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IL NUOVO CIMENTO VOL. 12 D, N. 9 Settembre 1990 

The Structure of the Distortion Free-Energy Density in Nematics: 
Second-Order Elasticity and Surface Terms (*). 

G. BARBERO, A. SPARAu and A. STRIGAZZI 
Dipartimento di Fisica del Politecnico - Torino 
C.I .S .M.  and I .N .F .M. ,  Unitd di Torino 
C.so Duca degli Abruzz i  24, 1-10129 Torino, I talia 

(ricevuto il 9 Gennaio 1990) 

Summary. - -  By means of a phenomenological approach, we demonstrate that the 
mixed splay-bend elastic constant K~3 in the free energy density of nematic liquid 
crystals must be considered zero, unless the bulk contributions of the squares of the 
distortion second-order derivatives are taken into account, together with the 
squares of the first-order derivatives times the second-order derivatives, and with 
the fourth powers of the first-order derivatives. Such contributions just reduce to 
one in the presence of--and close to--a threshold. Furthermore, the saddle-splay 
K24-term instead is shown always to play an essential role, as the bulk first-order 
elasticity, in determining the distortion free energy of nematics with weak 
anchoring subjected to spatial deformations. Finally, the new surfacelike elastic 
constants are shown to have a nilpotent character: thus they behave as well as K24 
from the point of view of the variational calculus. 

PACS 61.30 - Liquid crystals. 
PACS 68.10.Cr - Surface energy (surface tension, interface tension, angle of 
contact, etc.). 

1. - Introduct ion.  

By discussing the Oseen-Frank formulation [1] of the free energy density in nematic 
liquid crystals (NLC), involving three ,,bulk,, elastic constants, i .e.  splay (Kll), twist 
(K22) and bend (K33), Nehring and Saupe[2, 3] considered two ,,surface,, elastic 
constants, the so-called mixed splay-bend (KI~) and saddle-splay (K~)[4,5]. The 
surface character of Kls and K24 depends on the fact that both are divergence terms, 
thus affecting the properties of either NLC cells or domains subjected to weak 
anchoring [6]. 

(*) Work presented at the second USSR-Italy Bilateral Meeting on Liquid Crystals held in 
Moscow, September 15-21, 1988. 
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1260 G. BARBERO, A. SPARAVIGNA AND A. STRIGAZZI 

But, as is well known, the K,3-term leads to some paradoxes [7], being a function of 
the director components n~ and of all their spatial first-order derivatives [8] n~.j = 
= ajn~ = ~n~/~xj. This means that, the surface contribution being dependent on both n~ 
and n~.2, the Euler-Lagrange equations, which are second-order equations in the 
ordinary elastic theory, have continuous solutions that do not minimize the total free 
energy [7]. On the contrary, it has been shown that the K24-term in a convenient 
geometry [9] can be expressed only as a function of n~, allowing one to solve the 
variational problem of finding the director profile, which governs the physical 
properties of the NLC. 

In sect. 2 we demonstrate, by means of a phenomenological approach, that the 
elastic constant K13 must be considered zero in NLC, unless the squares of second- 
order derivatives n~.jk are taken into account in the free energy density, together with 
the squares of the first-order derivatives ni,j times the second-order derivatives, and 
with the fourth powers of the first-order derivatives. In the presence of a threshold, 
such new terms are shown in sect. 3 to reduce just to one, close to the threshold itself. 
Furthermore, in sect. 4 no paradoxes are shown to arise from the contemporary 
presence of both K~3 and bulk second-order elastic constants. Moreover, we will prove 
that the saddle-splay, coming out from the same square source of the bulk elasticity, 
always provides the variational problem to be well posed. Also the surfacelike elastic 
constants, arising from the new squares of second-order terms, have a nilpotent 
character, thus behaving as well as K~. 

2. - P h e n o m e n o l o g i c a l  a n a l y s i s .  

The free energy density of NCL was by Nehring and Saupe written as 

(1) f =  1{K~1 (div n) 2 + K~ (n ro 2 , �9 tn)  + K ~ ( n •  2}+ 

+ K,3 div (n div n) - (K= + Kz4) div (n div n + n • rot n), 

where K~l=Kl l -2K13,  K ~ = K ~ + 2 K , s  are the effective splay- and bend-elastic 
constants respectively, rescaled by K13 [2, 10]. The analysis of Nehring and Saupe 
implies that the saddle-splay constant is connected, for symmetry reasons, to Frank- 
splay elastic constant and to the twist elastic constant by 2K~ = KI~- K=. 

We note that the existence itself in the free energy density (i) of linear terms in 
second-order derivatives, like the one relevant to K~3, was already questioned but not 
analysed [11]. Our aim is to show that, if the K~3-term is considered, also other terms 
square in the second-order derivatives of the director, n~,jkn~,mv, must be taken into 
account, toge ther  with the squares of the first derivatives times the second 
derivatives, n~znk,~n,~,pq, and with the fourth powers of the first-order derivatives, 
ni, j  rtk,t nm,p nq,r. 

In fact, the local free energy density can be expressed as a function of the 
deformation sources[2, 12-14]: f=f(n~,j;n~,jk; ...). We assume as deformation sources 
the director first- and second-order derivatives, n~,j and n~,~k. Hence, the virtual 
variation of the free energy density close to an equilibrium configuration writes, by 
considering the dependence of f just up to the virtual variations of the second-order 
derivatives 

(2) ~f = ~,ij $ni, j + ttijk ~ni,jk , 
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FREE-ENERGY IN NEMATICS 1261 

where ~5 = 3f/8n~,5, ~ k  = af/3n~,j~ and repeated indices are summed over. We note 
that the Ansatz assumed in eq. (2) is based on the hypothesis commonly accepted that 
contributions of the j-th order derivatives of the director are one order of magnitude 
smaller than the ( j -  1)-th order derivatives. 

The usual linear theory of elasticity of solids corresponds to considering in eq. (2) 
only the first-order derivatives, by neglecting higher-order terms. On the contrary, 
here just the terms of order higher than the second one are neglected. 

With the aim of calculating the functional form of the free energy densi tyfup to the 
fourth order with respect to n~,j, the tensor fields zij, ~j, are to be expanded in terms of 
the deformation sources, by taking into account only the actual deformation sources 
n~,j and n~,5~. Hence the expansions turn out to be 

~ij = ~o. + Ai~k~ nk,~ + B~ik~ nk,tm + C~kz~pnk,z n~,p + 

(3) -{- Dijklmpq nkJm np,q + Eijklmpqr n k j  nm,p nq,r, 
_ 0 ~ijk - -  ~ijk "~- Mijktm n~,m + N~k~,~p n~,mp + Oijklmpq nt,m np,q , 

where 0 o 2~j, ~jk are tensor fields dependent only on the director components n~ and 
independent of n~,j and n~,j~, as well as (Aij**, B~j, bn, C~j**m~, D~j**,n~q, E~ ,~q , )  and (Mijklm, 
Nijklmp, Oijklmpq). ', 

By substituting eqs. (3) into eq. (2), we may see that just the 2~ is of the first 
A 0 order in the expression of the distortion free-energy density f, whereas ( ii~t, t~j~) give 

second-order terms, (B~j~,~, C~t ,~ ,  M~t,~) third-order terms, and (Dijktmpq, Eijktmpqr, 
O~t,~,q) fourth-order terms, respectively. 

Now the question could arise, why not to consider in the first equation of system (3) 
a term like F~-~t~ n~,t~, which in the above-mentioned hypothesis is in fact of the same 
order of the terms dependent o n  Dijkt.~pq and E~.~t~q~? The criterion to be assumed is the 
following: 2v,~j~ are to be expanded only in terms of the deformation sources, as 
defined. In other words, eq. (2) is corrected if the hypothesis on the orders of 
magnitude of director derivatives is acceptable. Of course this fact is verified in the 
continuum description; but eq. (2) implies also that the virtual variations of the 
director derivatives of higher order than the second one must not appreciably 
influence any distortion, and then they always are to be considered equal to zero. By 
taking into account the general property of the mixed second-order derivatives in the 
set of the continuous functions: 

(4) 32 f/3ni,j 3n~,t~ = 3ef/On~,~,~ Onij , 

the Maxwell thermodynamic relations are obtained, which provide the differential 
form, corresponding to the virtual variation $fi to be exact, thus dnsuring the 
uniqueness of the integral fi 

(4') Sijklm ---- Mklmij, Dijklmpq = Oklmijpq. 

Moreover, simple considerations of symmetry [15] give 

(5) 

Aijkl ~ Aklij , 

C i j ~  = C~impkz = Ckzi~,~p, 

Dijklmpq = DpqktmO" , 

Eijklmpqr = Eklijmpqr ---- Eijmklqr = E~iklq~p = Eqrktmpij ---- Smpklijqr. 
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By substituting expansions (3) into eq. (2) according to Maxwell relations (4') and to 
symmetry properties (5), and afterwards integrating, the distortion free energy 
density reads 

o o 1 1 (6) f =  ~ijni,j + txijk ni,jk + -~Aijklni, jnk,t -t- Bijklmni,jnk,tm + -~Cijklmp ni,jnk,znm,p + 

1 1 1 + ~ D~jkZ~pq ni,j nk,zm np,q + -~ E~j~Impqr ni,j nk,l nm, p nq,r + -~ N~jktmp ni,jk nt,mp. 

In order to calculate the form of all contributions due to each tensor field in eq. (6), let 
us consider the presence of all symmetry sources governing the NLC equilibrium 
configurations. As a matter of fact, common NLC are neither polar nor chiral: thus in 
eq. (6) the elastic coefficients of the tensor fields concerning the bulk terms odd either 
in the director n or in the pseudoscalar n.rot n turn out to be zero, since they must be 
invariant for any transform of the type up-down and right-left. Hence, for usual NLC 
symmetry reasons determine the vanishing of the following tensor fields: 

(7) ~o = 0, Bi~k~ = 0, C~j~p = 0. 

In fact, the most general expression of the tensor fields in eq. (6) is obtained as their 
complete expansions on the basis (n~, ~j, ~jk), where ~ is Kronecker symmetric tensor, 
and ~ijk is Levi-Civita antisymmetric pseudotensor[12-14, 16-18] (this procedure is 
usually referred to as Rivlin rule [19]). 

According to Rivlin rule, the following relations are obtained in covariant form: 

[ Z = 0 ,  

J fA = A1 (div n) 2 + A2 (n. rot n) 2 + A3 (n x rot n) 2 + A4 div (n div n + n x rot n), 
(8) ! [ f~ = ~1 (div n) 2 + ~2 (n. rot n) 2 + ~8 (n x rot n) 2 + 

+ ~4 div (n div n) - ~2 div (n div n + n x rot n), 

where the index in the considered contribution to the distortion free energy density is 
relevant to the involved tensor field. 

Notice that, ff we considered just n~,j as deformation sources, thus eq. (6) should 
write with the previous criterion 

0 ' 1 (6') f =  ~ij ni,j + ~ A~jkz n~,j nk,t 

and K~8=O would be rigorously achieved. This result is consistent with the 
assumptions posed in Oseen-Frank elastic theory. On the other hand, such a term is 
often disregarded [12-14, 20-22], but just for the reason that it has surface character 
(this opinion is referred to as ,,standard argument~0. Instead, our point is that K~8 is 
rigorously zero, but only in the frame of the usual first-order elastic theory. On the 
contrary, also in the usual first-order elasticity the other surfacelike term, relating to 
the saddle-splay elastic constant K~, must be taken into account, since it arises not 
only from ~o,  but from A~y~ too. 

Just, if any spatial deformation is absent, thus the saddle-splay distortion becomes 
identically zero, as is well known [4]. 

By considering the bulk terms in (8), we can see that the splay-, twist-, and bend- 
contributions first arise from both tensor field tzo, and A ~ .  Note that by this 
phenomenological approach splay and bend are obtained not degenerate, as otherwise 
recognized by Longa et al. [23]. 

For what is concerning the terms coming from (N~tmp, D~j~q and E~j~,,~qr), we 
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FREE-ENERGY IN NEMATICS 1263 

T A B L E  I .  - Contr ibut ions  to the distort ion f r ee  energy dens i ty  o f  a nemat i c  l iquid crystal ,  due to 

the tensor f i e ld  N i j ~ .  

1) ni,jj nk,ki 

2) n~,~ nk,kj 

3) ni,jk ni,~ 

4) ni,jk nj, ~ 

5) ni,jj ni,~k 

6) ni nj n~,,~t nt,o. 

7) n i n~ n~,~t n~,i~ 

8) n~ nj n~,~i nuj  

9 )  ni nj n~,~ n~,j~ 

10) n i nj n~,~t na,jl 

11) n~ n3 n~ n~ nm,ij nm,~ 

T A B L E  I I .  - Contr ibut ion to the distort ion f ree  energy dens i ty  o f  a nemat i c  l iquid crystal ,  due to 

the tensor f i e ld  nijklmpq. The terms  marked  by * are c o m m o n  to Nijktmp. 

1) n~ nj,~ nk,k nj,u 
2) ni nj,i na,k nl,zj 

3) ni nj,i nk,l nk,jl 

4) ni nj,i nk,l nj, kl 

5) ni nj,i nk,l nl,jk 

6) n~ nj,i nk,j nz,l~ 

7) ni nj,i nk,j nk,zl 

8) ni nj,k nk,j nl,~i 

9) ni nj,k nz,l nj,ki 

10) ni n~,j nk,z nz,~k 

11) ni nj,k nk,l ni,i~ 

12) ni nj,k nk,l n~,~j 

13) n i nj,j n~,k nt,zi 

14) ni nj,k n~,k nl,ij 

15) ni ELi nj,k nk,u * 

16) ni n2,k ni,k nui  * 

17) n~ nj,k nj,l nk,il * 

18) ni nj,k ny,i nl,za * 

19) ni n~ nk nz,i nm,i nm,jk 
20) n i nj nk nt,i nm,k nm,jl 

21) ni n ink  n~,i nm,~ nm,jk 

22) n~ nj n k nt,i nl,k nm,mj * 

23) n~ nj nk nt,~ nl,m nm,jk * 
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1264 G. BARBERO, A. SPARAVIGNA AND A. STRIGAZZI 

TABLE I II. - Contribution to the distortion free  energy densi ty  of  a nemat ic  liquid crystal ,  due 
to the tensor f ie ld  E~j~t~pqr. The terms m ark e d  by * are c o m m o n  to D~tm~q, whereas the terms 
marked  by ** are com mon  to both N~jkt~ and D~j~t,~q. 

1) ni,~ n~,j nk,k n~,t 

2) ni, j nj,~ nk,z n~,k 
3) n~,2 nj,i nk,k n~,~ 

4) ni,j nj,k nk,t nl,i 

5) ni,i nj,k n l , j  nk,l 

6) ni,i nj,j nk,~ nk,l * 
7) ni,i nj,k nk,~ nj,~ * 

8) ni , j  nj,k nk,l ni,l * 

9) ni , j  nk,i n t , j  n k j  * 

10) ni,~ nj,i n~,~ n~,~ * 
11) ni,~ n~,j n~,~ n~,~ ** 

12) n~,j ni, j nk,l nk, l ** 

13) n~ nj n~# n~,~ n~,j n~,m * 

14) n~ n~ n~,~ n~,m n~,~ n~,j * 

15) n~ n j  nk,l nm,i nk, j  nl,m * 

16) n i  n j  nk , j  nk,i n~,l nm,m * 

17) n~ n j  nk, i nk, j hi, m nl, m * 

18) n i  n j  nk, j n k ,  i nl, m rim, l * 

19) n i  n j  nk, lnk,  m rim, i nt, j ** 

20) ni nj n~,~ nk,~ n~,~ n,n,j ** 

21) ni n~ n~ n~ n~,i nm, j np,k npj ** 

observe that most of them give zero contribution to the distortion free energy density, 
due to the above-mentioned parity of n and n. rot n. In addition, some terms are found 
to be derived from both N~kzmp and Dijkt,~pq, or from both D~k~mpq and E i j k ~ , ~ ,  or from 
the three sources at the same time. 

In table I the eleven contributions to f due to the tensor field Nijk~p are  reported, 
whereas table II shows the seventeen contributions due only to D~jk~mpq and the six 
terms (marked by *) common to Nijkzmp. Besides, in table III the five contributions due 
only to E~j~pq~ are listed, together with the eleven terms (marked by *) common to 
D~jk~pq, and the five terms (marked by **) common to both N~jkt~p and D~k~pq. 
Eventually, the number of independent elastic constants, arising from the new high- 
order tensor fields, is forty[2], due to the above-mentioned symmetry sources, 
provided the further explicit contributions of n-derivatives of order higher than the 
second one are neglected, according to our criterion. 

In appendix I the mechanism of the appearing of common terms in N i j k ~ , ,  Dijklmpq 
and Eijk~pqr is analysed. 

3. - B u l k  s e c o n d - o r d e r  e l a s t i c i t y  c l o s e  t o  a t h r e s h o l d .  

Let us stress the fact that in the ordinary first-order elastic theory only three bulk 
elastic constants completely describe the behaviour of common NLC, whereas 
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according to the second-order elastic theory other forty elastic constants are to be 
considered [24]. This means that in such a frame the quantitative approach to 
whatever elasticity problem becomes not realistic, except for the cases involving 
threshold phenomena. 

In order to be convinced, let us consider for the sake of simplicity a planar 
deformation in NLC, for instance the one achieved in a cell with opposite boundary 
conditions (homeotropic at the one of the walls and homogeneous planar at the other 
one), the so-called hybrid aligned nematic (HAN) cell [25, 26]. A frame of reference 
Ix, zl is introduced, with the origin at the wall with homeotropic anchoring, x-axis 
parallel to such a wall, and z-axis normal to it. The local director n is given by 

(9) n = i sin 0 + k cos 0, 

where O(z) is the tilt angle, that the director forms with respect to the z-axis. The new 
contributions to the free energy density are of the fourth order with respect to ni, j, 
thus affecting also the bulk. In order to describe the arising of the possible threshold 
for mechanical instability in a HAN cell, due to the diminishing of the thickness d, it is 
convenient to express f as a function of 0: close to the threshold indeed the leading 
parameter is the amplitude 0 ~  of the distortion. 

Now, terms 2), 5) in table I and 13), 22) in table III read in covariant form, 
respectively, 

t ni, ij nk,kj = (grad div n) 2, 
ni, j j  ni, kk = (V 2 n )  g , 

(10) n~ sn~,~nk ink i = (n. V2n) e, 

njnkn~npn~,jn~,kn~,mnl, p = (n x rotn)  4. 

By taking into account eq. (9), the previous terms give simply 

(grad div n) 2 = cos 20 }4 + sin 20 ~2 ~'+ sin 20 ~'2, 

(11) (n- V2n) 2 = ~4, 

(n • rot n) 4 = cos 40 ~4, 

where 0 = d/dz. All the other contributions are of the fourth order with respect to the 
deformation source 0. 

Close to the threshold 0m~--* 0, therefore, the contributions of smallest order with 
respect to 0 ~  are derived from the term ~e in the second equation of system (11). Note 
that ~ is of the second order with respect to 0m=, whereas the other contributions 
vanish more rapidly, when 0m~ goes to zero. In conclusion, the additional bulk term in 
the free energy density can be simply written as 

(8') fND~ = K* (V 2 n) ~ - K* ~2, 

according to the present generalized elastic theory, K* being the new bulk second- 
order elastic constant, the only one of the forty which survives close to the distortion 
threshold [26, 27]. 

Thus eq. (1), according to the usual first-order elastic theory, must be~simply 
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written 

1 , (1') f = ~ {K~I (div n) 2 + K~ (n. rot n) 2 + K~3 (n • rot n) 2} - 

- (K22 + K24) div (n div n + n • rot n), 

whereas, according to the second-order elastic theory applied to the investigation of 
threshold phenomena, it must be read 

1 , (1") f=  -~ {Kll (div n) 2 + K2~ (n. rot n) ~ + K~3 (n x rot n) 2} ar 

+ KI~ div (n div n) - (K~ + K24) div (n div n + n • rot n) + K* (V ~ n) e . 

4.  - S u r f a c e l i k e  d i s t o r t i o n  f r e e  e n e r g y .  

In the frame of the present second-order elastic theory, no paradox arises from the 
point of view of the variational calculus for the presence of K~3, derived by the tensor 
field o t~k, since the bulk free energy density includes squares of second-order 
derivatives of the director n [28], while the mixed splay-bend free energy is depending 
o n  n i ,  n~,j. 

Furthermore, the saddle-splay coming from squares of first-order derivatives, the 
variational problem always is well posed. In the following subsect. 4"1 and 4"2 the 
previous sentences will be demonstrated, whereas in subsections 4"3 the new 
surfacelike elasticity of high order is shown to have the same behaviour as the saddle 
splay. 

4" 1. Mixed splay-bend. - Let us consider the distortion free energy F of a NLC-cell 
of volume V, limited by a surface S, where for the sake of simplicity no surface terms 
coming from squares of director derivatives are present (this is the case of a sample 
subjected only to planar deformations). 

From eq. (1") we can write, applying Gauss theorem to the surfacelike contribution, 

(12) F =  ~fb(n~,n~.j, ni.jk)dV+ ~[ fa(n i )+N.g13(n ,  ni.j)]dS, 
v s 

where fb is the bulk distortion free energy density, N is the unit vector normal to the 
surface, andf~ (hi) takes into account the explicit anchoring [29]. The surface vector g, 
is just coincident with g13 = Klandiv n, therefore it is solenoidal. 

Equation (12) provides the virtual first variation of F close to an equilibrium 
configuration to be obtained as 

(13) ~F = ~ (3fb/3n~ -- Oj 3fb/3ni5 + ~k 3fb/3nijk) ~n~ dV + 
v 

+ ~ {[Nj(~fb/~n~,j -- ak ~fb/On~,jk) + 3f~/3n~ + ~ (N.  g~3)/an~] Sn~ + 
P 

s 
+ INk ~fb/~n~,~k + ~(N. g13)/On,,j] ~ni,j} dS.  

The Euler-Lagrange (EL) equations are, in the generalized elastic theory, three 
fourth-order equations: 

(14) ~fb/3n~ - aj ~fb/~n~,~ + a2k ~fb/~n~.jk = An~ , 

Rettangolo



FREE-ENERGY IN NEMATICS 1267 

where A is a Lagrangian multiplier, with three boundary conditions given by 

(15) Nj (afblan~,~ - ~k afblan~,~k) + afal~n~ + ~(N. gl~)lani = 0 

and nine boundary conditions provided by 

(16) N~ afb/an~,jk + a(N. g13)/an~,j = O. 

Thus, the difficulty in managing Kls pointed out in ref. [7] and widely discussed in 
ref. [29] in contrast with the opinion of Hinov [30], difficulty afterwards considered by 
Madhusudana [31], is definitively overcome. 

Note that in the frame of the second-order elastic theory the explicit anchoring 
could also be expressed in the form fa(n~,n~,j), as assumed by Maria[32]: this 
hypothesis would give just one more term into the boundary conditions (16). 

4"2. Saddle-splay. - By  assuming that gls = 0 (as in the case where in the NLC 
sample there is no splay at all), in the presence of a spatial distortion the surfacelike 
free energy density vector g8 reduces to the saddle-splay term g24 = 
= -  (K~ +K24)(ndivn + n • rot n), which is different from zero. For the sake of 
simplicity let us suppose the surfacelike high-order contribution fsNDE to be zero. 

We will demonstrate that also in the case of validity of eq. (6'), which explicitly 
reads as eq. (1'), i.e. also in the frame of the first-order elasticity, the saddle-splay 
never provides paradoxes. In fact, the distortion free energy F becomes now 

(17) F =  f fb(ni, n~,j)dV + ~ [f~(ni) + N'g(n~,ni . i)]dS,  
V S 

and the virtual first variation of F is given by 

(18) ~F = f {(afb/an~-ajafb/an~,j)} ~n~dV + 
V 

+ ~ {[Njafb/an~,j + af~/an~ + a(N. g)/anl] ~n~ + [3(N. g ) / a n j  ~n~,j} dS.  

Hence the EL equations read 

(19) af  b/an~ - K s ~f  ~/an~,~ = Ani , 

being generally three second-order equations, with just  three boundary conditions: 

(20) N i a(f~ + ga.~)/an~,j + 3fa/3n~ = O. 

In fact, if eqs. (19) and (20) are satisfied, the virtual first variation ~F reduces to 

(21) ~F = r {[-  Nj ag~,~/an~,j + a(gjNj)/anJ $n~ + [3(g~N~)/an~,~] ~n~,j} dS , 
S 

but it is easy to demonstrate that  the r.h.s, of eq. (21) always is identically zero. Let  us 
consider the vector 

(22) U,~ = [ -  ag~,~/an~,,~ + agm/an~] *ni + [ag,Jani,~] $ni,~. 

By means of Gauss theorem, eq. (21) writes 

(23) ~F = f Um,~dV, 
V 
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but U~ is a solenoidal field, since starting from 

(24) g~ = - (K22 + K24) (n~ nk,k - nk n~,k) 

we deduce 

t 3gi,i/3n;~,~ = - 2(K22 + K24) (ni,i $km --  nm,k) , 

(25) 3gm/3ni = - (K22 + Ku) (n~ k ~i,~ - n m  ~), 

3gm/3n~,~ = - (K~  + K24) ( n . ~ j  - n2$~,~) . 

Thus ~F, as obtained from (23), is identically zero, and the variational problem 
always is welt posed. Note that this fact is related to the nilpotent character of the 
saddle-splay, already described by Ericksen [33]. 

Of course, the obtained result holds also in the general case of second-order 
elasticity, where fb (n~, n~,j, n~,~k). 

4"3. N e w  sur face l ike  elast ic  terms .  - In the general form (8) of the distortion free 
energy density, some terms arising from the tensor fields Ni~ktmp, D~jktmpq and E~3.k~p~ 
can be split in covariant parts, which provide both bulklike and surfacelike con- 
tributions. 

Let us consider, for instance, the term 3) in table I: it can be written as 

1 [(V2 n) 2 + n .  V 2 V 2 n] + V 2 (ni j ni j), (26) ni,~k ni, yk =-~ . , 

where 

(27) ni,j ni,j = (div n) 2 + (n- rot n) 2 + (n • rot n) 2 - div (n div n + n • rot n). 

The demonstrations of eqs. (26) and (27) are reported in appendix B. Obviously the 
square brackets in eq. (26) contain only a bulk contribution, whereas V2(n~,jn~,j) is a 
surfacelike term. The bulk term is dependent on the n-derivatives up to the fourth 
order; the integrated surfacelike free energy has n-derivatives up to the second order. 
As a consequence, the variational problem turns out to be well posed [28]. 

Also other new surfacelike terms are implicitly contained in the free energy density 
fNu~, like for instance V2(div n) 2, div(V2n)divn, V2(n • rot n) 2, and so on; they are 
coming from squares of derivatives, even though of second order: hence they can be 
shown with straightforward but tedious calculation to have the above-mentioned 
nilpotent property. Thus, the surfacelike terms fsNDE provide no paradoxes in solving 
the variational problem of calculating the director profile in the frame of the continuum 
theory. 

Furthermore, such terms can be expressed as functions of square and cubic 
derivatives of the distortion angles. Hence, in the study of threshold phenomena they 
can be disregarded [27] with respect to the saddle-splay. 

5. - C o n c l u s i o n .  

As is known, the free energy terms relevant to KI~, K24 often were disregarded by 
most authors for the only reason that their contribution to the total free energy may be 
considered as a surface contribution (this opinion is referred as ,,standard 
argument,,--see, for instance, ref. [20]). But, to drop out the divergence terms is 
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corr'dc~bnly if the director orientation at the surface is either homeotropic or 
homogeneous planar and it is fixed (strong anchoring), since only in such a case the 
equilibrium configuration really is independent of any surface term. 

On the other hand, if the n-orientation on the bounding walls of the sample is fixed 
but neither homeotropic nor homogeneous planar, or if the anchoring is weak, due to 
the surface treatment, thus the Kis-term must be considered in the frame of the 
generalized elastic theory, and the new bulk elastic constants must be taken into 
account. 

The effect of K13 turns out to be a destabilization of the undistorted configuration in 
the NLC sample [26, 27], K18 favouring a high distortion close to the boundary [29, 34]. 

Here we consider the scalar order parameter S as a constant throughout the whole 
NLC sample. But, as is well known [35-37], S can vary close to the boundary, thus 
determining a related change of all elastic ,<constants>>. In order to take into account 
such an effect, instead of eq. (2) it would be necessary to express ~f in terms of the 
virtual variation of the first- and second-order derivatives Q~.k, Q~j.k~ of the tensor 
order parameter Q~ = S(n~ nj - ~-/3). 

From preliminary calculation, such a behaviour of S will provide also a high 
distortion close to the walls of the NLC-cell: this property will be analysed in detail 
elsewhere. 

Furthermore, we stress the fact that, in the presence of spatial distortions in 
weakly anchored structures, the K~-term plays an important role, as well as, for 
instance, for what concerns both the behaviour of disclination lines in the bulk, and the 
features of operating twisted NLC displays. In fact, in a spatial distorted NLC cell, 
the K~-term affects the effective anchoring energy, whereas in the case of disclination 
lines the saddle-splay acts as the only contribution to the surface energy, and can 
stabilize or not the defects themselves. Anyway, the presence of the K24-term never 
does hinder the solubility of the variational problem of finding the director profile in 
the set of the continuous functions. 

The saddle-splay K u  influences also the cholesteric liquid crystals, which presents 
high bending deformations: the contribution of K24 to the stability of the blue phases 
has been recently analysed by many authors [20-22, 38], concluding that a positive 
value of K24 does stabilize the blue phases. 

The same analysis relevant to the effect of K18 in the blue phases has been reported 
only by Kldman [38], whereas in ref. [20-22] the K13-term simply has been neglected. 

Our statement is that the latter procedure is correct only in the frame of the 
ordinary elastic theory, since K13 only in this case is zero in liquid crystals. 

In conclusion, the principal results of our work are 

i) in the frame of the generalized elastic theory, just one additional bulk elastic 
constant K* must be introduced into the free energy density close to a threshold; 

ii) the ,,standard argument>, for disregarding any surfacelike elastic contribution 
is tautological, thus has no sense; 

iii) in the free energy density of NLC, linear second-order spatial derivatives, 
concerning the elastic constant K13, are to be considered only in the frame of the 
generalized elastic theory; 

iv) the K~-term, coming also from squares of first-order derivatives, plays an 
�9 important role in spatially distorted liquid crystals with weak anchoring; 
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v) the high-order surfacelike elastic constants have a nilpotent character, as well 
as Ket: but their contribution may be disregarded, close to a threshold, with respect to 
the latter one. 
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A P P E N D I X  A 

Some terms are found to be common to the different tensor fields N~jk~v, D~jkt~ and 
E~jk~q~. Let us consider, for instance, the term n~ ni n~ n~ n,~ n v ni, jk nl,~p belonging to 
the tensor field N~j~mp. Since one can write 

(A.1) n i n j n k n ~ j k  = (n in i , j ) , k  --  ni, k n ~ , j n j n k  = --  n i n i , j n k n i , k  = - (n  • r o t  n) 2 , 

thus the previous term becomes 

(A.2) n~njnkntnpn~,~kn~,mv = (n • rot n) 4 . 

But, by simple inspection, it is easy to deduce that also the term 
n~n~n,~npnqn~,~nk,~n,~,pq and the term (22) in table III, i.e. the scalar 
njn~npnrni,~n~,~n~,pn~,, arising from the tensor field Dijk~m~ and E~kt,,pq, respectively, 
give the same result obtained in eq. (A.2). 

By means of analogous straigthforward calculations, all the terms marked with * 
(and with **) in table II and in table III can be derived also from the one of the other 
tensor fields (or from both ones). 

A P P E N D I X  B 

In order to demonstrate eqs. (26) and (27), let us to start differentiating twice the 
scalar n~,jn~,j with respect to k: 

(ni,  j ni , j) ,k = 2ni,~ ni,jk (B.1) 

and 

(B.2) (n~.j n~,j),kk -- 2 (ni,jk ni,jk 4-ni.jni.jkk). 

On the other hand, by differentiating twice n~n~,kk with respect to j ,  one obtains 

(n i  n~,kk),j = n i , j  ni,k~ + •i ni,  kkj (B.3) 

and, afterwards, 

(B.4) (ni ni,kk),jj = ni, jj n~.kk + 2niz ni,kkj + ni n~,kkZ. 

But, since n is a unit vector, one obtains 
i 

(B.5) ni ni,j = 0 
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and consequently, from 

(B.6) (n~ ni, j),j = n~,j n~,5 + n~ n~,jj = 0, 

we deduce 

(B.7) n i n i ,  j j  -~- - n i , j  n i ,  j . 

By comparing (B.2) with (B.4) and taking into account (B.7), we obtain finally 

1 
(B.8) ni,jk ni,jk = -~ ( ni,z ni, kk + ni ni,jjkk } + (ni,j ni:j),k~ , 

which is eq. (26). 
For  what is concerning eq. (27), first we observe that  

(B.9) (n- rot n) 2 = ni ~i~k nk,j n~ ~imp n p,m 

and, by referring to the identi ty 

(B.10) ~i~k~mp=~il~jm~kp + ~.13k~ip + ~k~ i~ jp - -~ i~k~ jp - -~k t~ j~ ip - -~ j~ i~kp ,  

eq. (B.9) becomes 

(B. 11) nk,j nk,~ = nk,ini, k + (n .  rot n) 2 + (n • rot n) 2 . 

On the other hand, from the symmet ry  property  of differentiation 

(B. 12) nj nk,~ = n~ n~,j~ , 

one can derive 

(B.13) n~,~nk,j = nj, jn~,~ + (njn~,j),~ - (njn~,~),~ = (div n) ~ - div(n d ivn  + n • rot  n).  

By substi tuting (B.13) into (B.11), eq. (27) is easily obtained. 
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