The derivation rule for input
transitions (79) implies that Kk+1 = Kk and K ′

k+1 = K ′
k. From (129) for n = k+1

we know that (Pk|Rk) → (Pk+1|Rk+1). From the derivation rule for input transi-
tions, it follows that when Pk evolves into Pk+1, the input statement µk(x)[K−1

k ]
with Pk+1 = Pk[φk[K−1

k ]/x] is executed. Consequently, when Rk evolves to Rk+1,
the corresponding output statement µk⟨φk⟩[K−1

k ] is executed. However, because
(135) holds for n = k, it follows that Rk = R∗

k[K−1
k ] and R′

k = R∗
k[K ′

k
−1]. There-

fore, R∗
k can execute the output statement µk⟨φk⟩, and evolve into a new process

R∗
k+1 such that Rk+1 = R∗

k+1[K
−1
k ], and, consequently, R′

k can execute the output
statement µk⟨φk⟩[K ′

k
−1] and evolve into R′

k+1 = R∗
k+1[K

′
k
−1]. Therefore, it follows

that equation (135) holds for n = k + 1. On the other hand, from (137) and from
the derivation rule for input transitions we have that Q′

k can execute the same
output statement µk⟨φk⟩[K ′

k
−1], evolving into Q′

k+1. Therefore, R′
k and Q′

k can
synchronize, i.e., (Q′

k|R′
k) → (Q′

k+1|R′
k+1). This result, together with the fact that

τ4−→
− means reaction, implies that equation (131) holds for n = k + 1.
The second case, corresponding to an output transition, is similar to the above

and is left to the reader.

4.2 Completeness

Theorem 4.3. (Completeness) Let P and Q be any two spi processes, and
K an initial knowledge function with dom(K) = fn(P ) ∪ fn(Q). Then P ⊑
Q ⇒ ctr(P, K) ⊆ ctr(Q, K).

We prove the equivalent implication ctr(P, K) ̸⊆ ctr(Q, K) ⇒ P ̸⊑ Q.
If ctr(P, K) ̸⊆ ctr(Q, K) then at least one trace t exists such that t ∈ ctr(P, K)

and t ̸∈ ctr(Q, K).
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We show that, using t and the initial knowledge K, it is possible to build a spi
test Rt,K such that

(P |Rt,K) ⇓ ω ∧ (Q|Rt,K) ̸⇓ ω (138)

which implies that P ̸⊑ Q by definition.

4.2.1 Construction of Rt,K. Process Rt,K is the spi description of an intruder
that can distinguish between P and Q, exploiting the fact that P can execute trace
t while Q cannot. For example, if the purpose of the verification is a strong secrecy
check, P and Q are typically two instances of the same protocol that carry two
different secret data items. In this case, Rt,K is an intruder that can determine
which of the two data items has been transferred. Therefore, the algorithm to
build Rt,K is not only a technical means to prove the theorem, but it is also useful
to build possible protocol attackers written in spi, starting from trace differences.

In the spi description of the intruder process Rt,K , the current intruder knowledge
KR is represented by means of a set of knowledge variables, li, whose names are the
indexes that belong to im(KR) and whose values are the corresponding spi terms
K−1

R (li). Because the initial knowledge of the intruder that we wish to represent
is K, it means that initially the intruder process has a knowledge variable for each
name in the set im(K), bound to the corresponding value. Therefore, the general
form taken by Rt,K is

Rt,K = R∗
t (im(K))[K−1] (139)

where R∗
t (im(K)) is a spi process parameterized by free names that are elements of

im(K). The actual intruder process is simply obtained by substituting each index
l ∈ im(K) which occurs in R∗

t (im(K)) with the corresponding spi term K−1(l).
R∗

t (im(K)) is a linear sequence of spi constructions describing the action(s) taken
by the intruder at each interaction, and it terminates with the successful test ter-
mination Ω process. If F is a set of free names, R∗

t (F ) can be defined inductively
as:

R∗
t (F ) =

{
Ω if t = ϵ
A(a, F )R∗

t′(F ′(a, F )) if t = a.t′
(140)

where A(a, F ) is the spi description of the intruder actions that correspond to label
a, and F represents the image of the current intruder knowledge function (and
therefore, the set of variables where the current knowledge elements are stored),
whereas F ′(a, F ) is the new intruder knowledge function image after the occurrence
of a.

If a = (µ, φ) is an input transition label, then the corresponding intruder action
is simply an output described by A((µ, φ), F ) = µ⟨φ⟩., and, because the intruder
knowledge does not change, it follows that F ′(a, F ) = F .

If, instead, a = (µ, φ) is an output transition label, with φ = ⟨{⟨θ1, l1⟩, . . . ,
⟨θn, ln⟩}, δ=, ρ⟩, then F ′(a, F ) can be computed by adding all the indexes occur-
ring in expressions θ1, . . . , θn, δ=, ρ, to F and removing the indexes l1, . . . , ln. In
this case, the intruder actions A(a, F ) take the form µ(x).D(a, F ), where x stands
for the new variable where the input data is stored, and D(a, F ) is a list of addi-
tional internal spi actions, such as comparisons, decryptions, and pair splittings,
taken by the intruder after receiving the input data. Such additional actions have
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two purposes: on one hand they assign the correct values to the new knowledge
variables, and on the other hand they check the consistency of the input data and
of the new knowledge with the information carried by label a.

The actual name taken by the input variable x may vary according to how the
input data are expected to be related to the intruder knowledge, which is expressed
by ρ. If ρ ∈ F ′(a, F ) \ F (a, F ), i.e., the data term input by the intruder is labeled
by a new index ρ in the new knowledge, then such a term is stored in the knowledge
variable x = ρ, because it will be part of the new knowledge. In all other cases,
the input term is something that can be built from other knowledge variables, so it
must be stored in a temporary knowledge variable that will not be part of the final
new knowledge. The name of such a temporary variable can be any new name.

Now we define the additional spi actions D(a, F ). If K is the intruder knowledge
before the interaction represented by a occurs, and ρ is the input data, then D(a, F )
are the spi operations required to compute the spi representation of the new knowl-
edge f(ρ, K) and to perform all the possible consistency checks on it. Because we
know from Proposition 3.4 that there is a finite reduction of dom(K)∪{ρ} that leads
to dom(f(ρ, K)), it is possible to compute the values of the new knowledge variables
by a finite sequence of computation steps, each of which corresponds to the imple-
mentation of a reduction rule. More precisely, at each step it is guaranteed that
at least one of the equations (55)-(65) has a true pre-condition, so that the corre-
sponding reduction rule can be applied. Applying reduction rule U = ⟨ΣI , C, ΣO⟩
means eliminating the set of terms ΣI from the current knowledge domain and
adding the set of terms ΣO to it. Because we know in advance which elements
should be eliminated from dom(K) during the reduction and how such elements
can be expressed in terms of the new knowledge variables, we can pre-determine
the sequence of reduction rules to be applied and decide to which variables the new
added terms must be assigned or with which old variables they must be compared.
For each reduction rule of such a sequence, D(a, F ) contains a corresponding spi
calculus operation that checks that the rule pre-condition holds, computes the new
terms, and assigns them to the right new variables or compares them with the
corresponding knowledge variables. Removal of old variables from the knowledge
is implemented implicitly by avoiding further references to such variables.

To formally express the algorithm that pre-determines the sequence of reduction
rules to be applied and generates the spi calculus sequence D(a, F ), it is necessary
to introduce a knowledge representation function that represents, at each step, the
set of all knowledge variables available to the spi test process, including the tempo-
rary variables, with their current values expressed in terms of the new knowledge
variables.

Denote such a function Ξ. Initially, im(Ξ) = F , and Ξ−1 maps lk onto θk for 1 ≤
k ≤ n and the other indexes of F onto themselves. Then, ρ is introduced in the new
knowledge and the knowledge is reduced, computing, at each reduction step, the spi
operation(s) that the intruder must execute. This is described in the algorithm in
Figure 14. Initially, ρ is added to dom(Ξ), but this occurs only if it cannot be built
from the current knowledge, otherwise the intruder is simply instructed to test if
ρ is really as expected. Then, the algorithm repeatedly looks for a reduction rule
that can be applied, applies it as described above, and generates the corresponding
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D(a, F ) is initially empty;

let ρ be the output term label included in a;

if r(ρ, dom(Ξ)) then add "[x is ρ]" to D(a, F ) else Ξ = Ξ ∪ {⟨ρ, x⟩} endif;

repeat

if ∃ ⟨suc(σ), li⟩ ∈ Ξ then

y = getID(σ, Ξ);
add "case li of 0:0 suc(y):" to D(a, F );
if r(σ, dom(Ξ)) then add "[y is σ[Ξ]]" to D(a, F ) else Ξ = Ξ ∪ {⟨σ, y⟩} endif;

Ξ = Ξ \ {⟨suc(σ), li⟩};
else if ∃ ⟨(σ1, σ2), li⟩ ∈ Ξ then

y1 = getID(σ1, Ξ); y2 = getID(σ2,Ξ);
add "let (y1, y2) = li in" to D(a, F );
if r(σ1, dom(Ξ)) then add "[y1 is σ1[Ξ]]" to D(a, F ) else Ξ = Ξ ∪ {⟨σ1, y1⟩} endif;

if r(σ2, dom(Ξ)) then add "[y2 is σ2[Ξ]]" to D(a, F ) else Ξ = Ξ ∪ {⟨σ2, y2⟩} endif;

Ξ = Ξ \ {⟨(σ1, σ2), li⟩};
else if ∃ ⟨{σ1}σ2 , li⟩ ∈ Ξ and r(σ2, dom(Ξ)) then

y1 = getID(σ1, Ξ);
add "case li of {y1}σ2[Ξ] in" to D(a, F );
if r(σ1, dom(Ξ)) then add "[y1 is σ1[Ξ]]" to D(a, F ) else Ξ = Ξ ∪ {⟨σ1, y1⟩} endif;

Ξ = Ξ \ {⟨{σ1}σ2 , li⟩};
else if ∃ ⟨H(σ), li⟩ ∈ Ξ and r(σ, dom(Ξ)) then

add "[li is H(σ[Ξ])]" to D(a, F );
Ξ = Ξ \ {⟨H(σ), li⟩};

else if ∃ ⟨{[σ1]}
σ+
2

, li⟩ ∈ Ξ and r(σ−
2 , dom(Ξ)) then

y1 = getID(σ1, Ξ);
if D(a, F ) does not contain a decoding statement for li then

add "case li of {[y1]}σ−
2 [Ξ]

in" to D(a, F );

if r(σ1, dom(Ξ)) then add "[y1 is σ1[Ξ]]" to D(a, F )
else Ξ = Ξ ∪ {⟨σ1, y1⟩} endif;

endif

if r(σ+
2 , dom(Ξ)) and r(σ1, dom(Ξ)) then

add "[li is {[σ1]}
σ+
2

[Ξ]]" to D(a, F )

Ξ = Ξ \ {⟨{[σ1]}
σ+
2

, li⟩};
endif

else if ∃ ⟨{[σ1]}
σ−
2

, li⟩ ∈ Ξ then

symmetric of previous case

else if ∃ ⟨σ+, li⟩ ∈ Ξ and r(σ, dom(Ξ)) then

add "[li is σ+[Ξ])]" to D(a, F );
Ξ = Ξ \ {⟨σ+, li⟩};

else if ∃ ⟨σ−, li⟩ ∈ Ξ and r(σ, dom(Ξ)) then

symmetric of previous case

endif

until ̸ ∃⟨σ, i⟩ ∈ Ξ | σ ̸= i.

where getID(σ, Ξ) =
σ if σ is atomic and σ ̸∈ dom(Ξ)
a new variable identifier otherwise

Fig. 14. The algorithm to compute D(a, F )

intruder operations. The loop is repeated until all the new knowledge variables have
been assigned, i.e., until Ξ(li) = li for all li ∈ im(f(ρ, K)), which means that the
spi process has a set of bound variables representing the new knowledge f(ρ, K).

For example, if we assume that the label is (µ, φ) with µ = l4 and φ = ⟨{⟨{l1}l2 ,
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l3⟩}, ∅, (l2, {l4}l1)⟩, and that F = {l4, l3}, then it follows that initially l4 = Ξ(l4)
and l3 = Ξ({l1}l2). After the input, the mapping x = Ξ((l2, {l4}l1)) is added to Ξ.
It also follows that F ′ = {l4, l2, l1}, i.e., the new knowledge variables that must be
assigned are l1 and l2. The list of spi operations to be executed after the input,
determined by the algorithm in Figure 14, is:

D(a,F) ::=
let (l2, x1) = x in
case l3 of {l1}l2 in
case x1 of {x2}l1 in
[x2 is l4]

where x1 and x2 are two new temporary variables.

4.2.2 Properties of Rt,K . In this section we prove that process Rt,K is such
that equation (138) holds. To achieve this, it is necessary to prove the following
preliminary theorems.

Theorem 4.4. (P |(A(a, im(K))R′)[K−1])(→)∗(P ′|R′[K ′−1]) ⇐⇒ K✄P
a

|=⇒
K ′ ✄ P ′ where R′ is any spi process.

Proof. Consider the input and output cases separately.
If a is an input, it takes the form (σ[K], ρ[K]), and A(a, im(K)) = σ[K]⟨ρ[K]⟩.

Therefore, we have A(a, im(K))[K−1] = σ⟨ρ⟩. On the basis of the rules of the spi
calculus reaction semantics, it is possible to affirm that (P |σ⟨M⟩.(R′[K−1]) )(→
) ∗ (P ′|R′[K ′−1]) iff P (→) ∗ P1, where P1 is a process that is ready to execute an
input statement of the form σ(x), and, when such a statement is executed and the
value ρ is received, it reduces to P ′

1[ρ/x] = P ′. If we consider now the ES-LTS
derivation system, and in particular rule (79), we find that the above condition can

occur iff K ✄ P
(σ[K],ρ[K])

|=⇒ K ′ ✄ P ′, which is the right hand side of the theorem
statement.

The case when a is an output is dealt with in a similar manner. If a is an output,
it takes the form (σ[K], δK), where φ = ⟨{⟨θ[K ′], θ[K]⟩ | θ ∈ δ−

Σ
(ρ)}, δ=[K ′], ρ[K ′]⟩,

and A(a, im(K))[K−1] = σ(x).(D(a, im(K))[K−1]). On the basis of the rules
of the spi calculus reaction semantics, it is possible to affirm that the reactions
(P |σ(x).D(a, im(K))A′[K−1])(→)∗ (P ′|A′[K ′−1]) are possible iff P (→)∗P1, where
P1 is a process that is ready to execute an output statement of the form σ⟨ρ′⟩ with
ρ′ such that (D(a, im(K))A′[K−1])[ρ′/x] ≡ A′[K ′−1]. The latter structural equiv-
alence means that all the spi constructs included in D(a, im(K)) can be eliminated
by applying rules (1)-(7), with K ′−1 representing the combination of the substitu-
tions K−1, ⟨ρ′/x⟩, and any further substitution implied by the application of rules
(1)-(7). Because D(a, im(K)) has been built so as to compute K ′ = f(ρ′, K), and
because D(a, im(K)) also contains a check that ascertains whether the received data
is related to K ′ as expressed by ρ[K ′], if the above structural equivalence holds we
can conclude that ρ′ = ρ and that the subsequent application of the substitutions
K−1, ρ′/x and the substitutions implied by the application of rules (1)-(7) yield
the same effect as substitution K ′. Moreover, because D(a, im(K)) also checks
whether θ[K] can be obtained after the computation of K ′ as θ[K ′], it follows that
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rule (78) holds, as does the right hand side of the theorem statement.

Theorem 4.5. (P |Rt,K)(→) ∗ (P ′|Ω) ⇐⇒ ∃K ′ | K ✄ P
t

|=⇒ K ′ ✄ P ′

Proof. By induction on the length of t.
Base (t = ϵ). If t = ϵ, Rt,K = Ω, therefore (P |Rt,K)(→) ∗ (P ′|Ω) holds iff

P (→) ∗ P ′, which means K ✄ P
ϵ

|=⇒ K ✄ P ′.
Induction. We wish to show that if theorem 4.5 holds for a trace t, then it also

holds for a trace a.t. If we set

X1 = (P |Ra.t,K)(→) ∗ (P1|Rt,K1) (141)

Y1 = K ✄ P
t

|=⇒ K1 ✄ P1 (142)
X = (P1|Rt,K1)(→) ∗ (P ′|Ω) (143)

Y = K1 ✄ P1
t

|=⇒ K ′ ✄ P ′ (144)

it follows from theorem 4.4 that X1 ⇐⇒ Y1. Moreover, because theorem 4.5 holds
for trace t, it also follows that X ⇐⇒ Y . However, X1 ⇐⇒ Y1 and X ⇐⇒ Y
imply (X1 ∧ X) ⇐⇒ (Y1 ∧ Y ), which is theorem 4.5 for trace a.t.

Corollary 4.6. (P |Rt,K) ⇓ ω ⇐⇒ ∃P ′, K ′ | K ✄ P
t

|=⇒ K ′ ✄ P ′

Proof. Because P is a not a test process, P ̸⇓ ω, and P cannot evolve into
a process that exhibits ω. Then, (P |Rt,K) ⇓ ω holds if and only if (P |Rt,K)(→
) ∗ (P ′|R′) and R′ ↓ ω. By the linear structure of Rt,K , it is clear that the above
condition is true if and only if (P |Rt,K)(→) ∗ (P ′|Ω). Therefore, Corollary 4.6
descends directly from Theorem 4.5.

Corollary 4.6 states that (P |Rt,K) ⇓ ω if and only if t is a trace of P . Therefore
it also implies that equation (138) holds.

4.2.3 An example of attack detection and intruder construction. Figure 15 illus-
trates how our theory can be used to carry out the verification of the authenticity
property for the wide-mouthed frog protocol. To find the protocol bug, the model
must admit at least two protocol sessions, because the attacker needs to capture
messages exchanged during a session to cheat the responder of the other session.
This means that at least two instances of each process must be present. The upper
frame of Figure 15 shows the protocol and reference specifications with two parallel
sessions. Note that the specifications of both agents are the same as in Figures 3
and 5, but they have been made parametric with respect to channels, to let each
session take place on a separate set of channels. Moreover, the unspecified behavior
F () has been made explicit as an output event on channel cF of the cleartext of
the message received by agent B from (hopefully) agent A.

The two sessions are represented by processes A1, S1, B1 and A2, S2, B2, respec-
tively, and their interactions are carried out on channels cAS1 , cSB1 , cAB1 and cAS2 ,
cSB2 , cAB2 , respectively. The transferred messages are M1 and M2, respectively,
and, to distinguish the two fresh keys created by A in the two sessions, they are
called kAB1 and kAB2 , respectively.

The details of the attack are shown in the central frame of the figure: the first
session takes place in the usual way, but the attacker intercepts messages {kAB1}kSB
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PA(M, cAS , cAB)
∆
= (ν kAB) (cAS ⟨{kAB}kAS

⟩ . cAB ⟨{M}kAB
⟩)

PS(cAS , cSB)
∆
= cAS(x1) . case x1 of {x2}kAS

in cSB ⟨{x2}kSB
⟩

PB(cSB, cAB , cF )
∆
= cSB(y1) . case y1 of {y2}kSB

in cAB(y3) .
case y3 of {y4}y2 in cF ⟨y4⟩

PBspec(M, cSB, cAB, cF )
∆
= cSB(y1) . case y1 of {y2}kSB

in cAB(y3) .
case y3 of {y4}y2 in cF ⟨M⟩

Pwmf (M1, M2)
∆
= (ν kAS)(ν kSB)(

PA(M1, cAS1 , cAB1) | PS(cAS1 , cSB1) | PB(cSB1 , cAB1 , cF1)
| PA(M2, cAS2 , cAB2) | PS(cAS2 , cSB2) | PB(cSB2 , cAB2 , cF2))

Pwmfspec (M1, M2)
∆
= (ν kAS)(ν kSB)(

PA(M1, cAS1 , cAB1) | PS(cAS1 , cSB1) | PBspec(M1, cSB1 , cAB1 , cF1)
| PA(M2, cAS2 , cAB2) | PS(cAS2 , cSB2) | PBspec(M2, cSB2 , cAB2 , cF2))

2′1) S1 → I(B1) : {kAB1}kSB
on cSB1

2′′1 ) I(S1) → B1 : {kAB1}kSB
on cSB1

2′′2 ) I(S2) → B2 : {kAB1}kSB
on cSB2

3′1) A1 → I(B1) : {M1}kAB1
on cAB1

3′′1 ) I(A1) → B1 : {M1}kAB1
on cAB1

3′′2 ) I(A2) → B2 : {M1}kAB1
on cAB2

2′1) I
∆
= cSB1(l10).

2′′1 ) cSB1⟨l10⟩.
2′′2 ) cSB2⟨l10⟩.
3′1) cAB1 (l11).

3′′1 ) cAB1 ⟨l11⟩.
3′′2 ) cAB2 ⟨l11⟩.

cF1(x1).[x1 is M1]

cF2(x2).[x2 is M1].Ω

K =
(cAS1 , l0), (cAB1 , l1), (M1, l2), (cSB1 , l3), (cF1 , l4),
(cAS2 , l5), (cAB2 , l6), (M2, l7), (cSB2 , l8), (cF2 , l9)

2′1) (τ,⊤).(l3, ⟨⊤, ∅⟩, ⟨∅, ∅, l10⟩)

2′′1 ) (τ,⊤).(l3, γ0)

2′′2 ) (τ, ⟨l10/γ0⟩).(l8, γ1)

3′1) (τ, ⟨l10/γ1⟩).(l1, ⟨⊤, ∅⟩, ⟨∅, ∅, l11⟩)

3′′1 ) (τ,⊤).(l1, γ2)

3′′2 ) (τ, ⟨l11/γ2⟩).(l6, γ3)

(τ, ⟨l11/γ3⟩).(l4, ⟨⊤, ∅⟩, ⟨∅, ∅, l2⟩)

(τ,⊤).(l9, ⟨⊤, ∅⟩, ⟨∅, ∅, l2⟩)

2′1) (l3, ⟨∅, ∅, l10⟩)

2′′1 ) (l3, l10)

2′′2 ) (l8, l10)

3′1) (l1, ⟨∅, ∅, l11⟩)

3′′1 ) (l1, l11)

3′′2 ) (l6, l11)

(l4, ⟨∅, ∅, l2⟩)

(l9, ⟨∅, ∅, l2⟩)

symbolic trace concrete trace

Fig. 15. An attack on the protocol and the related intruder

and {M1}kAB1
, and forwards them to both B1 and B2, therefore leading B to believe

that two sessions with A have been carried out. For this reason, each one of the
steps labeled 2) and 3) in Figure 3 is split into three subsequent steps here: in the
first step the intruder intercepts the message, and in the second and third steps it
forwards the message to the two sessions. For example, in 2′

1), the message that
S1 sends on channel cSB1 is intercepted by the attacker, which plays the role of B1
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(I(B1)). Then the attacker forwards the message to B1 in step 2′′1) acting as S1

(I(S1)), and to B2, acting as S2 (I(S2) in step 2′′2)). This last message is the first
step of the attack, because B becomes convinced that kAB1 is a fresh key created
by A and coming from S2. Using the same technique in the next steps, the attacker
sends B2 the message {M1}kAB1

, leading B to believe that it comes from A. At
this point we have two sessions ending on B, while only one of them was actually
started by A.

In Pwmf the two instances of PB output (on channels cF1 and cF2 , respectively)
the cleartext of the second message they have received, while in Pwmfspec they
magically output the messages that the two instances of PA plan to send them, i.e.,
M1 and M2, respectively. Thus, a difference between the expected value output by
PBspec in Pwmfspec and the value output by PB in Pwmf means that an authenticity
flaw has been found.

The initial attacker’s knowledge K is shown at the top of the lower frame of
Figure 15. By using a first preliminary prototype tool that implements our the-
ory, we found that Pwmf and Pwmfspec are not testing equivalent. In particular,
the symbolic trace reported in Figure 15 comes from Pwmf and is not included in
any corresponding trace of Pwmfspec. Note that the symbolic trace follows each
step of the attack: first the output on channel cSB1 (l3) of {kAB1}kSB (stored as
l10 in the attacker’s knowledge), next the input of the generic term γ0 on channel
cSB1 , then the subsequent specialization ⟨l10/γ0⟩ due to the decryption operation
case y1 of {y2}kSB in · · · , etc. This symbolic trace represents just one correspond-
ing concrete trace, which can be computed by applying (111). From the concrete
trace, the spi specification of process I reported in the central frame of Figure 15
can be built by using (139).

5. RELATED WORK

The problem of spi calculus testing equivalence verification has already been ad-
dressed in [Abadi and Gordon 1998] and in [Boreale et al. 2002]. However, both
these papers provide proof systems rather than finite models to be checked.

The method proposed in this paper to verify testing equivalence, instead, is based
on state exploration and is completely automatic. Despite this basic difference
between our method and the previous methods, some of the techniques used in our
paper have been inspired by [Boreale et al. 2002]. In particular, the concept of an
environment-sensitive labeled transition system has been borrowed from [Boreale
et al. 2002]. However, because finiteness of models is not needed for theorem
proving, the authors of [Boreale et al. 2002] do not deal with symbolic techniques,
and therefore their ES-LTS can be related only to our concrete ES-LTS.

As in [Boreale et al. 2002], our concrete ES-LTS states comprise an environment
knowledge representation and a spi calculus process expression, and our concrete
ES-LTS transitions are labeled by a process action label and an environment ac-
tion label. However, both environment knowledge representations and transition
labels differ substantially from those introduced in [Boreale et al. 2002]. Such dif-
ferences are mainly related to the different verification techniques used. Because
[Boreale et al. 2002] uses proof methods, it does not pay particular attention to
computational aspects, such as efficient storage and management of the environ-
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ment knowledge, finite size of the ES-LTS itself, efficient trace comparison methods,
etc. Instead, the above aspects needed particular attention in the development of
our technique.

Specifically, concerning environment knowledge, the difference is that we keep it
in a minimized canonical form, whereas in [Boreale et al. 2002] it simply collects
terms exactly as they are received from the process. Concerning transition labels,
the difference is in regard to input and output transition labels. Specifically, in
[Boreale et al. 2002], output transitions are labeled by process action and environ-
ment action labels taking the forms (ν b̃)a⟨M⟩ and η(x), respectively, where b̃ is
a set of fresh names possibly included as sub-terms of the output data M , η is
an expression specifying how the channel name a can be built using the current
knowledge variables, and x is the name of the new knowledge variable where the
environment stores M (in this case, the pair (M, x) is added to the knowledge).
Input action labels take the form aM and (ν b̃)η⟨ζ⟩, where the meaning of η, a, and
M is the same as in the previous case, and ζ describes how M can be built from
the current knowledge variables and b̃. A first difference that can be pointed out
is that in [Boreale et al. 2002] only the environment action label is used in trace
comparisons, while the process action label is redundant. A second difference is
that in [Boreale et al. 2002] transition labels do not incorporate all the information
needed to verify testing equivalence, because they take into account only how a
message or a channel is built from the intruder knowledge variables but they do
not take into account how a new piece of knowledge added to the environment
knowledge is related to the messages already present in it. As a consequence, in
[Boreale et al. 2002], trace equivalence cannot be defined simply as trace identity,
as we do, but its definition is more complex and involves a step-by-step knowledge
equivalence concept. More precisely, trace equivalence in [Boreale et al. 2002] re-
quires the identity of environment action labels of transitions and the equivalence
between the knowledge representations after each step of the trace. It is worth
noting also that, because in [Boreale et al. 2002] the environment knowledge is not
kept in a minimized form, η and ζ must include both encoding and decoding oper-
ators, whereas with our minimized environment knowledge, messages produced by
the intruder are built using only constructive operators, and are much simpler.

A further point that differentiates our model from that presented in [Boreale et al.
2002] is that we deal with the whole spi calculus language as defined in [Abadi and
Gordon 1999], with the only exclusion being replication, whereas [Boreale et al.
2002] deals with a spi calculus dialect where public-key encryption, hashing, inte-
gers, and non-atomic keys are not considered.

Symbolic techniques, as a basis for providing process algebras with alternative
semantics, have been introduced in [Hennessy and Lin 1995] for a CCS-like process
algebra, and in [Boreale and De Nicola 1996] for π-calculus, and have been used in
both cases for bisimulation equivalence checking. Because both CCS and π-calculus
do not deal with cryptographic primitives, both the process and its environment
always perceive the exchanged messages in the same way: this makes an explicit
model of knowledge useless and leads to a much simpler management of transitions
with respect to algebras equipped with cryptographic primitives.

The use of symbolic techniques to make cryptographic protocol models finite,
ACM Journal Name, Vol. V, No. N, July 2003.



54 · Luca Durante et al.

therefore enabling the use of state exploration methods, has also been addressed
by other researchers [Amadio and Lugiez 2000; Boreale 2001; Boreale and Buscemi
2002; Fiore and Abadi 2001; Huima 1999]. However, they do not deal with testing
equivalence verification, but only with the verification of simple security properties
based on the set of data that the intruder can produce. Moreover, they use simpli-
fied models characterized by public channels only, i.e., no private channel can be
modeled. Among these, only [Boreale 2001; Boreale and Buscemi 2002; Fiore and
Abadi 2001] deal with spi calculus specifications, although none includes channels
and integers. [Boreale 2001] deals only with shared atomic keys, whereas [Boreale
and Buscemi 2002] enhances [Boreale 2001], allowing further cryptographic prim-
itives, such as hashing and public/private-key cryptography. It allows messages
to be arbitrarily nested, but keys still remain atomic. On the other hand, [Fiore
and Abadi 2001] deals with non-atomic keys, although no completeness results are
given. [Boreale 2001; Boreale and Buscemi 2002; Fiore and Abadi 2001] use a
derivation system to generate symbolic protocol traces. Such traces, however, are
redundant because the derivation systems used to generate them do not exclude the
values that cannot be produced by the intruder. Therefore traces must be analyzed,
possibly on the fly as in [Boreale 2001; Boreale and Buscemi 2002], to determine
which of them are meaningful, i.e., actually correspond to concrete traces. Con-
versely, with our approach, the intruder generation capabilities are incorporated in
the derivation system, which directly generates only meaningful traces.

Symbolic techniques have also been used in Athena [Song 1999], a model checker
based on strand space models [Thayer et al. 1998]. The most interesting point in
favor of Athena is its ability to deal symbolically with potentially infinite num-
bers of sessions, although termination of the verification algorithm may not always
be guaranteed. Note also that Athena cannot deal with testing equivalence ver-
ifications, and is based on protocol models simpler than those expressible in spi
calculus (it cannot describe non-atomic keys and private channels, and admits tests
only while receiving data).

A minimized representation of the intruder knowledge that has some similarities
with ours has been introduced in [Clarke et al. 1998] and incorporated in the Brutus
model checker [Clarke et al. 2000]. Such a representation is composed of the set of
messages learned by the intruder, closed under elimination rules (pair splitting and
decryption), so as to include only data items that cannot be further decomposed.
The technique presented in [Clarke et al. 1998] is heavily based on the theory
presented in [Prawitz 1965], and is not compatible with non-atomic keys. This
limitation is recognized by the authors, who restrict their keys to be names. Our
technique starts from the same idea of representing only data items that cannot
be decomposed, but, instead of simply exploiting the theory presented in [Prawitz
1965], we develop a new specific theory that also works with non-atomic keys.
Moreover, our knowledge representations associate data with indexes, so as to make
testing equivalence verification possible.

Similarly to Athena, Brutus [Clarke et al. 2000] is based on a protocol descrip-
tion language that is less expressive than spi calculus, and cannot verify testing
equivalence. Moreover, it does not use symbolic representations, but, to have fi-
nite models, it limits the length of the data that the intruder can build, thereby
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restricting the set of attacks it can find.
Note that the trace semantics presented in this paper can be scaled down to deal

more efficiently with security properties that are simpler than testing equivalence.
For example, to deal with security properties that depend only on the set of data
that the intruder can produce, the indexing on the intruder knowledge and the
labels on traces can be safely removed. Using this reduced model, properties can
be verified by the classical reachability analysis or model checking approaches. For
example, to verify that the intruder never discovers a given data term σ, it is
sufficient to search the state space for states characterized by an intruder knowledge
that can produce σ. Based on this consideration, the trace semantics introduced in
this paper can be regarded as an extension of all the previously proposed similar
semantics [Boreale 2001; Boreale and Buscemi 2002; Boreale et al. 2002; Fiore and
Abadi 2001].

6. CONCLUSIONS

A trace semantics for spi calculus that can be used to automatically check testing
equivalence by exhaustive generation and simple comparison of traces has been
presented. Finiteness of the set of traces, and therefore decidability, has been
ensured by using symbolic techniques and by excluding specifications characterized
by infinite numbers of parallel processes. Apart from the latter limitation, the whole
spi calculus language has been addressed and the soundness and completeness of the
proposed trace equivalence with respect to testing equivalence have been formally
proved.

The theory presented in this paper can be used as a correct basis to implement a
fully automatic testing equivalence checker for spi calculus. Whenever two descrip-
tions are not recognized as equivalent, the spi calculus specification of an intruder
that exploits the difference can be automatically built by the tool. In this way, the
verification process can be made quite intuitive and simple. The problems related
to the efficient implementation of such a tool, including the adoption of complexity
reduction mechanisms such as symmetry-based reductions or partial-order reduc-
tions, are outside the scope of this paper and are left for further study.

The results presented in this paper extend what has already been achieved in
the field of automatic verification of security protocols, because they give a viable
alternative to the use of theorem proving for the verification of complex security
properties based on testing equivalence.

APPENDIX

symbol meaning page
P, Q, R range over spi calculus processes 5
A is the set of spi calculus names 8
m, x, y range over names: x and y preferably used for

variables
5

M(A) is the set of spi calculus terms built with names
A

8

σ, ρ, θ range over terms 4
σ ≼ ρ σ is a subterm of ρ 8
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symbol meaning page
fn(P ) is the set of free names of P 8
bn(P ) is the set of bound names of P 8
n(P ) is the whole set of names of P , i.e., n(P ) =

fn(P ) ∪ bn(P )
8

⟨σ1/ρ1, · · · , σn/ρn⟩ is a term substitution list where σi, ρi ∈
M(A) and ρi are pairwise different terms. It
also denotes the corresponding term substitu-
tion function (called substitution for short)

8,20

λ ranges over substitutions 8
⊤ is the null substitution 8
λ1λ2 is the composition of substitutions λ1 and λ2 8
[σ1/ρ1, · · · , σn/ρn] stands for [⟨σ1/ρ1, · · · , σn/ρn⟩] 8
[⟨σ1/ρ1, · · · , σn/ρn⟩] is the postfix operator that replaces each oc-

currence of ρi with σi with the rule that if
ρi ≼ ρj and i ̸= j, any occurrence of ρi in-
side an occurrence of ρj is not substituted

8,20

Σ ranges over sets of terms. It usually represents
the set of terms the intruder has learned

9

Σ̂ is the closure of the set of terms Σ under rules
(32)-(45)

13

Σ is the minimal closure seed of Σ 14
δ−
Σ

(ρ) is the set of terms eliminated from Σ in the
reduction of Σ ∪ {ρ}

18

δ+
Σ

(ρ) is the set of terms added to Σ in the reduction
of Σ ∪ {ρ}

18

δ=
Σ

(ρ) is the set of those terms that become decipher-
able after the reduction of Σ∪ {ρ} without be-
ing eliminated from it

18

r(σ, Σ) is the predicate that is true if σ can be built
from the elements of Σ using only constructive
closure rules

15

⟨ΣI , C, ΣO⟩ is the reduction rule with premises ΣI and con-
clusions ΣO

16

U ranges over reduction rules 16
Σ U−→ Σ′ specifies that Σ is transformed into Σ′ by re-

duction rule U
16

I is the set of indexes: an infinite, countable,
totally ordered set of names that extends the
set of spi calculus names and is such that A ∩
I = ∅

19

l ranges over indexes 19
next(l) the successor of l in I 19

ACM Journal Name, Vol. V, No. N, July 2003.



Automatic testing equivalence verification of spi calculus specifications · 57

symbol meaning page
K is the intruder knowledge representation. It is

defined as a bijective function K : Σ → L, with
L ⊂ I

19

f(ρ, K) is the new intruder knowledge after term ρ be-
comes known

20

[K] is the postfix operator that replaces each oc-
currence of ρ ≼ θ | ρ ∈ Dom(K) with K(ρ)

21

Σ ⊢ σ Σ can produce term σ, i.e., σ ∈ Σ̂ 19
K ⊢ σ K can produce term σ, i.e., σ ∈ ̂dom(K) 19
δ−K(ρ) is the set of pairs describing the terms that are

eliminated from K in the transformation from
K to f(ρ, K) when ρ is received

23

δ=
K(ρ) is the set of pairs describing the terms that be-

come decipherable after ρ has been received
without being eliminated from the intruder
knowledge domain

23

δK(ρ) stands for the triple
〈
δ−K(ρ), δ=

K(ρ), ρ
〉
[K ′],

where K ′ = f(ρ, K)
22

K ✄ P is the state of the concrete ES-LTS 12
µ is the label describing the action performed by

process P
12

φ is the label describing the complementary ac-
tion performed by the environment

12

Γ is the set of unspecialized generic terms. It
extends the set of spi calculus names and is
such that Γ ∩ (A ∪ I) = ∅

25

γ ranges over unspecialized generic terms 25
η ranges over generic terms 25
Υ(γ) is the minimal closure seed of the terms that

were available to the intruder when γ was gen-
erated

25

ηΥ is a generic term η that must be interpreted
according to Υ

26

ξ ranges over specializations 26
∆ ranges over sets of specializations 26
newΥ(ξ) is the set of new unspecialized generic terms

introduced in Υ when specialization ξ is ap-
plied

26

oldΥ(ξ) is the set of unspecialized generic terms re-
placed in Υ when specialization ξ is applied

26

Υ{ξ} is the generic term interpretation function up-
dated after the application of specialization ξ

26

SΥ is the set of all possible specializations (in the
current state)

27
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symbol meaning page
ξ1 ⊂ ξ2 ξ1 can be produced by ξ2, i.e., a non-null generic

term specialization ξ ∈ SΥ{ξ2} exists such that
ξ1 = ξ2ξ

27

ξ ⊂ ∆ ξ can be produced by ∆ ⊆ SΥ, i.e., ξ ⊂ ξi for
some ξi ∈ ∆

27

⟨ξ, δΛ⟩ is an extended narrowing specification, where
ξ is a specialization that must be applied and
δΛ = {ξ1, . . . ξk} is an irredundant set of for-
bidden further specializations

28

Λ is the irredundant set of all forbidden special-
izations accumulated up to the current state

28

SΥ,Λ is the set of specializations compatible with Λ,
i.e., {ξ ∈ SΥ | ξ ̸⊂ Λ}

29

ηΥ,Λ is a generic term η that must be interpreted ac-
cording to Υ, but with the limitations imposed
by Λ

29

σ • ρ is the unification of σ and ρ. It is defined as the
irredundant set of specializations compatible
with Λ that make σ and ρ equal, i.e., {ξ ∈
SΥ,Λ | σ[ξ] = ρ[ξ]}

29

σ ◦ ρ is the set of specializations compatible with Λ
that must be applied to σ and ρ to make σ
a term encrypted under key ρ, i.e., σ ◦ ρ ={
ξ ∈ SΥ,Λ ∪ {⊤} | ∃ η | σ[ξ] = {η}ρ[ξ]

}

32

σ ⊕ ρ is the public-key variant of σ ◦ ρ 32
σ ⊖ ρ is the private-key variant of σ ◦ ρ 32
Λ{ξ} is the set of forbidden specializations updated

after the application of ξ
29

(K ✄ P )Υ,Λ is the state of the symbolic ES-LTS. Both K
and P can contain generic terms interpreted
according to Υ and Λ

12

KΥ,Λ is the set of all the symbolic knowledge func-
tions consistent with the interpretation given
by Υ and Λ

29

PΥ,Λ is the set of all the symbolic processes consis-
tent with the interpretation given by Υ and
Λ

29

(K ✄ P )Υ,Λ{ξ} is the symbolic ES-LTS state, updated after
the application of specialization ξ, i.e., (K[ξ]✄
P [ξ])Υ{ξ},Λ{ξ}

30

f⟨ξ,δΛ⟩(ρ, KΥ,Λ) is the symbolic version of function f after
the application of the narrowing specified by
⟨ξ, δΛ⟩, i.e., f(ρ[ξ], K[ξ])Υ{ξ},(Λ∪δΛ){ξ}

31
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symbol meaning page
Θ(ρ, KΥ,Λ) is the irredundant set of narrowings ⟨ξ, δΛ⟩

that make f⟨ξ,δΛ⟩(ρ, KΥ,Λ) a valid knowledge
function, i.e., {⟨ξ, δΛ⟩ | ξ ∈ SΥ,Λ, δΛ ∈
SΥ, f⟨ξ,δΛ⟩(ρ, KΥ,Λ) ∈ KΥ,Λ}

31

P → P ′ is the reaction relation, i.e., a binary relation
on processes such that P → P ′ means that
process P can evolve into P ′ by performing an
internal synchronization

10

P (→) ∗ P ′ is the reflexive and transitive closure of → 11
ω is the distinguished success action that signals

that a process has passed a test
11

Ω is a distinguished process that can perform
only ω

11

P ↓ ω means that P exhibits ω 11
P ⇓ ω is the convergence predicate, defined as

∃Q | (P (→) ∗ Q) ∧ (Q ↓ ω)
11

P ⊑ Q is the testing preorder, defined as
∀R ((P |R) ⇓ ω =⇒ (Q|R) ⇓ ω)

11

P ≃ Q means that P and Q are testing equivalent,
i.e., no test can distinguish between them (P ≃
Q

△= (P ⊑ Q) ∧ (Q ⊑ P ))

11

t, t′ range over traces 34
ϵ is the empty trace 34
a, a′ range over trace symbols 34
t.t′ is trace t concatenated with trace t′ 34
a.t is the trace obtained by prepending symbol a

to trace t
34

t.a is the trace obtained by appending symbol a
to trace t

34

π is the process action label of an input or output
transition

34

µ, φ is a generic trace symbol 34
t

|=⇒ binary relation on the set of states of an ES-
LTS such that S1

t
|=⇒ S2 iff t is a trace starting

from state S1 and ending with state S2

35

ϵ
|=⇒ is the reflexive and transitive closure of

τ4−→
− 35

ctr(P, K) is the set of the concrete traces of a spi process
P with an initial intruder knowledge K, i.e.,
{t | ∃ P ′, K ′ | K ✄ P

t
|=⇒ K ′ ✄ P ′}

35

str(P, K) is the set of the symbolic traces of a spi process
P with an initial intruder knowledge K, i.e.,
{t | ∃ P ′, K ′, Υ′, Λ′ | (K ✄ P )∅,∅

t
|=⇒ (K ′ ✄

P ′)Υ′,Λ′}

35
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symbol meaning page
imt

K is im(K ′), where K ′ is the knowledge that is
reached starting from the initial knowledge K
after the execution of t

36

Υt
K is Υ′[K ′], where K ′ is the knowledge that is

reached starting from the initial knowledge K
after the execution of t

36

Λt
K is Λ′[K ′], where K ′ is the knowledge that is

reached starting from the initial knowledge K
after the execution of t

36

n(δK) is the set of names occurring in δK(ρ) 36
old(δK) is the set of indexes removed from the intruder

knowledge image in an output transition hav-
ing environment label δK(ρ)

36

λδK is the substitution that converts any canonical
representation θ[K ′] into θ[K], where K and
K ′ are the knowledge functions before and af-
ter an output transition with environment la-
bel δK(ρ), respectively

36

concrK(t) is the set of concrete traces corresponding to a
symbolic trace t with an initial intruder knowl-
edge K

37,38

Sc
Υ,Λ is the subset of SΥ,Λ that includes all the spe-

cializations that convert symbolic states into
concrete states, i.e., Sc

Υ,Λ = {ξ ∈ SΥ,Λ |
Υ{ξ} = ∅}

37

act(t, ξ) is the concrete trace obtained by applying ξ ∈
Sc

Υ,Λ to symbolic trace t
37

a{ξ} is trace symbol a updated according to special-
ization ξ

37

bt(ξ) is the specialization that must be applied to
t′ to obtain the concrete trace, where t =
t′.(τ, ξ1).a, and ξ ∈ Sc

Υ,Λ

37

concrK(str(P, K)) is the whole set of concrete traces represented
by the symbolic traces of P , i.e., {concrK(t) |
t ∈ str(P, K)}

38

⟨t1, ξ1⟩ ⊆K ⟨t2, ξ2⟩ means that all the concrete traces that are ob-
tained from t1 via specializations compatible
with ξ1 can also be obtained from t2 via spe-
cializations compatible with ξ2

38

t1 ⊆K t2 means that ⟨t1,⊤⟩ ⊆K ⟨t2,⊤⟩ 38
T ranges over sets of traces 39
T1 ⊆K T2 means that ∀t1 ∈ T1 ∃t2 ∈ T2 | t1 ⊆K t2 39
(K1, R1) ≈ (K2, R2) means that R1 and R2 can be obtained by ap-

plying the substitutions [K−1
1 ] and [K−1

2 ], re-
spectively, to a common expression R∗

44
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symbol meaning page
Rt,K is the spi description of an intruder that can

distinguish between P and Q, where K =
fn(P ) ∪ fn(Q), and t is a symbolic trace of
P , but not of Q

46

R∗
t (im(K)) is a spi process parameterized by free names

that are elements of im(K)
46

A(a, F ) is the spi description of the intruder actions
that correspond to label a, where F represents
the image of the current intruder knowledge
function

46

D(a, F ) is the list of spi calculus actions taken by the
intruder after the input corresponding to label
a

46

Ξ is a knowledge representation function that
represents, at each step, the set of all knowl-
edge variables available to the spi test pro-
cess, including the temporary ones, with their
current values expressed in terms of the new
knowledge variables

47
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