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Abstract

The use of scheduling mechanisms like Class Based Queueing
(CBQ) is expected to play a key role in next generation multiser-
vice IP networks. In this paper we attempt an experimental evalu-
ation of ALTQ/CBQ demonstrating its sensitivity to a wide range
of parametersand link layer driver designissues. We pay attention
to several CBQ internal parameters that affect performance drasti-
cally and particularly to “borrowing”, a key feature for flexible and
efficient link sharing. We are also investigating cases where the
link sharing rules are violated, explaining and correcting these ef-
fectswhenever possible. Finally weevaluateCBQ performanceand
make suggestionsfor effective deployment in real networks.

1 Introduction

Internet resource management requires mechanismsthat control the
allocation of resourceson aper hop aswell ason an end-to-end (per
flow) basis. In this paper we focus on Class Based Queuing (CBQ),
a"“per hop” mechanism, investigating theimplications of its deploy-
ment in real networks and its effects on the performance of end-to-
end transport.

CBQ is a strong candidate as a building block for introduc-
ing new Internet service models (from standardised Integrated Ser-
vices [1] to newly proposed Differentiated Services[2, 3]) because
it can provide:

o per “entity” traffic isolation, with flexibility in defining “the
entity” and therefore the degree of aggregation (per flow, per
user, etc.)

¢ degrees of freedom for introducing a wide range of policies
(based on services, protocol and network addressinformation)

¢ bottleneck link sharing

However there is a substantial level of complexity involved in
the deployment of resource management mechanisms. Their de-
ploymentisstill at an early stage, their effects on end-to-end perfor-
mance are not always straightforward and usually investigated only
by simulations. Thiswork is an experimental approach that focuses
on the analysis of a CBQ implementation on areal network.

The paper is organised as follows: Section 2 presents an
overview of the CBQ mechanism and the ALTQ implementation.
Section 3 discussesthe experimentsand the methodology. Section4
analysesthe effects of the network driver architecture on the CBQ
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Italy (risso@polito.it). Atthetimeof thiswork hewasvisiting University CollegeLon-
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performance. Section 5 showshow well CBQ satisfiesthelink shar-
ing goals in presence of various traffic mixes and CBQ configura-
tions. Section 6 attempts to characterise the CBQ performance in
terms of link utilisation, forwarding ability, link sharing precision.
Section 7 analysessome practical networking issues (fragmentation
and interaction between CBQ and RSV P) related to the deployment
of CBQ for providing integrated services. Section 8 summarisesthe
results and presents directions for future work.

2 An Overview of CBQ

Class Based Queueing [4] is a scheduling mechanism that provides
link sharing between agenciesthat are using the same physical link.
This is an improvement over the use of dedicated pipes for each
agency becauselink sharing guaranteesthat any excess bandwidth
resulting from an agency that is not fully utilising its share is re-
distributed to the other agencies (according to their relative alloca-
tions), improving link utilisation. With the CBQ's hierarchical link
sharing capabilities, each agency can assign its own bandwidth to
different kinds of traffic allocating the right share to each one. In
this case the advantagesof the hierarchical link sharing become ev-
ident: the unused bandwidth of an agency’sclassis distributed first
to its leaf classesinstead of being shared with other agencies.

CBQ operation is based on the interaction between a general
scheduler and a link sharing scheduler. The general scheduler
guaranteesthe appropriate serviceto each leaf class, distributing the
bandwidth according to their allocations. The link sharing sched-
uler distributes the excess bandwidth according to the link sharing
structure.

The general scheduler can be anything ranging from simple
Packet Round Robin (PRR) to the more sophisticated Weighted
Round Robin (WRR). The link sharing scheduler is more complex,
becauseit hasto takeinto account the throughput of eachclass. The
link sharing scheduler estimates the class' use of the output link
bandwidth and marks a class as underlimit (if it is transmitting at
a lower rate than its alocation), at limit (if its rate is equal to its
allocation), or overlimit otherwise. The mechanism for deciding
which leaf classis allowed to send is complex and involves check-
ing the status of every class(leaf or not) inthehierarchy. Theresult-
ing overhead can be prohibitively high, therefore approximationsof
thelink sharing scheduler have been proposed. These proposalsdo
not guaranteeto respect exactly thelink sharing guidelines, but they
provide definitely lower complexity in managing the CBQ parame-
ters.



21 ALTQ/CBQ Implementation

Alternate Queueing ALTQ [5, 6] framework provides a range of
queueing schemesfor realizing resource sharing and quality of ser-
vice in the BSD networking code. It is available for FreeBSD [7]
and includes Weighted Fair Queueing [8] and CBQ schedulers,
buffer management algorithmslike RED [9] and RIO [10] for Diff-
Serv [2] networks.

The ALTQ/CBQ implementation provides by default fixed al-
location to each class so that when a classis not fully utilising its
bandwidth the excess bandwidth cannot be redistributed to other
classes and is simply wasted. To allow the redistribution among
the link sharing hierarchy, the administrator explicitly specifiesthe
bor r ow option for each class, indicating whether the classis al-
lowed to “borrow” bandwidth from its parent.

The ALTQ/CBQ implementation uses WRR or PRR for gen-
eral scheduler and a modified Top-level Link Sharing (instead of
the Formal Link Sharing Guidelines) algorithm for the link shar-
ing scheduler. The WRR scheduler computesits allocation so that a
number of bytes equal to the number of classestimes the maximum
packet length (determined by the link layer MTU) can be transmit-
ted in each round. Thisvalueis calculated assuming that all classes
have the same share, therefore classes with higher allocations can
send more than one packet each round. A class stops sending pack-
etswhen it finishesits slot or when it becomes overlimit.

The Top-level Link Sharing scheduler allows one class to bor-
row only upto level N, where N is set by aheuristic; the higher V
is, the greater the chance of the leaf classto borrow. When the par-
ent’'sleaf classis also overlimit, alarge value of N allowsthe class
to borrow from higher level ancestorsup to alevel N. However the
parameter N isuniquein the CBQ scheduler that meansthat it can-
not be customly defined for different branches but this keeps com-
plexity low.

ALTQ modifiesthe original heuristic with these new rules:

1. if apacket arrivesfor anot-overlimit class, set N to the depth
of the class

2. if N is: and a packet arrives for an overlimit class with an
underlimit ancestor at alower level than ¢ (say j), then set N
toy

3. atschedulingapacket, if there are no underlimit classesdueto
the current N level, increase N by 1 and then try to schedule
again

4. if no packet can be sent, set N to the maximum level allowed

in the system (32), so that next round the chancesto send a
packet are maximised.

In general a class can borrow only if its parent is underlimit
or if it has an underlimit ancestor and this can lead to a non-
work-conserving behaviour under certain conditions. Non-work-
conserving servicecan beavoidedwith theef f i ci ent option, so
that thefirst overlimit classencounteredwill be ableto send apacket
evenif all its ancestorsin the link sharing structure are overlimit.

3 Environment and Methodology

The experiments were carried out with FreeBSD [7] based PC
routers' with the ALTQ kernel? and a kernel clock of 500 Hz. The
machines ranged from an Intel Pentium 166MHz to AMD K6-350

'Running FreeBSD 2.2.8-RELEASE.
2ALTQ-1.1.3.

Figure 1: Network topology used in the experiments.

and were equipped with Adaptec ATM cards®. We used ATM PV Cs
(AALS5, LLC/SNAP encapsulation) with rate configured by soft-
ware. The topology of our experiments is shown in Figure 1 and
involved test with machinesin the UCL local testbed, at the Essex
University and at the NASA Goddard Space Flight Center (NASA-
GSFC). We havetested all combinations of link MTU, bandwidth
and delay for the network configurations shown in Tables 1, 2
and 3. The round trip delays on all PV Cs were tested with pi ng
(1.5 KBytes packet size).

We used tt cp [11] and net perf [12] for generating TCP
and UDP traffic. TCP had the default maximum window size of
16 Kbytes. Thetracesof the flowswere collected at the router input
and output interfacesusingt cpdunp [13] andthe CBQ accounting
information given by thecbqgst at utility [6].

The experiments were repeated several times in order to en-
sure the statistical validity of the results and average values are
presented where appropriate. The experiments were performed in
a completely controlled environment with no other traffic present
on the links and the results were almost identical, therefore the
figures show typical traces. Data were analysed off line after the
end of each experiment to obtain “bytestransferred-over-time” and
“throughput-over-time” graphs.

Link sharing hierarchy:
hierarchy (a)

Link sharing hierarchy:
hierarchy (b)

Figure 2: Link sharing hierarchies used in the experiments.

4 CBQ and network driver issues

This section presents some ALTQ implementation details
and their effect on CBQ operations. Figure 3 shows how
ALTQ/CBQ fits into the networking part of the BSD code.

3Adaptec ANA-59x0. Therouter had two ATM cardsbecauseof aknownlimitation
of this version of ALTQ that requiresa single PVC on the card where ALTQ/CBQ is
running.



Table 1: Link MTU (Kbytes)

| | PVC1 ][ PVC2 | PVC3 |
test-a || 9.18 9.18 9.18
test-b 15 15 9.18
test-c 15 15 15

Table 2: Link Bandwidth (Mbit/sec)

[PVCL [ PVC2 [ PVC3 |
3 3 2
5 | 45 | 10

Table 3: Round Trip Delays (msec)

[ PVC1 [ PVC2 [ PVC3 | Location |
9 9 9 UCL local testbed
9 9 25 UCL - ESSEX
9 9 94 UCL - NASA

The packet processing is done by the classic BSD network-
ing routines (i f.i nput (), ip-nput(), ipforward(),
i p_output (), if_output()) [14] up to the point where the
packet has to be treated by the interface specific output routine
(at mout put () for our experiments).

When CBQ isappliedto an output interface, the packet does not
follow the standard processing path (from thei f _out put () di-
rectly to the interface card), but it is examined by the classifier and
is enqueued in the appropriate CBQ queue (cbg-enqueue()).
From this point the processing is driver-specific: for example Fig-
ure 4 showsthe sequence of the function callsfor ATM output pro-
cessing.

The following operations are specific to the ATM driver used
in our experiments. The function that actually sends a frame
out (en_start ()) calscbg-dequeue() which selectsthefirst
non-empty queue that must receive service (according to the cur-
rent scheduling discipline) and degqueuesthe packet at its head. The
ATM driver first “places’ the packet in one of its software buffers®
, then the packet is transferred (in DMA mode, if possible) to the
ATM card memory (en_t xdma() ) and then transmitted on the
physical link (as shown in Figure 3) on a FIFO basis according to
the contents of the hardware buffer. The ALTQ ATM driver setsthe
software buffer to 20 KBytes and the hardware one to 32 KBytes.

4.1 TheATM driver output function

The ATM driver usedin these experimentsis a clone of the original
BSD ATM driver [15] appropriately modified to support ALTQ.

In the original ALTQ ATM driver codetheen_st art () rou-
tine (that is used for dequeuing packetsfrom the CBQ buffers) loops
aslong asthereare packetswaiting in the CBQ queuesand thereis
enough spacein the ATM softwarebuffer. Thisroutineisalso called
when an ATM receiver interrupt has been serviced (i.e. when anew
packet arrivesat therouter). Thisbehaviour hasundesirablesideef-
fects on CBQ operation. In fact, theen_st art () routine runsat
higher priority level (spl i np) than other kernel code preventing

“We use the term software buffer, although this is not a “proper” buffer: when a
packet needsto be transferred (DMAd) to the ATM card, there must be no more than
N nbuf bytesalready waiting to betransferred. Thisvalue NV is called “buffer size”.
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Figure 3: Packet processingin ALTQ.

ifnet struct function pointers

<o (*ifp->if_output)()
interrupt priority level
altq_ extractflow() splimp()
””””” <------oo(ifp->if_altgenque))

cbqg_enqueue()

altq_extractflow()

rmc_queue_packet()
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rmc_update_class_util()

i

en_txlaunch()

bpf_mtap() spix()

e ___

Figure 4: Functions callsfor packet output.



Kernel without the ATM driver modification
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Figure 5: CBQ Link output pattern with the unmodified ATM
driver.

the kernel from being able to refill the CBQ queueswith new pack-
etswhen the ATM driver is executed.

We modified the ATM driver by removing both the loop in the
en_st art () andthecall to thisfunction upon new packet arrival.

The comparison between Figure 5 (the original driver) and Fig-
ure 6 (the modified one) showsthat the modification improves CBQ
behaviour significantly. The output pattern in the first graph is
burstier and more important the link-sharing guidelines are not re-
spected. In fact, Figure 5 shows that TCP packet (C) enters the
router when the TCP queue is empty (previous packet, (A), hasal-
ready been forwarded, point (B)). Instead of serving packet (C), the
original driver showsaburst of 16 UDP packets(sent from the UDP
queue) followed by along period where only TCP packetsare being
served, until point (E) where a UDP packet is sent again.

With the modified version of the ATM driver the service pat-
terns on the output link are clearly improved asis evident from Fig-
ure 6, achieving correct link sharing at finer granularity (smaller
time scale) and better approximation of fluid flow behaviour. There
are no more long bursts of UDP packets: between the TCP arrival
(point (C)) and its retransmission (point (L)) there are only 6 UDP
packetsto be served (points (D) to (1)).

Unless otherwise specified, all the experimentspresentedin this
paper were done with this slightly modified version of the BSD
ATM driver.

4.2 Theeffect of the ATM output buffer

Thetwo ATM output buffers affect the operation of the CBQ mech-
anism and have the main responsibility for undesired delaysin the
forwarding processsincethe delaysincurred in other kernel routines
(i.e.iponput(),ip-output())aenegligible.

Figures6 and 7 show the link output pattern whenthe ATM soft-
ware buffer (the number of mbuf byteswaiting to be transmitted on
the PVC) hasits default value (20 Kbytes), and when it is reduced
to 2 KBytes. The CBQ class configuration is the one in Figure 2a,
with one TCP flow in the “Big Class’ and one UDP in the “Small
Class’” and all the PVCs configured with an MTU of 1500 bytes.
The packet traces were obtained using t cpdunp [13], and there-
fore do not account for the time spent in the ATM hardware buffer
becausebpf [16] marks a packet astransmitted when it leavesthe
ATM software buffer (Figures 3,4).

In Figures 6 and 7 the TCP class queue (at the time correspond-
ing to point (C)) is indeed empty, because the last TCP packet re-
ceived at theinput interface (point (A)) hasalready beentransmitted
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Figure 6: CBQ Link output pattern, modified ATM driver, ATM
output buffer 20K bytes.

Buffer influence on CBQ behaviour: the 2KB case
920000

+ x
+oix *

+ X *
915000

E)* + x
D)% + x
* ©+ x(m

g 910000 * )+%(B)

E%‘ * *

X x +

B + X

£ 905000

2 P

g +x *

= + *

& 900000 * TCPinputtrace + |

TCP output trace X
UDP output trace %

895000

x + X
% Hox

890000

71820.1 71820.1 71820.2 71820.2 71820.3 71820.3
time (s)

Figure 7: CBQ Link output pattern, modified ATM driver, ATM
output buffer 2Kbytes.

460000

440000 £
420000 - +* 0¥ 4
400000 E3
380000 |- 33
X
360000 |- + b 1
&

340000 §

data transferred (Bytes)

320000 - *

X

300000 |- LA CBQoutput pattern  + |
;@éx?é Router output pattern

x

280000 |- & ¥ 1
*X

260000 L L L L L L L
63778.2 63778.3 63778.4 63778.5 63778.6 63778.7 63778.8 63778.9

time (s)

Figure 8: Scheduler and Router output pattern.



(at point (B)). The TCP classis also €eligible for service becauseit
has not been serviced recently; before point (A) mainly UDP pack-
ets were being serviced so that the TCP class cannot be overlimit.
In these conditions, the CBQ scheduler servesimmediately the TCP
packet, moving it to the software buffer. If this hasanon-negligible
size (for example when it is 20 KBytes) there can still be a signif-
icant number of UDP packets waiting in there. The output pattern
(captured by t cpdunp) showsthat even if the TCP class queueis
empty when packet (C) arrives, afairly large number of UDP pack-
ets (points (D) to (1)) is transmitted on the output link before point
(L), when the TCP packet is eventually transmitted.

Fromthetrace of the2 KBytes ATM output buffer it can be seen
that no more than two UDP packets (points (D) and (E)) are trans-
mitted between the arrival of a TCP packet in an empty queue and
itstransmission. Infact, theadditional level of buffering inserted by
the ATM output buffers can be seen equivalent to that of a2000Km
T3 (45 Mbps) link, that can haveanon-negligibleimpact on perfor-
mance.

Another effect of the per PVC output buffer is that the CBQ
scheduler appearsto be dequeuing packets at a higher speed than
the output link bandwidth assigned to the root class. The trace
in Figure 8 shows the same flow captured at the router after the
CBQ scheduler and on the machine at the other end of the CBQ
link (PVC3): the CBQ scheduler tends to serve packetsfaster than
the output link capacity in short time intervals. Since the link
sharing scheduler marks a class as overlimit by comparing the ex-
pected packet completion time and the actual packet completion
time (where the latter is calculated according to the time a packet
leaves the CBQ scheduler), the class is wrongly marked as over-
limit and is being regulated. Thiswill be discussedin detail in Sec-
tion 6.1.

5 Link Sharing Goals

Thekey issuefor CBQ isto allocate to each classits nominal band-
width. Inthissectionweexamineto what extent ALTQ/CBQisable
to achieveits link sharing goals, especially when it allows borrow-
ing between the classes. We have performed tests with TCP and
UDP classes, identified cases where the results of bandwidth shar-
ing werein fact different from those expected and showed how these
undesirable effects can be avoided.

5.1 UDP Classes

In the first experimental scenario the CBQ router is configured with
the link sharing hierarchy shown in Figure 2b and the source ma-
chines are generating three UDP flows (one for each class). In this
case al classes have permanent backlog.

The leftmost part of Figure 9 shows CBQ behaviour when the
leaf classes are not allowed to borrow from the root class. A leaf
class can send until it has consumed its round-robin allocation or it
has becomeoverlimit, thenthe scheduler starts serving the next leaf
class. Thelink sharing goal is thereby achieved by the cooperation
of the link sharing scheduler and the general scheduler.

When borrowingis allowed (in the rightmost part of Figure9) a
classcan becomeoverlimit andstill continueto send packets. When
it finishesits WRR allocation the scheduler checksif other classes
have packets in queue and are allowed to send (i.e. they are not
suspended). Since all classeshaveenough backlog, the link sharing
rules are guaranteed by the Weighted Round Robin mechanism. In
both cases (borrow activated or not) thelink sharing hierarchy rules
are perfectly respected.

However the graph in Figure 9 shows that there is not precise
rate control: the bandwidth allocations for the three classes are not
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Figure 9: Link sharing among UDP flowswith sufficient backlog.
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Figure 10: Different distribution of TCP packets when enabling
borrow.

exactly respected according to the link sharing structure and precise
bandwidth control cannot be achieved. Moreover, especially when
borrowing is enabled, a class cannot use the entire bandwidth of its
parent even if there is no competition by other classes; this will be
better explained in Section 6.1.

5.2 TCP and UDP Classes

The second experimental scenario usesthe link sharing hierarchy in
Figure 2a with one TCP flow and one UDP flow per class, allocat-
ing them 75% and 25% of the output link bandwidth. The resultsin
Figure 11 show that the link sharing rules are respected when there
is no borrowing but they are less straightforward when borrowing
isenabled (Figures 12 and 13).

Whentheleaf classesare not allowed to borrow, they cannot use
more than their bandwidth allocation and whenever they exceedthis
value they quickly become suspended. This prevents alarge num-
ber of packetsfrom accumulating in the ATM output buffers.

When borrowing is allowed CBQ tends to serve packets at a
higher speed than the output link bandwidth when examinedin suf-
ficiently small time intervals (Figure 8) because of the presence of
the ATM output buffer.

The first effect of these buffers is that their size can cause non-
negligible queueing delay and have serious impact on the perfor-
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mance of transport protocols like TCP especially in the case when
they account for a large fraction of the end-to-end bandwidth de-
lay product. TCP'sthroughput® is affected by the Round Trip Time
(RTT) which in turn depends on the queueing, transmission and
propagation delay of the linksin the end-to-end path.

The second effect is the different distribution of packetsin the
CBQ and ATM queues with and without borrow. Thisis shownin
Figure 10 assuming that the TCP connection can have a maximum
of seven packets “in flight”. When borrowing is not allowed the
TCP connection is able to create enough backlog in its CBQ class
queue. On the other hand when borrow is allowed the packetsof the
TCP connection are mainly queued at the ATM output buffer. The
WRR mechanismis not able to fulfill the class allocation because
its queue has not enough backlog, therefore the class cannot fully
exploit its allocated bandwidth.

Figure 10 showsthat the WRR mechanism is not able to fulfill
itsallocation for the TCP class (three TCP and one UDP packet each
round) and the TCP connection is penalised. This is confirmed in
Figure 12-test (b): the class WRR dllocation is large becauseit is
computed taking into account the large MTU (9.18 KBytes) of the
CBQ link (PVC3), and the TCP throughput is the worst of all three
tests.

Reducing the ATM output buffers clearly improves the perfor-
mance of the TCP flow. Figure 13 shows the same tests as Fig-
ure 12 whenthe ATM driver has been built with smaller size output
buffers: the “software” buffer reduced to 2 KBytes and the hard-
ware oneto 16 KBytes. In al tests the competing flows adhere to
thelink sharing rules; the lower TCP throughput observedin test (a)
isaknown problem of TCP with 16 Kbyteslimited maximum win-
dow size and large MSS due to the large (9.18 Kbytes) ATM MTU
which reduces TCP essentially to a“ stop-and-wait” protocol [17].

5.3 TCP Classes

The third experimental scenario uses the class hierarchy in Fig-
ure 2b with one TCP flow per class and the results are shown in
Figure 14. The classbandwidth allocations are observed only when
borrowingisnot allowed; otherwisethe TCPflowsshareequally the
bandwidth between them. The main buffering point in this caseis
the ATM output buffer and not the CBQ class queues; the situation
isexactly the same asthe onedescribedin the previous section. The
ATM output buffersfirst increase the connection RTT, then provide
insufficient backlog (Figure 10) in theinput queuesso that the WRR
mechanismis unable to differentiate the service among the classes
(i.e. the bigger classes cannot fully exploit their WRR allocation).
In fact, thelink sharewas respected when the test wasrepeated with
the small buffer kernel configuration (2+16 KBytes).

54 TCP and Link Sharing with Borrow

The lesson learnt from the above experiments was that CBQ with
borrow is able to provide the correct share among different classes
when all the classes have adequate backlog. Obviously, having a
smaller ATM output buffer helps significantly since a large ATM
output buffer can become the main queueing point in the system
defeating the link sharing rules. The presence of the driver output
buffers affects especially those flows with small bandwidth-delay
product (like the experiments in the local testbed because of the
small delays), becauseit inserts a non-negligible delay on the end
to end path.

Figure 15 shows results from the experiments in the wide area
(UCL-NASA). The standard buffer case shows that the TCP/UDP

5The maximum throughput for a TCP connection is bounded by
Mazimum_window
RTT .
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dard ATM buffers.

ratio is worse than the local tests, while in the TCP/TCP test both
flows share the bandwidth equally between them. The small buffer
case shows that the situation has improved; the TCP in the “big”
classgetsmore servicethan the flow in the “small” classbut there-
sultisstill not as expected. The TCP flow, that in the local area ob-
tains the correct service (in presence of small buffers) is no longer
able to do this because of its inability to provide enough backlog
dueto the high bandwidth-delay product of this path.

The best way to achieve correct link sharing with TCP flows
is to avoid the limitations of the maximum TCP window size (us-
ing the appropriate socket option SO SNDBUF, SO.RECVBUF)
or to ensure sufficient degree of flow aggregation in each class.
Both methods aim to increase the maximum number of packets“in
flight”, by creating enough backlog in the CBQ class queues(as op-
posed to the link layer buffers) and thus making WRR differentia-
tion possible.

Figure 16a showsthe CBQ behaviour with 5 TCP connections
in each class when borrowing is permitted and in this case all the
classes get the right share. Figure 16b shows the corresponding
queuelength variation over time: thereis now enough backlog that
permits the WRR mechanismto fully exploit the allotment of each
class.

When using RED at the CBQ class queuesit is important that
itsm n_t hr esh parameter is chosen in such away that the queue
length (backlog) in bytes is not smaller than the WRR allocation
for that class. Otherwise the WRR may not be able to send the ap-
propriate amount of data in each round to sustain the class' link
share. ALTQ/CBQ allows RED drop policy in itsqueuesbut it does
not allow configuration of the RED parameters simultaneously with
CBQ. However when the experimentsinvolving TCP were repeated
with RED, they did not show any changein the class share.

Another cause of the CBQ delay is the WRR scheduler itself,
becausethe service time depends mainly on the number of classes
configuredinto the system: the more classesthere are, the larger the
delay “guaranteed” to each class. Therefore an arriving packet can
beforcedtowait longer before being serviced despitethe allocation,
increasing the RTT and affecting performance.

6 Performance

This section evaluates ALTQ/CBQ performance in terms of link
utilisation, maximum obtainable throughput and sensitivity to the
average packet size within a class.

Tests in this section are done with another modification of the
ALTQ standard kernel. In fact, ALTQ/CBQ implementation main-
tains two global variables (Figure 17):

¢ i fd->now go_] istheactual finishtime of thelast packetin
the head of queuego._ (i.e when the CBQ scheduler dequeues
the packet and passesit to the ATM driver).

¢ i fd->i f now. isthe expected finish time for a packet in the
head of queue qo- according to the output link speed.

ALTQ uses the second one to compute the wake up time of a
class that has been suspended, while other CBQ implementations
(ns-2 simulator, for example) and the CBQ original paper itself sug-
gest to use the first one. We used i f d- >nowf qo.] instead of
i fd->i f now. to compute the suspension time for a classthat is
overlimit. All testsin this section (unless otherwise specified) were
done with this modification; moreover we show the improvement
of the modified kernel over the original one.
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6.1 Link Utilisation

As was pointed out in Section 5.1, CBQ is unable to guarantee the
full utilisation of the output link even when the borrowing is al-
lowed.

Letsassumeto haveasingle UDP flow andthat the output rateis
smaller than theinput rate. If there is enough space availablein the
output buffers CBQ dequeues a packet moving it into the software
buffer. For atransitive period CBQ is able to dequeue packetsat a
higher rate than its output link bandwidth.

In such a situation, the gap between the variables
ifd->now qo_] and ifd->i fnow. (Section 6) increases
progressively: the former increases according to the input link
speed (a packet is served as soon as it arrives at the router), the
latter increases according to the “true” output link speed. When the
gap between them exceeds a certain threshold, ALTQ/CBQ resets
i fd->i fnow. to the ifd->now qo_] vaue (i.e the “real”
system time), in order to prevent the gap from becoming too big.
This does not come for free: becoming i f d- >i f now. smaller
and being this a global variable, it seems that the last packet left
the CBQ scheduler very quickly, even faster than the rate allocated
to the parent class. This makes the parent class to appear to be
overlimit and the leaf class gets suspended. It is important to
notice that this does not mean that the router stops sending packets,
becausethe buffers are able to sustain the output link until they are
emptied.

The class suspension time depends on the class bandwidth
share: the smallest the class allocation, the longest the suspension
time. If the bandwidth shareis small enough, the buffers are emp-
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time
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Figure 17: CBQ: actual and expected finishing time.
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Figure 18: Maximum throughput obtainable by UDP and TCP
within different classes.

tied before the suspensionis resumed: the output link becomesidle
and the throughput drops. As the bandwidth mismatch between in-
put and output link increases (i.e the faster the input link compared
with the output one), the more frequent becomesthe need to adjust
the gap betweeni f d- >now gqo_] andi f d- >i f now.. Asare-
sult, under some conditions it is not possible the full utilisation of
the output link bandwidth.

Figure 18 showsthat TCP flows are not affected by this prob-
lem. In fact the number of back-to-back packets sent by TCP is
not large (limited by its window) so it is unusual that a TCP flow
gets suspended. UDP flows are affected by this problem especially
if they belong to a class with relatively small share and the kernel
timer is set to asmall value (Section 6.1.1).

ALTQimplementstheef fi ci ent option (settablein the con-
figuration file) to overcome this problem. This option makes the
scheduler work conserving so that it is able to send a packet from
thefirst overlimit (and alowed to borrow) classit encounters even
if all classes of the link sharing structure are overlimit. While the
ef fi ci ent option canbeusedto increaselink utilisation, it mag-
nifies the effect of the ATM output buffers because it keeps them
full most of thetime. In fact, the sametests of Section 5.2 repeated
with the ef fi ci ent option show that TCP throughput deterio-
rates even further.

The problem of poor link utilisation becomesless evident when
the ATM output buffers are smaller (for example 2 + 16 KBytes).
In this case even UDP is usually able to use the entire class band-
width independent from the class allocation. Obviously, the “éffi-
cient” flag seemsto be uselessin this case.
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6.1.1 Theeffect of the kernel timer

The kernel is driven by an internal clock that interrupts at regular
intervals and each interrupt is called atick (Figure 19).

Theclock rateis programmable andis set at system startup time
in the hz global variable. The default value for the clock rate is
100 Hertz; a smaller value may cause degradation in system re-
sponsetime but too high avalue may causetoo much system over-
head, therefore it should be as high as possible avoiding excessive
overhead.

When a class becomes suspended, its “wake up” time iskept in
theundert i me variableand an appropriate timeout, calculatedin
clock ticks, isset. AsshowninFigure 19, thewakeuptimeissettoa
minimum of two clock ticksthat for a standard 100 Hz clock means
a minimum suspension time between 10 and 20 msec. A classis
usually resumed when a new packet has arrived at the router (pro-
vided that its suspensiontime hasfinished) so that thetimeout is the
last resort for resuming the classwhen other mechanismsare not ef-
fective.

The precision of the kernel timer is important especially when
the input packet rate is low (for example because of the big packet
size), becauseit affects the ability to resume the suspended class at
the right time. From this point of view, the highest the clock fre-
guency, the best the precision obtained.

Figure 18 showsthat the UDP flow into big classdoes not suffer
from this problem because a class is suspended only a few times.
Vice versathe UDP into small class has almost the ideal behaviour
with the 500 Hz kernel timer, but its throughput decrease with the
100 Hz one.

Figure 18 shows also the comparison between the results ob-
tained with the old kernel and the new one (modified suspension
time computation), both with a 100 Hz timer: the improvement of
the latter over the former is evident.

6.2 Forwarding ability

We attempt to stress the CBQ router to discover the overhead of
CBQ specific per-packet operations (classify, enqueue, schedule,
dequeue). For agiven output link capacity (PVC3) we vary the of-
fered load, number of configured classes and the packet size of a
single UDP flow that we drive through the router.

Table 4: Maximum throughput for CBQ and FIFO schedulers.

[ 1P packet size (bytes) [| CBQ (pps) | FIFO (pps) |

44 20831 24012
60 20662 23926
92 18691 21435
156 18333 20951
284 17615 19619

Table 5: Class Throughput for different number of configured
classes

[ Number of Classes | Throughput (pkis/sec) |

1 20513
5 20353
10 20245
20 19871
50 18718
100 15918

Table 4 shows that a router applying CBQ to an interface de-
creases its throughput approximately 10 to 14% compared to the
same router with standard FIFO scheduling. This result was ob-
tained when the router was forwarding one UDP flow and the CBQ
was configured with asingle class.

For a given packet size the router throughput is maximised for
acertain input load. Figure 20 shows performance when changing
the offered load: when the input load is smaller than its forwarding
ability the router is able to manage all thetraffic. When the offered
load (packets/sec) increases beyond a certain level the throughput
drops becausethe router is busy servicing interrupts from incoming
packetsand can only do limited packet forwarding.

Table5 showstheimpact of the number of classes(ranging from
one up to 100) on CBQ router throughput. The test is performed
when router is forwarding one UDP flow (IP packet size 60 bytes)
and the offered load (input link capacity) was adjusted in order to
maximise throughput. When increasing the number of classes, the
CBQ router hasto do an extensive search to determine which class
each packet belongs to and, due to a non-optimised classifier, the
CBQ router throughput drops significantly.

The effects are limited when CBQ has statically configured
classes becausethey are usually lessthan ahundred®. However this
can be aproblem when CBQ is used as a traffic control module for
RSVP[18] becausein thiscaseit allowsarbitrarily small allocations
(the minimum bandwidth per class doesno longer exist) and alarge
number of classes can be created.

6.3 Packet size sensitivity

CBQ operation is highly sensitive to the packet size and link layer
MTU. Since WRR uses the output link layer MTU to calculate
each class allocation, when the average packet size is significantly
smaller thanthelink layer MTU each classis allowed to send more
than one packet each round. This can cause increased burstiness
that has undesirable effects on the following routers along the path.

5Present ALTQ implementation permits to have more than 100 static classes, but
the share must be an integer value. More than 100 classes means that someone has
less than 1% share, and the CBQ does not give them service unless the borrow flag is
activated.
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Figure 21 shows the traffic pattern on the output link (class hi-
erarchy of Figure 2a) when the MTU is9.18 KBytes and the packet
sizeis 1.5 KBytes(configuration (b) in Table 1): eventheclasswith
the smallest allocation can send more than one packet each round.
Thisproblemishardly avoidablebecausethe WRR cannot use other
parametersto compute its allocation.

Another problem is that the CBQ scheduler calculates several
internal parameters according to an average packet size specific for
each class, that, if not specifiedinto the configurationfile, is consid-
ered equal to the output link MTU. In presence of large configured
- real average packet size mismatch, the class throughput is signif-
icantly different from the expected value.

Figure 22 shows the throughput of a class (hierarchy of Fig-
ure 2a, borrow disabled) when sending only one UDP flow at a
time, repeated with different packet sizes. The throughput is less
than the expected value when the average packet size is smaller
than the configured one (tests with 9180 Bytes); vice versathrough-
put increases when the average packet size is bigger than the im-
posed one (128 Bytes). Figure 23 shows a packet trace from the
output link when the class sends packets much smaller than the av-
erage size; after it hastransmitted a certain number of packetsit be-
comes suspended by the link sharing scheduler and the output link
becomesidle. Figure 22 also showsthat the throughput obtained by
the old kernel (original under ti me computation) is clearly less
predictable compared to the new one.

When the average packet size is far bigger than the expected
value (in Figure 22 we consider apacket of 540 Byteswhen the av-
erageis set to 128) the throughput increases unexpectedly. In fact,
the parameter m ni dl e setsalower boundto avgi dl e prevent-
ing it from becoming too small, that usually happenswhen the class
has big packets compared to the average value. In this case, when
the class is resumed after a suspension CBQ “forgets’ how much
this class has sent in the past and the class can now send alot more
than its limit.

A partial improvement could besetting them nbur st parame-
ter (i.e. thenumber of back to back packetsallowed by the link shar-
ing scheduler before forcing a suspension) to a higher value. This
will increasethe of f t i me parameter so that a classis allowed to
send more packets, followed by alonger suspensiontime. In this
way thethroughput obtained by aclasswith larger packet sizescom-
pared to the average value is closer to the expected one. The draw-
back is an increased burstiness of the output pattern.

Average packet size can be hard to tune because of the diversity
in packet sizesfor flows aggregated in the same class. For instance,
even TCPtraffic that uses most frequently large packets(e.g. HTTP
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downloads) does not have a typical average packet size because of
the acknowledgement packets (usually 40 bytes) or interactive ap-
plicationsliketelnet. Thisis particularly truefor bidirectional “vir-
tual links’, for example those used in a Virtual Private Networks
(the most likely environment for deploying CBQ), that have data
and acknowledgement packetswithin the same class.

Average packet size sensitivity is a well-known problem in
the CBQ scheduler [19] and depends on the computation of the
of fti me parameter. Thiswas calculated in such a way of being
ableto send amaximum number of packets (of average packet size)
back to back before class suspension. Sincethe main parameter that
triggers aclass suspensionis the“ number of packets’ instead of the
“number of bytes’, classes with small packets are not able to use
their link share while classeswith big packets get more bandwidth
than the expected value.

6.4 Bursty flows

CBQ has two parameters (maxbur st and mi nbur st ), specific
for each class, that are used to adapt the CBQ behaviour to bursty
flows. They are used to calculate the maximum number of back to
back packetsa classis allowed to send before having a suspension.

The first one is used when the flow starts transmitting after a
long idle period; the second is the one used when the class is con-
tinuously backlogged (steady state).

It can be easily proved that maximum throughput that a flow
can obtain decreaseswhen its maxbur st and m nbur st param-
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Table 6: Throughput for bursty flows.

Minburst || Class75% | Class 25%
(pkts) (Kb/s) (Kb/s)
2 1458 494
5 1436 484
10 1410 484
20 1400 483

eter increases. Thisis a problem related to the original CBQ pro-
posal [4].

Theresult can be seenin Table 6; whenthe classis configuredto
support bursty flows, it isallowed to send more back to back packets
but it is not able to reach its assigned share.

7 Practical issuesin CBQ deployment

This section discusses some practical issuesthat concern CBQ de-
ployment in real networks. Therewill be considered the effects of
fragmentation on end-to-end performance and the interaction of the
scheduler with the Resource reSerVation Protocol (RSVP) [18].

7.1 Theeffects of fragmentation

When a packet enters in the CBQ router, the classifier module
checksits network and/or transport protocol headers and places it
to the appropriate queue.

When a packet is fragmented (for instance due to a mismatch
in link layer MTUs or to a UDP packet larger than the link layer
MTU), the transport layer headers are missing from all fragments
but thefirst one. The classifier may not be ableto classify the packet
appropriately andin this casethe packet is put into the default class.

Fragmentation can prevent a flow from getting its allocated
sharebecausepacketsareinsertedinto thewrong CBQ queue. Frag-
mentation can also causereordering problems (the first fragment of
apacket can be served after the following ones becausethey belong
to different queues) into the end system.

Fragmentation should generally be avoided, but when deploy-
ing advanced schedulersthere are yet more reasonsto do so.

Figure 24: Link sharing configuration with RSV P,

7.2 RSVPintegration

CBQ can be used as a traffic control module for RSVP in an Inte-
grated Services Network. When the RSV P daemon accepts a new
connection, CBQ creates dynamically a new classin its class hier-
archy. The CBQ daemon starts automatically whenthe rsvpdis ac-
tivated, loading the standard configuration file. Figure 24 shows a
typical RSV P configuration.

The manual configuration requires the creation of the Best Ef-
fort and Controlled Load classes. When the RSV P daemon accepts
anew reservation, the CBQ mechanism createsanew leaf class(un-
der Controlled Load class) and assigns it the bandwidth indicated
in the reservation messageby the token rate parameter’. Theseleaf
classes are by default allowed to borrow from their parent class.

RSVP is well integrated inside the CBQ kernel and it uses the
classes in the same way as manually configured ones. Due to this
high integration, it is not possible to perform a fine tuning of the
CBQ parameters, particularly the packet size and priority. All the
CBQ scheduler problems already presented can affect RSV P ses-
sions as well. Moreover some of these problems that could be
avoided with the manual class configuration (for example by spec-
ifying packet si ze) cannot be avoided for the dynamically cre-
ated RSV P classesand a class can get the wrong share due to a poor
choice of the average packet size.

Deploying CBQ with RSVP in a network can lead to unpre-
dictableresultsfor end-to-end performance. For instance, if areser-
vationiscarried out for asingle TCP flow, the throughput might not
be the one expected because of the limitations of the internal CBQ
mechanism.

ALTQ/CBQ with RSVP can currently support only the
Controlled-Load Service model since the Guaranteed Service is
not supported by the current RSV P implementation [20].

8 Conclusions

This paper presents an evaluation of the ALTQ/CBQ implementa-
tion in terms of capabilities and performance. The CBQ operation
is evaluated in-depth; some pathological behaviours are identified
and corrected. For the casesthat are ALTQ-specific we suggested
and tested appropriate fixes demonstrating the improvement over
the original implementation.

Thisisthe caseof the ATM driver architecture, the wrong com-
putation of the suspension time and the link sharing that is not al-
way's respected (especially when the output buffers are not negligi-
ble compared to the size of the end-to-end pipe). For instance, the
limitations on the link sharing goals are more likely to occur when
borrowing is enabled, that is when the CBQ has major advantages
over the use of dedicated links.

"Peak rate s not specified in the Controlled Load service.



Other aspects are pointed out without implementing fixes (for
example the problem of the average packet size or the maximum
throughput for bursty flows) because they are inherent to the CBQ
algorithm and not a problem of the specific implementation.

Throughout the paper we make suggestionsabout CBQ deploy-
ment issues in a real network environment. These range from the
possibly high delay in servicing aclass (despiteits share) dueto the
WRR scheduler, the need for enough backlog to insure the correct
link share, the warning concerning use of RED in the CBQ queues,
the precision of the rate control dueto the kernel timer, the problems
with throughput and burstiness due to the average packet size used
ininternal CBQ calculations. Finally, our experiments confirm that
CBQ cannot be used as a mechanism for fine grained rate control.

In our future work we plan to investigate how effective CBQ
isin areal network in terms of the Quality of Service parameters
(delay, jitter, loss, throughput) and the way these parameters are af -
fected by different configuration choices.
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