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Role of grain boundaries as phonon diffraction gratings in the theory of thermal conductivity

M. Omini and A. Sparavigna
Dipartimento di Fisica and Istituto Nazionale di Fisica della Materia (INFM), Politecnico di Torino,
C.so Duca degli Abruzzi 24, 10129 Torino, Italy
(Received 29 July 1999

The picture of a grain boundary as a periodic array of dislocations implies the occurrence of phonon
scattering processes that the Klemens theory of thermal conductivity does not account for. A grain boundary
works similar to a diffraction grating, producing diffraction spectra of various orders: each order narisber
associated with a class of scattering processes contributing to thermal resistance. The Klemens theory corre-
sponds tan=0: it is shown that processes witl¥# 0 are essential to explain the heat transport properties of a
specimen containing grain boundaries. The theory is used to explain the behavior of thermal conductivity, both
in the range belv 5 K and in the region of the conductivity peak, as observed in crystals of lithium fluoride,
alumina, and quartz. It is also applied to the conductivity curve of fused silica, in the frame of a model where
a glass is pictured as a solid with a high-density distribution of grain boundaries.

[. INTRODUCTION where the diffraction effects are accounted for. Actually, the
discussion of these experiments requires two kinds of expla-
The theory of phonon scattering by grain boundaries isations, concerninga) the negligible effect of grain bound-
still linked to the Klemens formulawhich was derived for a  aries on thermal conductivity in the range between 0 and 4 K
wall of edge dislocations. At low temperatures, this formulaand (b) the deviation of the experimental behavior from the
predicts a thermal resistivity contribution of the folT 3, law AT~ 3=const, as observed in the above range for unde-
which is typical of boundary scattering. Roth and Andefson formed samples.
(RA) investigated the effect of deformation on the thermal Point (b) refers to the fact that according to RA in-
conductivities of some ionic crystals: from their experimen-creases more slowly that. We stress that this is a particu-
tal data the change of resistivity due to grain boundary scatar case of a general trend which characterizes, in all the
tering appears to be negligible in the range bew@d and  crystals, the low-temperature side of the conductivity peak:
4 K. RA considered this result fully consistent with the valueas a consequence, the peak is never so high as the combina-
of A deducible from the Klemens formula for sessile graintion of boundary scatteringiving a resistance contribution
boundaries. proportional toT®) and umklapp scattering would predict.
Recently, Krasavin and Osipdpointed out that the Kle- This feature was already emphasized by Berfhamo de-
mens formula refers to infinitely long walls, while real grain duced the need for som@nknowr additional scattering
boundaries have a finite length. They simulated finite graimmechanism in order to explain the height of the experimental
boundaries by wedge disclination dipoles and calculated thpeak in alumina. The theory developed in the present paper
phonon relaxation time in the frame of a “potential” ap- suggests a simple explanation in terms of very small angle
proximation similar to that used by zZim4f3, According to  grain boundaries: a low density distribution of such grain
their calculation the thermal conductivity of a dielectric  boundaries may be present even in the best grown crystals,
solid is such that the produafT 3, after a marked decrease and is sufficient to account for the observed behavior in the
between 0 and 0.1 K, should exhibit a constant asymptotigvhole temperature range on the left hand side of the peak.
value for higher temperatures. The above authors supported Finally, the same theory also provides an interesting in-
this result by making reference to an article of Anderson anderpretation of the thermal conductivity curves referring to
Malinowski,> who obtained a similar behavior. However, amorphous dielectric solids. Many scattering mechanisms
such a behavior was successively denied by RA, after thbave been proposed to explain these cufgpstial fluctua-
accurate measurements described in Ref. 2; as a consien of the sound velocity,resonance scattering from local-
quence, one is forced to conclude that the model of disclinaized phonon$, Rayleigh scattering from random displace-
tion dipoles is not in agreement with experiment. ments of atoms,scattering from localized two level states
We believe the Klemens formula to be unreliable, but not(TLS’s)'°-%% but all of them are open to objections: the the-
because of the infinitely long wall of dislocations to which it oretical situation was reviewed by Freeman and Andet8on,
refers: the reason is that it was deduced by neglecting thetho concluded that the origin of the observed behavior is
effect of strain field periodicity on phonon scattering. A pe-unknown. Their criticism is also implicitly directed to theo-
riodic wall of edge dislocations works as a diffraction grat-ries involving phonon assisted fracton hopping as respon-
ing: we find that, at temperatures different from absolutesible for an additional contribution te in the region above
zero, diffraction spectra of various orders are called intathe plateatP=’. In fact this contribution turns out to be lin-
play, and give rise to a resistivity contribution which is ear inT, while Freeman and Anderson point out that a linear
dominant with respect to the one considered by Klemenslependence is not the dominant feature of the measured ther-
(zero ordey. mal conductivity in the above range of temperatures.
Owing to such first-principle objection, the results of RA  We suggest that all the above processes should be consid-
experiments have to be interpreted in terms of a new theorgred in the frame of a model where a glass is pictured as a
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high-density distribution of random grain boundaries. Theerators, as given by Srivasta¥athe different representation
reliability of such a description is checked in Sec. VI, of the displacement field used in Ref. 20 explains the formal
where we discuss, as an example, the inclusion of TLS scatifference between Eq.l) and the matrix element of the
tering in the model. We show that in this way it is possible toabove reference.

explain in a satisfactory way the temperature dependence of We refer to defects for which the displacement field is

the conducitivity of fused silica between 0.1 and 1 K. known from linear elastic theory: this implies the continuum
hypothesis and the approximatidg;,= (94 /4l):h. Conse-
Il. PROBABILITY RATE FOR SCATTERING BY A WALL quently the sum over the position vectaran be replaced by
OF EDGE DISLOCATIONS an integral over the componentg,x,,x3 of this vector and
one obtains

To perform a calculation of thermal conductivity, it would
be desirable to describe the phonon field by making refer- N ;
ence to the true Brillouin zone of the solid: such an approach K- No [ 50 ik 96k
was actually followed in the simple case of rare gas E| € (ag'h)k_ﬁf dxe (9_xjhi’ 2
crystalst® and of monoatomic solids with diamond
structuret® but is expected to present prohibitive difficulties , _
when the unit cell of the crystal contains different kinds of Where(} is the volume of the solid ané=[£(I) ] For a
atoms. Since most of the dielectric solids for which the low-d€fect giving rise to a plane straimdependent ok;=2) the
temperature behavior of has been determined are charac-Previous result can be simply written in the form
terized by a unit cell of this type, we resort to the usual27(No/€) (K ay;, where
model in which the solid is described as a system of identical
atoms, with mass equal to the average atomic mass in the . Py
real crystal, the volume of the unit cell being taken as the akj=f dxlf dxpe (KxatKaxg) =2 (3)
average volume per atomSuch an approximation, which IXi
automatically rules out optical modes, is justified by the fact
that these modes are not effective in the low-temperatur8ince the continuum hypothesis is consistent with the long
range in which we are primarily interest&dWe will further ~ wavelength approximation, we will write, for any vector
specialize the model by assuming the interaction betweewhose length is bounde@'9'=1+iq-h: this is precisely
atoms to be described by a spherically symmetric pair poterthe case of the vectotsappearing in Eq(1), becausé\, ,B,
tial. The model is slightly different from the one discussedare short range functions of the inter-atomic distance, so that
by Klemens, but presents the advantage of providing anh is actually confined to the lattice points in the very neigh-
exact definition of the parameters involved by the phonorborhood of the atom at the origin. It has to be pointed out
scattering matrix element: in fact, for an isotropic solid, thesethat the above approximation becomes a rigorous result in
parameters turn out to be all expressible in terms of thehe low temperature limit, where only long wavelength
Gruneisen constant and of the transverse and longitudingdhonons are involved in scattering processes.
sound velocities. In the isotropic model of the solid, the vectois allowed

In the frame of the above model, the procedure adopted ifo span with continuity all the directions emerging from the
Ref. 20 allows one to express the matrix element in terms o&tom which is taken at the origin of the reference frame. The
the displacement field; due to any defect present in the atoms surroundingi=0 are then assumed to be uniformly
lattice: denoting by the position vector running over th, distributed over concentric spherical shells of neigh56is.
atoms of the perfect crystal, and B¢, = §4,— § the dif-  sis the index labeling a shell with coordination number
ference between the displacements of the atorhglatandl,  and radiushg, the probability rate concerning the scattering
respectively, one has gp—4q’'p’, as deducible from Eq.l) in the Born approxi-
mation, turns out to be expressed in terms of the quantities
A=3whSA(hy), B=3h?B(hy). The interest of this re-
sult lies in the fact thad and B are directly linked to mea-
surable parameters, namely, the longitudinal and transverse

h . :
Y ’ — iq"-h_ —iq"-h_
(o' IHlap) = ge 2 2 (4" 1)(e 1)

X eiK"(wgwg,’)’l’z{Ah(h- 8&p)(h-€) sound velocities, andsy and the Graeisen constang [see
) ) Egs. (20) and (22), respectively , of Ref. 2R Since «j,
x(h-eg,)+Bh[(h- 5§|h)(eﬂq-eg,) from the dimensional point of view, is an area, it is conve-
) nient to puta,;=il g,Bkj , Wherei is the imaginary unity and
+(h«eﬁq)(ég,h-eg,)ﬂﬁgh-eﬁq) 12 is a reference area in units of whiak; is measured.
, Writing 6%(K,) = (L,/27) 8(K,), wherelL, is the length of
x(h-eg,)]}, 1) the specimen along;, one finally arrives at the following

expression of the probability rate:
whereK=q'—q andM is the atomic masseg the polariza-

tion unit vector for a phonon with wave vectqrand branch

index p,wg the corresponding angular frequency, while q,p,_w_zq_q’ L,
Ay ,B;, denote coupling coefficients containing the deriva- Qp = 4 02 gg,
tives of the pair potential. Equatiofl) follows from the PP
expansion of the displacement field in terms of phonon op- X 8(sprq" —s,0) 6(K,), 4

(SE_S$)2|g|Gpp’|2



PRB 61 ROLE OF GRAIN BOUNDARIES AS PHON@! . .. 6679

whereG,, is the result of the angular integrations by which and 732 of Ref. 2B Particular care has to be taken in writing
we replace the sum over the vectérbelonging to a given the expressions of;, and 7,,. The former turns out to be
shell. The integrations are cumbersome but elementary: one

obtains sinh 2w X

C

1 (D Ly /2 )
712=§j0 dycogK,y) fo dxsin(K,x)

€ ’ ’
Gppr(B)=— 7T:(jle8q,ieg',jﬂkl+ MyiBiie” g€l
7 X(cosh2rXcos2rY—1)

! ' +
+MyBile? el +e e, (5) 1-v o2

a'i At

K , . where X=x/D,Y=y/D and C=C(X,Y)=cosh 22X
where e=—A/B and the tensord; *Mk|, are defined in _ o527y, It is convenient to add and subtract a unity inside
terms of the couples of angles, ) a,nd,(ﬁ ,¢") specifying  he square bracket. The terml, when added to the argu-
the directions ofu,=q/q and ug =q'/q’, respectively(see  ment of the bracket, gives rise to a function which strongly
the Appendiy. The same angles enter the expressions of thgecreases for large valuessofnd, consequently, to an inte-
polarlzasjuon vectors required by E@S5). In the isotropic  grg| which can be extended fror=0 to x=c. Conversely,
model €] (polarization vector of the longitudinal brar)ds: the remaining term+1 engenders the integral
parallel to g, and coincident with pu,=sinécosdi

+sinésin ¢j + cosék, wherei,j,k are the unit vectors of the f

, (10

1
axesxq,X,,Xz. The vectoreg can be chosen in any direction T =D—

2
normal to &}: the most convenient choice i&=sindi

—cosdj, and consequentlg;= —cos#cosdi—cosdsing]  which depends on the length, of the specimen. Owing to
+sinék. Eq.(8) 7* is different from zero only foK,=0. In this case
Let us refer to a parallelepiped sample, with sides parallejt is given by[1—cosK,L,/2)]/K.D. Since, however, be-
to the three coordinate axes,x,,xs and corresponding cause of the periodicity conditions imposed to the phonon
lengthsL,,L,,L,. Let it contain a symmetric tilt boundary, states,K,=2m/L,, wherem is an integer, one can also
that, according to Hirth and LotheHL),®> we model as a  write
periodic array ofN edge dislocations distributed with spac-
ing D along they=Xx, axis: all the dislocations have Burger . 1-(-1nm
vectorb and axis parallel t@a=x;. The origin of the refer- 7 (K«D) = 5”'°KX—D' (12
ence frame is taken at the center of the parallelepiped, and
assumed to lie on the axis of one of thedislocations. In  An analogous procedure can be used for the evaluation of
this case it is convenient to chooke=bD. Since the tensor 721, While it is not required forr;; and 75,: in fact the
&j(X,Y) = 9&c]x; is such that,j(x,y+pD) = &;(x,y) for corregpondmg integrands are strongly decreasingfore.
any integer value of, it is easy to deduce from E¢3) The final result can be expressed in the forgp=0 for k
=3 orj=3, and7;=0yj(K\D), fork=1 or 2,j=1 or 2,
r{ K,(N-1)D
Byj=exp —i ————

D Ly /2
dycogK,y) f sin(K,x)dx (11
0 0

{1+e®P 20y ..y, where the functiong),;(7) are defined ag:(7)="f.(7),

2 92 7)) =F-(9),917) =9+ (7).,921(7) =g (1), with
iNK,D\ sif(N—1)K,D/2] 1 Jl .
= - y y . fo(n)=— 55— dYsin2nwY
ex"( 2 ) SinK,D/2) & ®) =" 310 )
where the last step follows from an explicit evaluation of the = cospX sin2mY
curly bracket, which containsl—1 terms and f o2
0
1 (D _ Ly/2 , .
Tkj:ﬁfo dyéKyyf_ axdgxy). (0 X[(1-2»)Cx27Xsinh2aX] (13
SinceN is very large,By; i's significantly d.if'ferent from 9a ()= JldYCOSmTrYdexsinnX is,inh 27X -
zero only for values oK, satisfying the condition 0 0 ¢
KyD . ® . mX cosh2rXcos2nY—-1| "y
= i e = (). (14
wheren is any integer. In this case one has simply
IIl. PHONON TRANSPORT EQUATION
121G ppr| 2= b?N?D2|F [ 2= 2L F |2, 9) Q

where F,, is the expression obtainable from E€) by The Bo_ltzmgnn equation for the _phonon _distribu_tin@
substituting the tensar; to the tenso,; . The expressions Can be written in terms of the deviation functidrf defined

of 7,; are easily evaluated by the use of the displacemeniy the relatiomg=ng+(kBT)*1ng(1+ ng)®g, whereng is
field and of the stress components appropriate to the synthe Bose-Einstein distribution. The linearized Boltzmann
metric tilt boundary, as given, for instance, by Hpp. 78  equation is
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anP 1 L ) +2n7/D,s,q'=s,0. The nonvanishing components af;
&_'I?VT: T ng(1+n5)Qqy° (@2,—(1)5) turn out to be in this case,,, 733,723, andrs,. Therefore,
B ’

one obtains the appropriate form &f,, by retaining in
Gppr(7) only the terms proportional to the above quantities,
, (15) which are now represented byr,;=g:1(K D), 733
74 =02AKyD),723=0912K\D), 73,=0,1(K,D). The quantity
'y;Jp, is now defined ag);/q, whereq, follows from the
scattering conditions.

B ng(1+ng) Q;g
kgT

wheres;=s,pu is the phonon velocity andj is the relax-
ation time for boundary scattering. , " . . .
A tilt boundary similar to that previously described is We_ hote thaﬂ\.IX/LX.:(Nx+NX)/LX Is the Imgar density
composed by an array of dislocations with axis parallet,to ©f 9rain boundaries with plane normal to thexis. Assum-
and piled up along the axis. It will be denoted by the M9 Nx=Ny andN,/L,=N,/L,=N,/L,=N one easily ob-
symbol[z,y]. It is interesting to discuss a model where graint"’_"”s the final expression for the first term on the rlght.-hand
boundaries with planes normal xgy and toz coexist in our ~ Side(RHS) of Eq. (15). Itis of the form(18), whereN,/L is
parallelepiped specimen. This model is analogous to thajubstituted byV/2, and the curly bracket by a sum over the
treated by Zimaf® for a solid containing three sets of dis- values taken by the bracket for each of the six dislocation
location lines parallel to the coordinate axes. Since a til@rrays(16). Since the three axes are treated in the same way,
boundary with plane normal tocan be represented either by the model represents a satisfactory approximation for a solid
[z,y] or by[y,z], etc., it follows that in the above model the containing grain boundaries without a preferential orienta-

specimen contains dislocation arrays of all the followingtion.

forms:

[zyl.ly.z].[x.z].[zx]ly.x].[xy]. (16)
Let Nj ,Ng,Ny NG, N; N7 be their corresponding numbers.

We will first evaluate the contribution to the first term on the

right hand side of Eq(15) by the N, tilt boundaries of the
form [z,y]. We use the substitution

> q(zw‘ZLxLzJ dq;J dg; 2}
q!
to obtain for the above contribution the expression

7

b2
16 L,

S |Fon|?
p pp
p’ J Yop!

"P Py
ng(1+ng) 1

T 16D L (LS

x> (18)
>

p'_
(0P, —®f)

q!:q!f’]
This has been deduced on account of E4sand(9) and of

the relation Q=L,L,L,. We have putynj —qi)p,'n/q,

pp’
where

ay+

2n77 2 , 1/2
o | "9 (19

and the indey labels the two possible choices of sign. The

vector denoted by q,’ﬂ has components q"pp,,n,qy
+2n7/D,q,: correspondingly, the argument of functions
gki IS KXD:(qup’Yn_qX)D'

To deduce Eq(18), any interference effect between dif-

At this point, it is possible to write the Boltzmann equa-
tion for a sample containing all the dislocation arrays. To this
purpose, it is convenient to introduce the dimensionless vari-
ablet=%s;q/kgT and put the deviation function in the form

32h%sY 1 T
S s @0

q)D: _
T b2(s?-s) Nk T2 t T

The transport equation is then

|Fpp’|2
P&
pp’

s 4 +oo 6
—T) S S
Sp, n=—w g=1

2 n(t,0,6)= 3 ( p) [
T o' ]

X

if{”(t',&v’,dﬂ)—fip(t,t9.¢>)”
Sp

_P

t2f (21

P(t,0.4),

where

324%s% st

 ND2LKET? (s2—52)7

p (22

£=sprg being the Casimir length for boundary scattering.
The indexo in Eq. (21) specifies the particular dislocation
array for which the curly bracket must be calculated: the

ferent scatterers has been neglected: this assumption is regiues 1,2,3,4,5,6 of this index will be used to denote the
sonable if the distribution of scatterers is random, that is ifarrays listed in Eq(16).

the distance between adjacent tilt boundaries of the set is a The asterisk in Eq(21) recalls that, for a given the sum

random variable.
Through suitable substitutions, expressi@®8) can be

involves only the branches for which the wavelengthof
the emerging phonon satisfies the conditipr= Q, whereQ

used to obtain the contribution of the other tilt boundariesis the radius of the Debye sphere: such a condition can be

For instance, in the case of thg.‘, tilt boundaries of the form
[x,z], one has simply to changéy/L, into Ny/L, and im-
pose the  scattering conditions g,=0q,,q,=0d,

written (s, /sp)t<@/T, where® =7%s;Q/kg plays the role
of a characteristic temperature, different in principle from the
Debye temperatur@®, .
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TABLE 1. Expression of the quantities required to describe the phonon scattering precess

=(Mq Mg My —m =(1y,pp,1), as produced by a dislocation wak, ,xg].

Mo Hop my Vop Vopr
nj
Sp % B Xt sp — %, Mo Mg Xt

Each curly bracket of Eq21) requires the expressions of
t',0',¢' in terms oft, 0, ¢. First of all, owing to the energy
conservation equation in the scattering process, onet’has
=s,t/s, . Moreover, we recall tha#, ¢ define the direction
p=a/q of the incoming phonon, and’,¢’, the direction
m'=q'lq’ of the scattered phonon. if refers to the dislo-
cation array{ X, ,Xz], the expressions of’, ¢’ in terms of
0,4, though not explicitly written, are easily obtained
through the relations between the componentgbfand u
as given in Table |, where the axis denotedbis normal to
the axes denoted by and 8. The corresponding nonvanish-
ing Components Oﬁ-jk are T’y‘y:glli Tﬁ‘y:g21! T’yﬁZQIZI
Tgp=U22: the argument of functiong, (that is, KD for
0=1,2K,D for 0=3,4K,D for #=5,6) can be generally
written asy, v t, whereW,,, is given by the last column of
the table, andy is the dimensionless parameter

_k,TD
X~ s

(23

Particular care is required to handle the term on(RidS)
of Eq. (21) with n=0. In such a casé,, contains the
function defined by Eq(12), which can be written as*
=&n/Ng, Whereé,=1—(—1)" and\,=2m«D/L, for a

in this case aIschp, vanisheqdas shown by the integrals of
Egs. (13), (14) evaluated fom=0,7=0], one has|Fpp,|2
=0, so that fom=0 the probability rate is zero for all the
processes for which the argument of functigpsis zero. In
particular, this rules out the value pfeading to,,, =0 in
processes with=0 ands,=s, . The final expression of the
conductivity will contain a sum over all the possible values
of A\y: when the size of the specimen is largg, spans a
continuum, and the only reasonable approximation to evalu-
ate the above sum consists in assigning\tp, the average
of the two valueg26) and(27), namely

, pr’l
PP Yopt

( H
Yoprt

We emphasize that this term is called into play only for
processes witln=0. Whenn+0 Eq. (25) holds with A,/
=0.

2

pp’ o

A 2 (28)

pp’

IV. SOLUTION OF THE TRANSPORT EQUATION
AND THERMAL CONDUCTIVITY

The transport equatiof21) will be solved through an it-
eration procedure, already employed in previous wotRS.

set of grain boundary planes normal to the parallelepiped© generate the zero-order solution, one neglects the term

side with lengthL,. Correspondingly one haépp/:ng,
+é&Hpp A, wherngp, is the expression deducible from

Fppr when7* in Egs.(13), (14) is omitted, whileH ., , for
the dislocation arrayx, ,Xg], is represented by
- p’ p’
Hppr=—M;,[e" el ,+eq sep ;]
+Mglel o ep +elq en . (24)

Owing to the invariance oTikj' and M, with respect to the
exchange&k=1, the first and second term on the RHS of Eq.
(5) contain 7, and 7,, only through the combination,

+ 751, which is independent of*. Thus the dependence of
Fppr On 7* originates from the third term of E@5), which
precisely leads to Eq24). One readily obtains

Fpprl?=IFpp |2+ App, (25)
where
H,, \?2 H, .
A ,=4( PP +F°,ﬂ} modd, (26

(27)

Equation(27) also holds fom=0 (i.e., A,=0), consis-
tently with the limit of Eq.(11) for K,— 0. Considering that

Appr=0 (m even.

containingff"(t’,b”,¢’): the first order solution is obtained
by substituting into the same term the zero-order solution,
and so on. If the procedure is convergent, the limit or

— oo of thekth order solution represents the rigorous solution
of the transport equation. Ondé is obtained, the thermal
current densityJ can be calculated. From its expression

1 _ _
U= O % 15p0SpMqNgp( 1+ Ngp) Py (29)

and from Eqg. (200 one readily deducesU,=
—2iN\idT19%;, where the conductivity tensox,; is given
by
Sp 2 roiT _ e
Ani=—ko2 (—) f tznp(1+np)dtf sin6d 6
p St 0 o)
2
% | " dgun0.0)0t0.0 30
the quantityk, being defined as
4 st KT
0~ (31

3 (- 2)2 hbPN

while E,=[exp(spt/sT)—1]‘1. Let us discuss the limiting be-
havior of the conductivity folT—0. In this limit, since the
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arguments¥ , t of functionsg,; are proportional tor [see convergence of_the iteration procedure employt_ad to solve the
Eq. (23) and Table ], one deduces from Eqé&l3), (14) that  transport equation. The convergence can easily be checked
the dominant contribution tg;, andg,, is from the terms*, Py plotting the conductivity as a function of the maximum
On the other hand, when the temperature is very low, for anprder of iteration {ima) adopted in the numerical solution of
n+0 the argument of the square root defini | is highly g.(21). The results of our numerical analysis show that for

negative(see the fourth column of Table, Iso that only for No=5 "?md'”.‘axzzo the convergence of the sum oveand
= . nj . .. of the iteration procedure are both warranted in the whole
n=0 one finds a real value ojpp, . Thus in the above limit

_ . temperature range.
0,1, andg,, vanish. One deduces thagp, vanishes and con-

sequently from Eq(28) V. COMPARISON WITH KLEMENS THEORY
) Hppr 1 In studying the scattering produced by a wall of edge
|Fpp’| =2 \If_ t_2 (32 dislocations, piled up with spacin® along they axis,
PP’

Klemeng neglected the periodic dependence wrof the
Substituting this expression into E¢21) one notes that strain field. In fact he approximated by an integral the sum
|Fpp,|2 and the boundary scattering term have the same over the dislocations of the wall, obtaining a field, /9x;
dependenceo(]_/tz); moreover, sincqup, is proportional to depending only on the variable. The consequence of this
X, they turn out to have also the same temperature depe@pproximation is that the scattering matrix element, being
dence (1/T?). Consequently, if one defines the function proportional to Eq.(3), contains a factos(K,): in other
FP=fP/y?t?, one finds folFP an equation where any depen- Words, only scattering processes for whikh=0 are al-
dence ort andT disappears. This means tHdtcan be putin lowed. This situation corresponds to putting:0 in Eq. (8):

the form x2t2FP, where F? depends only on the angular CONS€quentlgs;=gz,=0, andgy,=—g,=7", since the in-
coordinates. When such a form is substituted into £8@,  te9rals appearing in EQEL3) and(14) turn out to be always

(31), the conductivity tensor becomes proportionaktg?, negligible, forn=0, with respect ta* . Thus Eq.32) holds,
and therefore ta2. and the conclusions are precisely the ones written as a com-

We also note that in the above case, the conductivity turngnent to the above equation: the conductivity is proportional

2 32 ; H
out to be expressible in terms of harmonic quantities such a Kox*, namely, tor°D<, in full agreement with the expres-

the sound velocities. This is a consequence of the centrgiOn Of the relaxation time given by Klemens. We point out
potential model, which allows the anharmonic HamiltonianthaF the part|cu_lar dependence Dr_lmphes that the_thermal
[and consequently the matrix eleméby] to be split into two resistance vanishes f@r— oo, that is for small misfit angles
parts, one of them being characterized by the same coeffl=b/ D .

cient B,, appearing in the expression of the Hamiltonian for Deviations from Klemens' theory, and therefore from the
the harmonic phonon systeth?* Since the quantityH o,y ?bove conclusions, are connect_e_d to valuem_(n‘lf_ferent
contained in Eq(32) is due to the last term of E¢5), which rom zero._These terms are ser)smve to the p_er|0d|g structure
in turn derives only from the part of the matrix elemeét of the grain boundary, which is concealed in the |nte.grals
proportional toB,,, there is no surprise that the correspond-aPP€aring in Eqs(13), (14). In a paradoxal way, they give

ing contribution to thermal conductivity can be expressed in/!S€ © @ thermal resistance which increases witthat is
terms of purely harmonic parameters. ecomes larger for smaller values of the misfit angle. The

Looking now at the expression qujp in Table I, one basic rgason_of thig resu_lt lies in the fact_that for a wall of
. L edge dislocations with axis parallel t@and piled up along,
sees that the rat'|072n/r)](jt must not be too high, in order to the strain field is approximately confined to the slab<
warra.mt the reality ofypp, Lt must not exceed a value de- _p (Ref. 23 p. 741 consequently, by reducing (increas-
pending on the angular coordinates, but anyway of the ordghg D) the volume fraction affected by the field is increased
of unity. Owing to Eq.(23), this means and the scattering power of the wall becomes more relevant.
Of course, this conclusion holds provided we are dealing
-/ (33 with a periodic wall: for a specimen with a finite side along
kgTD y (that is, for a finite value ok) such a condition is verified

For a given value of the order numbey such a condition i we neglect the depar.ture. from per.iodicity due to the. dis-
implies, in the very low-temperature limit, very large valueslocations of the wall lying in proximity of the boundaries.

of t, whose contribution, however, is heavily damped by the! € @Pproximation is reasonable if the numbeof disloca-
exponential in the Bose-Einstein function. Thus for-0  tions forming the wall is high, therefore if, /D>1 or
processes witlhh# 0 are not effective. However, their weight 0> b/L (34)

can be increased by raising the temperature of the specimen, y:

because in this way the values bfequired to satisfy Eq. For all the values o# satisfying Eq.(34) the theory devel-
(33) are reduced. To perform the numerical analysis, on@ped in the previous section can be applied and the grain
fixes an integen,# 0 and solves the transport equati@1) boundary contributiofR to the thermal resistance is expected
by confining the sum ovar to the range-n,<n=<n,: con-  to increase by a reduction of the misfit angle. On the other
sequently, one calculates through E80) a conductivity de- hand, a rigorous theory accounting for the departure from
pending on the choice aof,. A plot of \,;(n,) as a function  periodicity would obviously lead to a vanishing thermal re-
of n, shows the value afi, to be chosen in order to arrive at sistance for)—0 (absence of dislocations in the walks a

a satisfactory convergence. Another problem concerns theesult, the curvd®(6) is expected to present a maximum. We

2mhisn
t>~
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) ) ) FIG. 2. Ratio of the thermal conductivities of LiF in the sheared
FIG. 1. Thermal resistand®=1/\ in units of (cm K)/W)] for  yagion &) and outside the sheared regian,f. For curve I\, is
a specimen of LiF at 5 K as a function of the grain boundary m'Sf'tprovided by Eq(35), while for curve Il it accounts for the presence
angle 6. of a low-density distribution of very small angle grain boundaries.
The data are from RA. The area delimited by the dotted lines de-
will always work in the region on the right hand side of the fines the experimental uncertainties.
maximum, where Eq(34) is satisfied, and our theoretical
curve Ry(6), shows the behavior sketched in Fig. 1. The VI. THERMAL CONDUCTIVITY BELOW 5 K
extrapo!atio_n oiRth. for 6—0 Iead_s to a saturation value, say  \ye will first apply the theory to LiF, for which RAmea-
R*, which is obviously unphysical: however, the form of greq the thermal conductivity by an experimental arrange-
such asymptotic behavior ensures that in the range where Efqeny in which the heat flow was normal to a set of parallel
(34) is satisfiedand neverthelesg is smal) the contribution grain boundaries produced by deformati@hearing of the
to thermal resistance is weakly depending @rso thatR* sample. In this case the sum overequired by Eq(21) is
can be adopted as the representative resistance of very IQ@presented by only one term, corresponding to the above
angle grain boundaries of physical interest. , set. We take as the axis of the heat flow, afg,x] as the
In the light of the present theory, which role is left to yigjocation array by which we simulate each grain boundary
processes with=0 (the only ones considered by KlemgPs ¢ the set. Such a choice corresponds to saving only the term

They are obviously effective only in the very neighborhood, ith =5 in Eq. (21). For LiF we use the following data
of absolute zero. However, also in this case, if the density oo, Srivastav#® s, =5.6x10° cm/s; $;=3.36

grain boundaries is smalsee Secs. VI and V)] their con- 15 cm/s:y=1.2, and consequently from E(2) of Ref.
tribution to thermal resistance is negligible, being swamped,, e=14.69. RA give 7000 A as the separation between
by the more relevant contribution of boundary scattering.etc’h pits in the boundaries, ancka0~2" as the correspond-

The result is that forT—~0 the value of\ is essentially ;o misfit angle. From this information a Burger vector
determined by the Casimir lengify through the formula 5 4 R is deduced. The average separation between adja-
cent grain boundaries of the set#x10 2 cm according
272 ki (2 1 to RA), corresponds to a density of about 250 cm®. We
75 73 ( —2) (35 note that the value of the misfit angle widely satisfies condi-
h L tion (34) (in this casefd>b/L,) because the length of the
specimen along the direction normal to the heat flow was
which can easily be found by investigating the limit {&f 0.5 cm, so thab/L,=4.8x10 8, while §=3x10* rad.
—0 of the present theory or, more directly, extending Cal-The Casimir lengthC due to boundary scattering is chosen
laway’s calculatiof® to a model where the distinction be- consistently with the value of 0.089 Wi/cnf Kor the low-
tween longitudinal and transverse sound velocities is altemperature limit oh T~ 2 in the perfect crystalsee the ex-
lowed. In this way Eq(35) can be used to obtaifi from the  perimental points given by RA From Eq.(35) one deduces
experimental limit o\ T~ 2. Things go differently whetN'is ~ £=0.36 cm, which is consistent with the size of the sample
high, as in amorphous solidSec. VIIl): in such a case the used by RA (0.5 cm).
above limit is heavily affected by the presence of grain In Fig. 2 we plot the ratio/A,, wherex=X\,, and\, is
boundaries and cannot be used to deternfinevhich is ap-  the thermal conductivity of the unstrained sample: if this is
proximately taken as the size of the sample. considered as a perfect lattioe, must be represented by Eq.

()\T_S)T—>0: _2+
St
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LiF

T(K) !
FIG. 3. Thermal conductivity of LiF divided b3, in units of
Wi/cm K. The dotted lines represent the Casimir limit: the upper

and the lower part of the figure refer to different sources of data

(Refs. 27 and 2, respectivelyCurvesa and c represent the theo-
retical conductivity for an unstrained sample with a low-density
distribution of very small angle grain boundaries, cubvaccounts
for a superimposed shear. All the experimental points refer to un
strained crystals, and and to different samples used by RA.

(35 and the corresponding behavior ®f\, is shown by
curve |. Also shown are the experimental points\ék,, as
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unstrained regior(the result is almost independent of the
choice of @ since, as previously said, the theory predicts a
saturation of the thermal resistance wheiris very small.
The theoretical behavior of T2 between 0 ath 4 K for A/
=50 cm ! is shown by curvea) of Fig. 3.

In the frame of this model, we can refine our previous
theory of thermal conductivity in deformed samples of LiF.
The effect of deformation results in a set of parallel grain
boundaries with densit\” =250 cm * [characterized by
o=5 in Eq. (21)] which is now added to the six sets of
dislocation arrays pre-existing in the undeformed sample
(with /=50 cm1). To treat this system, we have simply to
put V=50 cm ! in Egs.(20)—(22) and add to the first term
on the RHS of Eq(21) (evaluated ford=103"-10*") the
contribution corresponding ter=>5, §=2x10 2°, multi-
plied by N’/N. The resulting behavior ok T2 is repre-
sented by curveéb) of Fig. 3. The difference between the
theoretical curvega) and (b), referring to the undeformed
and deformed regions, respectively, is within the uncertain-
ties affecting the measurementsiafas shown by the scat-
tering of experimental points for the undeformed sample.
This amounts to saying that the effect of deformation is neg-
ligible up to ~4 K, in full agreement with the conclusions
of RA. In fact the ratio between curv@) and (b), as repre-
sented by curve Il of Fig. 2, is essentially confined to the
region between the dotted lines up to 3 K, and not signifi-
cantly out of this region at 4 K.

We also analyzed the data of In Sang Yatal.in terms
of an assumed distribution of grain boundaries with
=10"%-10 #". Taking a Casimir length of 0.46 crfton-
sistent with the experimental limit ot T~%) and a linear

deduced by RA for the sheared region. The points corredensity of about 80 cm" we found curvec of Fig. 3, which

sponding ta\/\,>1 are simply a measure of the uncertainty

shows a satisfactory fit to the experimental points. These

affecting the data: since a deformation of the sample canndtonclusions are in full agreement with our previous analysis
result in an increase of conductivity, one necessarily infer®f RA data: the discrepancy between the valued/otlated

that each value af/\, is determined by an uncertainty of at

to curvesa andc, respectively, is simply a consequence of

least+ 15%), corresponding to the region between the dottedhe different samples to which they refer.

lines in the figure. The right conclusion of RA was that all

At this point we are in a position to discuss the weight of

the experimental points are indistinguishable from unity, sdhe processes considered by the Klemens theory: if the terms
that the effect of shearing is negligible up to about 4 K. Nowwith n=0 in Eq. (21) are omitted, the points of curve of

curve | is in agreement with this conclusion below 1 K: for

Fig. 3 are lowered by less than 1.5% at 0.1 K and by less

higher temperatures, according to this curve the effect shoulthan 1% at 0.5 K. This confirms that when the grain bound-

be appreciable.
The reason of the discrepancy is that Eg5) was as-

ary density is low, the role of the above processes is negli-
gible even forT—0, in which limit N\ is essentially deter-

sumed to describe the conductivity of the unstrained regionmined by Casimir length.

this is not true, because the observed behaviok Bf 2 in

this region is represented aCCOFding to RA by the eXperimenV”_ THERMAL CONDUCTIVITY IN THE PEAK REGION

tal points in the lower part of Fig. 3, which show a marked
deviation from the Casimir limifcorresponding to the dotted

A strong support to the above model comes from the

line). The same behavior is confirmed by the measurement@nalysis of the conductivity data obtained by Thaéhéor

performed by In Sang Yanet al?>’ on an undeformed crys-
tal of LiF (upper part of Fig. B

The present theory suggests a simple explanation of thigitroduce umklapp three-phonon processes.

monocrystals of LiF in the range between 1 and 10(s&e
Fig. 4). To discuss the behavior afin this range we need to
Following

behavior in terms of very low-angle grain boundaries, thatKlemens® p. 50, one can approximately describe these pro-
we can assume to be present in any sample, even if n@€esses through a relaxation time

intentionally deformed. In this case, if no preferential direc-

tion exists in the sample, the model with the six dislocation
walls (16) seems to be the most appropriate for a calculation

of A. In the frame of this model, fop=10"3"-10"%, we
require a linear density of only ~50 cmi ! to explain the
decrease of\ T2 consistent with the data of RA for the

1
=y
Tu

fiw,
OkgT

e (36)

where® is the Debye temperature, a dimensionless pa-
rameter of the order of 2, ang,, a characteristic frequency.
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FIG. 4. Thermal conductivity of LiF in units of W/cm K as a FIG. 5. Thermal conductivity of aluminum oxide in units of
function of temperature. The data are from ThadfiRef. 28. The  W/cm K as a function of temperature. The data are from Berman
agreement with experimental data is obtained by introducing a low{Ref. 6. As for LiF the continuous curve accounts for the presence

density distribution of very small angle grain boundaries. of a low density distribution of very small angle grain boundaries.
If very low angle grain boundaries are present in the crys- kgT?
Y ge 9 P Y N.=0.36-2— g9/eT, (37

tal, as suggested in Sec. VI, they are expected to contribute
in a significant way to the conductivity peak. Let us see if the
form of this peak can be reproduced through a reasonablheres is an average sound velocity and the subscript
choice of the parameterd” and v,. To this purpose, we refers to the Casimir length, which in this case is infinitely
point out that the total relaxation time due to boundary large. If ., is independently known, the above relation can
scattering and umklapp processes is given by the relatioRe used to obtaim,. Unfortunately, there is no information
1/r=1/my+s,/L: this amounts to substituting E¢22) by ~ on A.. for LiF. However, as suggested by E§.4) of Ref.

the expression 1+ K exp(—@p/aT)]p, Where K= v, L/sr. 29, it is reasonable to assume that the order of magnitude of
After this substitution we can solve E1) and calculate Yo IS the same for all solids: in this way we can refer to solid
the conductivity, as resulting from the simultaneous effectg\rgon, for whichi., has been determined through a rigorous
of boundary, grain boundary and umklapp scattering prc)_numerlcal solution of the transport equatirat 20 K, one
cesses. We obtain the continuous curve of Fig. 4, whicf@S A==16.6 mW/cm K. Puttinga=2, ©,=80 K, s

= ~1 ; ;
shows a good fit to the experimental points. The curve Was__kB®D_/ﬁQ~0'94X 10° 1cmj » One readlly obtains  for
deduced by takinge=2,K=1.1x10°, §=10"3"-10"*", this solid v,~4.95<10'" s™!, which is about the same

N=80 ¢!, ®,=620 K?°and a Casimir length of 0.095 value as that previously obtained for LiF. The consistency of
cm: this fO||O\,NS 1|‘3rom the e,xperimental value of the Ieft.-handthese two results represents a strong support to the validity of

side of EQ.(35) and is consistent with the size of the speci- the proposed model.

d by Thach he rel | The same model can successfully be applied to other ma-
men used by Thacher (1.29.91 mm). The relevant result yqiais |n Figs. 5 and 6 we show the remarkable agreement

is represented by the value &f which is comparable to the penyeen the experimental points and the theoretical curves
grain boundary density previously obtained from the analysigor alumina and quartz, respectively. The data of Fig. 5 are
of the region below 5 K. This means that the assumption ofrom Bermarf while the continuous curve has been deduced
a low density distribution of very small angle grain bound- through the following choice of parameters=2, K=0.5
aries is sufficient to explain the observed behavior betweerx 10°, A=60 cm', =10 3-10*, £=0.14 cm, Op
0.1 and 100 K, wherex changes by about six orders of =980 K, s, =9.96x10° cms !, s;=5.95x10° cms !, b
magnitude. =2.06 A,y=3 (corresponding toe=24). The data for
The characteristic frequenay, follows from the values quartz, to which the upper part of Fig. 6 is referred, are from
obtained fork and £. One findsy,~5x 10 s™%. To show  Zeller and Pohl and curve(a) was obtained by choosing
that this is of the expected order of magnitude, one can ire=2, £=0.5x10° AN=50cm !, §=10"%-10"%, L
principle express in terms of E(B6) the thermal conductiv- =0.5 cm,®,=290K, s, =5.97x10° cms !, 5;=3.76
ity for an unbounded perfect crystal of the same material: the<10° cms !, b=3.3 A, y=0.7 (corresponding to e
relation is =13.5). The Debye temperatures and the ri@isen con-

vosh®
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Refs. 32,33, provided the average distance between two ad-
jacent grain boundaries of the same set is of the above order
of magnitude.

In the spirit of this model, we will regard fused silica as a
quartz lattice perturbed by a high density distribution of
grain boundaries. Therefore the value gf is fixed, being
precisely the one corresponding to quartz. Let us first sup-
pose that the only source of thermal resistance is represented
by boundary and grain boundary scattering. We can write
K=IK,LILy, where/C and L refer to fused silica, ané’,,

L, to quartz. Since alsg is fixed (by the size of the speci-
men, in this case 0.5 cm, see Seg, We are left with two
free parameters, namely/, #, which can be varied so as to
obtain the best fit of the theoretical curve to the experimental
points, as determined by Zeller and Pohl. The results of our
numerical analysigto which the continuous cundeof Fig. 6
is referred are §=0.05°, N=6x10° cm 1. The striking
result is the numerical value oY, corresponding to an av-
erage distance between grain boundaries of about 17 A: this
is comparable to the size of microcrystals predicted by Refs.
L 32,33. The small value of means that the transition from a
S 1 S S S S — microcrystal to the neighboring one is smooth. With such a
0.01 0.1 1 10 100 1000 high density of grain boundaries,=0 processes play an
T(K) important role in the low temperature limit. However, their
contribution to the thermal resistance is progressively re-

FIG. 6. Thermal conductivity of quartzH() and of fused silica  §,,ced as the temperature rises: it turns out to be 35%), 15%,
(<) in units of W/cm K as a function of temperature. The data aregnd 2% of the total resistance at 1, 5, and 20 K, respectively,
from Ref. 9. The corresponding thepretical cur_mand_b account _and becomes negligible at high temperatures.
:grt:;ecpr’;‘:’;n;ﬁ dorf]i;?zlr?;?;eingtrﬁ'env?t?:g'g:r;f;'ew“h low density '}, iq important to emphasize that the theoretical behavior

' is almost unaffected by the value &f,. Changingk, by a

N factor 10 would not appreciably alter curbeof Fig. 6. This

stants are from Klemefi (p. 47, the sound velocities for s quite reasonable, 4§, is a parameter related to the pres-
alumina have been deduced_from the values of_Young_ Moduspce of umklapp processes, which are not expected to play a
lus and bulk modulus as given by Ref. 30 fasotropio  (gle in an amorphous solid. When the density of grain
quartz from the corresponding velocities of fused sifitthe boundaries is very high, there is no memory of the crystal
Casimir lengths follow from the experimental value of the order, and therefore a3 processes which are a consequence
LHS of Eq.(35) and turn out to be in good agreement with ¢ this order.
the sizes of t_he cry_stals used in Refs. 6 and.8 mm and 5 For pure quartz the theory could not be seriously applied
mm, respectively finally the Burger vectors have been ap- tg the temperature range beyond the peak, owing to the fact
proximately represented by'3, whereV is the average vol-  that our description ob processes, as based on E26), is
ume per atom as given by _Kle_méﬁs{p. 47). The values rgjiable only at low temperatures: since, on the contrary, the
obtained for\” show that a distribution of very small angle conductivity of amorphous solids is essentially independent
grain boundaries emerges as the plausible origin of the olyf these processes, we can approximately extend the theoret-
served b_ehavior of both_ the crystals, in full agreement withicg| curve up to temperatures of the order of 1000 K, where
our previous result on LiF. the experimental behavior presents a plateau. The relevant
result is that the presence of this plateau is an automatic
consequence of the theory, and is associated to the cutoff
imposed to phonon wave vectors by the Debye raium

As a final application of the theory, we present in thisfact, for Q—« [that is, for® —~ in Eq. (30)], one would
section a model for amorphous solids which, in spite of itsobtain a monotonic increase of with temperature(not
simplicity, is helpful to understand some unexplained feashown in Fig. 6.
tures of the thermal conductivity curves of glasses. We will Not all the features of the experimental curve are ex-
simply picture a glass as a crystal containing a high densitplained by the simple model we have presented. For in-
distribution of grain boundaries. This picture is justified by stance, the plateau at10 K, which is systematically ob-
the works of Kauzmarii and Phillips®® who described a served in all the amorphous solids, turns out to be substituted
glass as an assembly of small crystalline grdimgcroclus-  in curveb by a flex point at about the same temperature. This
ters with average diameter of order of 20—30 / fact the = means that the model is not fully adequate, but has anyway
parallelepiped cells resulting from the intersections of theto be considered as a good starting point for more refined
three orthogonal sets of grain boundaries generated by Egalculations. At such a conclusion we also arrive through the
(41) (that is, with planes normal tg, to y and toz, respec- following argument.
tively) can be precisely interpreted as the microcrystals of In the range between 0.1 @i K the continuous curvb

10 -
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0.01 -

0.001

0.0001 [

le-05

VIIl. AMORPHOUS DIELECTRIC SOLIDS
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is approximately represented by a power law of the farm TABLE Il. Components of tensoTikj' in terms of the quantities
=A T", with A=1.5x10 % andn~1.4. Thus the theoreti- defined by Eqs(A1)—(A9).
cal temperature dependence is weaker than the quadratic de

pendence predicted by the TLS modebk(T?). Such a result ij** 11 12 13 22 23 33
is not trivial, because the expe_rlmental data_, as obtained by, 39s 3a 3b d c e
Zeller and PoHlfor a variety of vitreous materials, show that

- . 12 3a d c 3a b a
the most reliable value afi is lower than 2. The value re- % b a b
sulting from our model satisfies this condition, although it is q 3a b 3h 36 ¢
slightly lower than the value recommended by the above23 . b a 305 ; 30
authors ¢-1.8). But this implies that the experimental slope . 3b p 3¢ al

5

can be fully explained if one superimposes to boundary an
grain boundary scattering the scattering due to localized two
level states. The presence of TLS scattering can be simply

|ntrodu9$d into Eq.(15 by the formula qulz_(qu)Bé_ This can be justified at any temperature for which the con-
+(7qp) s, WhereBS refers to boundary scattering, while, qyctivity in fused silica is much lower than in quartz: in fact
according to Ref. 14, one can write in this case all the scattering mechanisms responsible for the
(rqp)1Ls=C w;pl, (39) rgsistance in the perfect cryst(zithcluding 'scatte.ring by op-
tical phonong are expected to be negligible with respect to
Lo X grain boundary scattering, which is the main source of ther-
for 74, corresponds to multiplying expressid@2) by 1 5 resistance in the vitreous state. By inspection of the
+Lq/C=1+(LkgT/Chs)t. At this point there is no diffi- e given in Ref. 9, one deduces that the above condition
culty to find the set of parameterg, 6,C for which the the- is oniy” approximately verified at high temperatures, where
pretlcal curve presents the best fit to thg experimental pointg,e conductivity in fused silica is only one order of magni-
in the whole temperature range, and simultaneously reprayqe jower than in quartz. For such high temperatures, there-

duces the obse_ri/ed slope between 0.1 and 1 K. The result{§e the inclusion of optical modes would represent a nec-
N=5x10° cm*,§=0.05°, C=5.9x10". We note that in  essary improvement of the model.

this way the average distance between grain boundaries is
N~1~20 A, in full agreement with the expected size of
microcrystals>33 The corresponding curve is dotted in Fig.

6, and becomes undistinguishable from the continuous curve The tensors‘l’ikj' andM,, are defined in terms of the quan-
for T>1 K. We also note that part of the thermal resistanceitjes

is accounted for by grain boundary scattering, so that the

A final comment concerns the absence of optical phonons.

whereC is a constant independent ®f The above formula

APPENDIX

relaxation time attributed to TLS scattering is expected to be a=singsind’ sin(¢p+¢’), (A1)
larger in our model than in previous calculations. This is
confirmed by the numerical value obtained for owing to b=sin 6 cos¢ cosh’ +cosé sinh’ cose’, (A2)
Eq. (38), it corresponds to a phonon mean free path
~940\,,, where Ay, is the phonon wavelength. Such a c=sin@sin¢ cosd’ +coshsing’ sing’, (A3)
value ofl is about 6 times larger than the value deducible
from the data between 0.1 @ K if these are interpreted in d=3singsing’ cogp—¢')+coshcosd’, (Ad)
terms of TLS scattering alone: in fact in this case the empiri-
cal relation is* e=sindsin6’ (3 cose cosd’ +singsing’)

I~ 150 ph- (39) +3 cosé cosé’, (A5)
To show that the above result is quantitatively in agreement
with the theoretical basis of the TLS model, we recall that f=sin#sinf’(cos¢p cose’+3 sing sing’)

this model predicts/\ 1/y?, wherey is the phonon-TLS
coupling constant. It has been pointed out by Karpov and
Parshifi? that a reasonable value fgrshould be of the order o _ ,
of ~0.3 eV, while the value 4,) resulting from an empiri- gn=sin@sinf’(n cos¢ cos¢’ +sing sing’)

cal relation similar to EQ.(39) is considerably highgr +cosfcosd’ (A7)
(~1 eV). If one accepts the present model, the valug of
reduced to (150/948¥y,~0.4 eV, which is close to the
theoretical estimate.

+ 3 cosb cosh’, (AB)

h,=sin#sind’(cos¢ cos¢’' +nsingsing’)

The model could be improved by the inclusion of Ray- +cosé cosh’, (A8)
leigh scattering” phonon assisted fracton hoppitfy:’ reso-
nance scattering of thermal phonons by anharmonic |,=sin@sind’ cog p—¢’)+ncosdcosd’ . (A9)

oscillators'? A plausible result of this program would be the

renormalization of all the constants entering the descriptiorT}; is symmetric with respect to the exchanges— | and
of the above processes: as in the case of the phonon-TUS——1 and is provided by Table Il. The tensbt;, is also
coupling constant, such a renormalization could be helpfusymmetric and its components ak&;;=03, M,=a, M3
for a better understanding of the processes themselves. =b, M,,=h3, M,3=c, M33=13.
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