
13 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Fault Injection for Embedded Microprocessor-based Systems / Benso, Alfredo; Rebaudengo, Maurizio; SONZA
REORDA, Matteo. - In: JOURNAL OF UNIVERSAL COMPUTER SCIENCE. - ISSN 0948-6968. - STAMPA. -
5:10(1999), pp. 693-712. [10.3217/jucs-005-10-0693]

Original

Fault Injection for Embedded Microprocessor-based Systems

Publisher:

Published
DOI:10.3217/jucs-005-10-0693

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1404837 since:

Verlag der Technischen Universität Graz

Fault Injection for Embedded Microprocessor-based
Systems

Alfredo Benso
Politecnico di Torino

Dip. Automatica e Informatica
I-10129 Torino, Italy

E-mail: benso@polito.it

Maurizio Rebaudengo
Politecnico di Torino

Dip. Automatica e Informatica
I-10129 Torino, Italy

E-mail: reba@polito.it

Matteo Sonza Reorda
Politecnico di Torino

Dip. Automatica e Informatica
I-10129 Torino, Italy

E-mail: sonza@polito.it

Abstract: Microprocessor-based embedded systems are increasingly used to control safety-
critical systems (e.g., air and railway traffic control, nuclear plant control, aircraft and car
control). In this case, fault tolerance mechanisms are introduced at the hardware and software
level. Debugging and verifying the correct design and implementation of these mechanisms ask
for effective environments, and Fault Injection represents a viable solution for their
implementation. In this paper we present a Fault Injection environment, named FlexFI, suitable
to assess the correctness of the design and implementation of the hardware and software
mechanisms existing in embedded microprocessor-based systems, and to compute the fault
coverage they provide. The paper describes and analyzes different solutions for implementing
the most critical modules, which differ in terms of cost, speed, and intrusiveness in the original
system behavior.
Key Words: Fault Injection, Dependability Evaluation, Embedded microprocessor-based
systems

1 Introduction

Our society is facing an increasing dependence on computing systems, especially
in areas where a failure can be critical for the safety of human beings (e.g., air and
railway traffic control, nuclear plant control, aircraft and car control). Safety-critical
systems often incorporate levels of redundancy to guarantee the correct execution of
the service in order to tolerate or simply signal the presence of possible faults that can
cause system failures. The design and production flow of these systems must be
different from the traditional ones, guaranteeing that the fault tolerant characteristics

Journal of Universal Computer Science, vol. 5, no. 10 (1999), 693-711
submitted: 13/4/99, accepted: 22/10/99, appeared: 28/10/99 Springer Pub. Co.

are correctly designed and implemented. For these reasons, new CAD tools and
environments are required, which support the designer and production engineers in the
task of realizing really reliable systems.

Fault tolerance and reliability measures can not be evaluated using benchmark
programs and standard test methodologies, but only by observing the system behavior
when a fault appears inside it. Since the MTBF (Mean Time Between Failure) in a
safety-critical system can be of the order of years, fault occurrence has to be
artificially accelerated in order to observe the system behavior under faults without
waiting for the natural appearance of actual faults.

Fault Injection (FI), the deliberate insertion of faults into an operational system to
observe its response, has been recognized in [ClPr95] as a powerful technique that
allows to validate some dependability characteristics of a system executing application
programs.

Several Fault Injection techniques have been proposed and practically
experimented; they can basically be grouped into simulation-based techniques
[DJPr96], software-implemented techniques [CMSi95] [KKAb95] [Lovr95],
hardware-based techniques [AAAC90], and hybrid techniques, where hardware and
software approaches are applied together to optimize the performance [YoIG93].

None of the mentioned approaches seems to be a global solution in terms of costs,
speed, and accuracy, since they are generally targeted to a particular platform or they
consider only particular types of applications. Moreover, none of them is specifically
targeted to embedded microprocessor-based systems, and they often exploit features
(such as Operating System support) seldom available in these systems. Finally, the
introduction of computer-based devices into safety-critical mass products (e.g., in the
automotive area) requires new approaches to fault-tolerance evaluation, characterized
by a lower cost and an easier applicability.

The goal of this paper is to analyze the main constraints that a FI environment
must satisfy when dealing with microprocessor-based embedded systems, and to
present a FI environment, called FlexFI, which can be easily customized to the
specific needs of the embedded target systems. FlexFI includes different modules for
Fault List Generation and Collapsing, Fault Injection, and Result Analysis. Most of
the Fault Injection code runs on a host computer, which orchestrates the FI
experiments and is connected to the target system exploiting existing features,
normally provided for debugging purposes. Three versions of FlexFI are presented,
based on a pure software solution, on a hybrid hardware-software approach, and
exploiting the BDM feature existing in many of the most recent Motorola
microprocessors and microcontrollers. The three versions are briefly described
(greater details can be found in [BPRS98], [BCRS98], and [RSEO99], respectively)
and their characteristics compared: they provide a full range of choices for the fault
tolerance evaluation of an embedded system.

[Section 2] summarizes some background which is then exploited in the rest of the
paper. [Section 3] outlines the general assumptions and decisions underlying the
organization of the FlexFI system, [Section 4] describes its architecture, and [Section
5] outlines the characteristics of its three different versions. [Section 6] summarizes
the characteristics of the three versions, and [Section 7] draws some conclusions.

694 Benso A., Rebaudengo M. Reorda M.S.: Fault Injection ...

2 Background

2.1 The FARM Model

Fault injection allows to validate dependability measures of a target system
constituted by a hardware architecture and a workload software application.

A good approach to characterize a fault injection environment is to consider the
FARM classification proposed in [AAAC90]. The FARM attributes are the following:

• the set of faults F to be deliberately introduced into the system
• the set of activation trajectories A that specify the domain used to functionally

exercise the system
• the set of readout R that corresponds to the behavior of the system
• the set of measures M that corresponds to the dependability measures

obtained trough the fault injection.
The FARM model can be improved by also including the set of workloads W.
The measures M can be obtained experimentally from a sequence of fault injection

case studies. An injection campaign is composed of elementary injections, called
experiments. In a fault injection campaign the input domain corresponds to a set of
faults F and a set of activations A, while the output domain corresponds to a set of
readouts R and a set of measures M.

The single experiment is characterized by a fault f selected from F and an
activation trajectory a selected from A in a workload w from W. The behavior of the
system is observed and constitute the readout r. The experiment is thus characterized
by the triple <f, a, r>. The set of measures M is obtained in an injection campaign
elaborating the set of readouts R for the workloads in W.

2.2 Fault Injection requirements

The FARM model can be considered as an abstract model that describes the
attributes involved in a fault injection campaign, but it does not consider the fault
injection environment, (i.e., the technique adopted to perform the experiments). The
same FARM set can be applied to different fault injection techniques. Before
presenting our solutions, we focus on the parameters that should be considered when
setting up a Fault Injection environment.

A fault injection system can be evaluated according to its intrusiveness, speed, and
cost.

2.3 Intrusiveness

The intrusiveness is the difference between the behavior of the original target
system and that of the same system when it is the object of a Fault Injection campaign.
Intrusiveness can practically be caused by:

695Benso A., Rebaudengo M. Reorda M.S.: Fault Injection ...

• the introduction of instructions or modules for supporting FI: as an effect, the
sequence of executed modules and instructions is different with respect to that
of the target system when the same activation trajectories are applied to its
inputs.

• changes in the electrical and logical setups of the target system, which result
in a slow-down of the execution speed of the system, or of some of its
components; this means that during the FI campaign the system shows a
different behavior from the temporal point of view; we will call this
phenomenon time intrusiveness.

• differences in the memory image of the target system, which is often modified
by introducing new code and data for supporting the FI campaign.

It is obvious that a good FI environment should minimize intrusiveness, thus
guaranteeing that the computed results can really be extended to the original target
system.

2.4 Speed

A FI campaign normally corresponds to the iteration of a high number of FI
experiments, each focusing on a single fault and requiring the execution of the target
application in the presence of the injected fault. Therefore, the time required by the
whole campaign mainly depends on the number of considered faults, and on the time
required by every single experiment. In turn, this depends on the time for setting up
the experiment, and on the one for executing the application in the presence of the
fault.

The speed of the FI campaign can thus be improved by proceeding along one or
both of the avenues of attack described in the following sub-sections.

2.4.1 Speeding-up the Single FI Experiment

The speed of a fault injection experiment is computed considering the ratio
between the time required by the normal execution (without fault injection) and the
average elapsed time required by a single fault injection experiment. The increase in
the elapsed time is due not only to the time intrusiveness, but also to all the operations
required to initialize the experiment, to observe the readouts, and to update the
measures.

2.4.2 Reducing the Fault List Size

Since in a given time, the number of possible experiments is limited, a crucial
issue when devising a Fault Injection environment is the computation of the list of
faults to be considered. One challenge is to reduce the large fault space associated
with highly integrated systems, improving sampling techniques and models that
equivalently represent the effects of low-level faults at higher abstraction levels.

696 Benso A., Rebaudengo M. Reorda M.S.: Fault Injection ...

The fault list should be representative enough of the whole set of possible faults
that can affect the system, so that the validity of the obtained results is not limited to
the faults in the list itself. Unfortunately, increasing the size of the Fault List is seldom
a viable solution due to the time constraints limiting the maximum duration of the
Fault Injection experiment. In general, the goal of the Fault List generation process is
to select a representative sub-set of faults, whose injection can provide a maximum
amount of information about the system behavior, while limiting the duration of the
Fault Injection experiment to acceptable values.

2.5 Cost

A general requirement valid for all the possible target systems is that the cost of
the fault injection environment must be as limited as possible, and negligible with
respect to the cost of the system to be validated.

We can consider as a cost the following issues:
• the hardware equipment and the software involved in the fault injection

environment
• the time required to set up the fault injection environment and to adapt it to

the target system.
The first issue is strictly related to the fault injection technique chosen, whereas

the second one implies to define a system as flexible as possible that can be easily
modified when the target system is changed, and can be easily used by the engineers
involved in the fault injection experiments.

3 Assumptions

In this Section we report the assumptions (in terms of the FARM model described
in [Section 2]) and choices underlying the organization of the FlexFI system.

3.1 Set F

It is the set of faults to be injected in a fault injection campaign. First of all, the
fault model has to be selected. This choice is traditionally made taking into account
from one side the need for a fault model which is as close as possible to real faults,
and from the other side the practical usability and manageability of the selected fault
model. Based on these constraints, the fault model we selected is the transient single
bit flip. This model is frequently used in fault injection tools [KKAb95] [DJPr96]
since it is very similar to the faults occurring in real systems [Lala85].

In the present version, each fault is characterized by the following information:
• fault injection time: each fault is injected at the assembly level, before the

execution of an instruction. The fault injection time is thus expressed in terms
of number of instructions executed since the beginning of the application
execution. This choice clearly limits the set of time instants when a fault can

697Benso A., Rebaudengo M. Reorda M.S.: Fault Injection ...

be injected, but makes easier obtaining full repeatability of each Fault
Injection experiment [Stei98].

• fault location: the address of the memory location or the register where the
fault has to be injected;

• fault mask: the bit mask that selects the bit(s) that has (have) to be flipped.
Therefore, each fault corresponds to flipping a single bit in a microprocessor

register or in the memory area containing either the code or the data at a given time
instant (e.g., executed instruction) during the program execution. A golden run
experiment is performed in advance and is used as a reference for fault list generation
and collapsing. The golden run can be obtained assuming a deterministic environment,
whose behavior can be deterministically determined when the input stimuli are given.

Although the fault model adopted in the current version of FlexFI is the transient
single bit flip in memory cells and microprocessor registers, FlexFI can support a
large set of other fault models (e.g., bridging faults, multiple bit-flip faults, stuck-at
faults), provided that they can be injected through a software procedure.

Faults are located in memory cells and CPU registers, but they do not mimic only
faults in this parts of the system, since they can be equivalent to faults in other parts of
the system such as in the busses, the arithmetic units and other functional units. For
example, a fault that changes the operand of an add instruction is equivalent to a fault
in the cell containing the operand as well as a fault in the arithmetic unit.

The size of the fault list is a crucial parameter for any kind of Fault Injection
experiment, because it dramatically affects the feasibility and meaningfulness of the
whole Fault Injection experiment. For this reason, our environment includes a module
for fault list collapsing, which is based on the techniques presented in [BRIM98]. The
rules used to reduce the size of the fault list do not affect the accuracy of the results
gathered through the following Fault Injection experiments, but simply aim at
avoiding the injection of those faults whose behavior can be foreseen a priori. The
validity of the collapsing rules is bounded to the specific Fault Injection environment
which is going to be used, and to the set of input stimuli the target system is going to
receive.

A fault can be removed from the fault list when it can be classified in one of the
following classes:

• it affects the operative code of an instruction and changes it into an illegal
operative code; therefore, the fault is guaranteed to trigger an Error Detection
Mechanism when the instruction is executed (possibly provided by the
processor);

• it affects the code of an instruction after the very last time the instruction is
executed, and it is thus guaranteed not to generate any effect on the program
behavior;

• it affects a memory location containing the program data or a microprocessor
register before a write access or after the very last access; it is thus
guaranteed not to generate any effect on the program behavior;

• it corresponds to flipping the same bit of the code of an instruction than
another fault, during the period between two executions of that instruction; the
two faults thus belong to the same equivalence class, and can thus be
collapsed to a single fault;

698 Benso A., Rebaudengo M. Reorda M.S.: Fault Injection ...

• it corresponds to flipping the same bit of a memory location containing the
program data, or a microprocessor register during the same period between
two consecutive accesses of that location than another fault; the two faults
thus belong to the same equivalence class, and can thus be collapsed to a
single fault.

Experimental results gathered with some benchmark programs show that the
average reduction in the fault list size obtained applying the proposed collapsing
techniques is about 40% [BRIM98], considering an initial fault list composed of a
random distribution of faults in the data memory, code memory, and processor
registers.

3.2 Set A

Two important issues relate to this point:
• how to determine an input trajectory to be applied to the target system during

each FI experiment; several proposals have been made to solve this general
problem. In this paper, we do not deal with this problem, but we limit our
interest to the techniques for performing the FI campaign, once the trajectory
is known.

• how to practically apply the trajectory to the system; this issue is particularly
critical when considering embedded system, since they often own a high
number of input signals of different types (digital and analog, high- and low-
frequency, etc.). In general, the only viable solution requires setting up a
suitable environment around the target system, able to excite it with the right
stimuli. This environment is often the same that is used for performing the
behavioral and final testing of the system.

3.3 Set R

This set of information is obtained observing the system behavior during each fault
injection experiment, and identifying the differences with respect to the fault-free
system behavior. Note that all the operations involved by the observation task should
also be minimally intrusive. In the FlexFI environment all the operations on the target
system are controlled by an external host computer that compares the final state of the
system and the output values with the correct ones computed with the golden run.

By incidence, to evaluate the faulty behavior requires implementing some time-out
mechanism for the identification of faults forcing the system in endless loops, or
forcing it into deadlock conditions.

3.4 Set M

At the end of the FI campaign, a proper tool should build a report concerning the
dependability measures and fault coverage computed on the whole Fault List. Fault

699Benso A., Rebaudengo M. Reorda M.S.: Fault Injection ...

coverage is defined with respect to some Error Detection Mechanism (EDM).
Microprocessor systems usually provide some mechanisms to detect faults, such as:

• Hardware EDMs, i.e., system exceptions, built in the processor chip;
• Software EDMs, i.e., software checks, possibly inserted in the target

application.
Faults are classified into one of the following categories:
• No output errors: the fault does not produce any failure;
• Detected by an EDM: the fault triggers a system Exception (such as illegal

instruction, divide by zero, address fault, access fault, bus error, privilege
violation) or a software EDM. Upon exception triggering, an exception
routine is executed to possibly recover from the error or to halt the system.

• Fail-Silent Violation behavior: the target application terminates correctly but
produces incorrect results;

• Time-out: the number of executed instructions exceeds a user-defined limit
(e.g., because the target application entered into an endless loop).

4 The Fault Injection Environment

4.1 Overall Architecture

The architecture of the FlexFI fault injection environment is shown in [Fig. 1]. The
system is logically composed of the following main modules:

• the Fault List Manager generates the fault list to be injected into the target
system;

• the Fault Injection Manager injects the faults into the target system;
• the Result Analyzer analyzes the results and produces a report concerning the

whole Fault Injection campaign.

700 Benso A., Rebaudengo M. Reorda M.S.: Fault Injection ...

Target System Host Computer

Injector

Observer

Time-Out

Scheduler

Fault List
Manager

Fault Injection
Manager

Result
Analyzer

Communic.
support

Comm. line

User

Figure 1: The architecture of the FlexFI system.

To minimize the intrusiveness into the target system, the FlexFI system uses a host
computer. All the FI tasks which are not strictly required to run on the target system
are located on the host computer, which also stores all the data structures (e.g., the
Fault List and the output statistics) required by the FI campaign. The host computer
communicates with the target system by exploiting the features provided by most
systems for debugging purposes (e.g., the serial line handled by a ROM monitor which
allows the debugging of most microprocessors).

4.2 Fault Injection Manager

The Fault Injection Manager (FIM) is the most crucial part in the whole Fault
Injection System. In fact, it is up to the FIM to start the execution of the target
application once for each fault of the list generated by the Fault List Manager, to inject
the fault at the required time and location, and to observe the system behavior,
recovering from any possible failure (e.g., from hardware generated exceptions). The
pseudo-code of the FIM is reported in [Fig. 2].

701Benso A., Rebaudengo M. Reorda M.S.: Fault Injection ...

void fault_injection_manager()
{
 campaign_initialization();

 /* Experiment Control Loop */
 for (every fault fi in the fault list)
 {

experiment_initialization(fi);

spawn(target_application);
spawn(F_I_scheduler);

wait for experiment completion;

update_fault_record(fi);
}

return();
}

Figure 2: Fault Injection Manager pseudo-code.

During the target application execution, a FI scheduler monitors the advancement
of the target program, triggering other FI modules in charge of injecting the fault
(Injector module), observing variable values in order to classify the faulty behavior
(Observer module), or stop the target application when a time-out condition is reached
(Time-out module).

The pseudo-code of the FI scheduler module is reported in [Fig. 3]. Note that the
Observer module refers to an ad hoc data structure, which contains the list of
observation points; for each point, this data structure contains the name of the
variable, the time when the variable should be observed, as well as the value the
variable should have at that time. The list must be filled by the application
programmer based on the knowledge of the behavior of the application itself.

702 Benso A., Rebaudengo M. Reorda M.S.: Fault Injection ...

void F_I_scheduler()
{
 instr_counter++;

 if (instr_counter==fault.time)
 trigger(injector());

for (i=0; i<num_of_observation_points; i++)
 if (instr_counter==observation_time[i])

trigger(observer(observed_variable[i], value[i]));

if (instr_counter>max_time)
 trigger(time_out());
}

Figure 3: Pseudo-code of the Scheduler module.

In order to allow the FIM to maintain the control over the FI campaign, a
mechanism has to be devised and implemented to handle the case, in which a
hardware exception is activated, and the target application is consequently interrupted.
The target system Exception handling procedures have to be suitably modified for this
purpose, so that they first communicate to the FIM the type of triggered exception,
and then return the control to it (instead of the interrupted instruction).

It is worth underlying the importance of the experiment initialization phase: the
effects of the fault injected during an experiment should never affect the behavior of
the target application when the following experiment is performed; for this reason, the
FI system must restore the environment for the target application execution as a
preliminary phase of each experiment. One safe (but slow) way to do so is to restore
the full memory image of the application (code and data) and the values of all the
relevant system variables. The main issue when implementing this restoring task is to
limit its time duration as much as possible, in order to reduce the time requirement of
the global FI campaign.

In the following, we will present different techniques for implementing these
modules in an embedded system.

5 Implementation Issues

After having described the general architecture of the FlexFI system, we now
propose three different solutions for implementing it, taking into account the
constraints specified in [Section 3]. The three solutions differ in terms of
intrusiveness, speed, and cost, thus offering a full range of possible choices for dealing
with fault-tolerant embedded systems:

• Software-based solution [BPRS98]: it adopts a software-based technique
which exploits the trace exception mode available in most microprocessors; it
represents a low-cost approach, whose main limitations are the time
intrusiveness and the relatively high slow-down factor.

703Benso A., Rebaudengo M. Reorda M.S.: Fault Injection ...

• Hybrid solution [BCRS99]: it is based on a hybrid technique in which faults
are injected via software by means of an interrupt procedure triggered by an
extra hardware board; time intrusiveness is very limited in this case, at the
cost of developing a custom hardware module devoted to FI.

• BDM-based solution [RSEO99]: it exploits the Background Diagnostic Mode
[Moto96] existing in many of the most recent microprocessor and
microcontroller kernels produced by Motorola. The advantages of hardware
solutions are reached in this case by simply exploiting a feature provided for
free by the processor. Nevertheless, being customized on a particular
microprocessor feature, porting this approach on a different platform can be a
very difficult task.

Each of the three solutions has been implemented in a prototypical version to
practically evaluate its characteristics. Details are now provided on the resulting
prototypical tools.

5.1 Software-based Solution

5.1.1 Description

This solution exploits the Trace Mode facility existing in most microprocessors for
implementing the FI scheduler: thanks to the trace mechanism, a small procedure
(corresponding to the FI scheduler) can be activated after the execution of any
application assembly instruction with minimum intrusiveness in the system behavior
(apart from a slow-down in the application performance). The proposed approach is
similar to the ProFI tool [Lovr95], with the main difference that the fault injection
experiment is completely executed by the microprocessor without any simulation.

The FI scheduler procedure is in charge of counting the number of executed
instructions and verifying whether any FI module reached its activation point. When
proper, the procedure activates one of the following modules, each corresponding to a
software procedure stored on the target system:

• the Injector module, which is activated when the fault injection time is
reached.

• the Time-out module, which is activated when a predefined threshold in terms
of number of executed instructions is reached, and stops the target
application, returning the control to the FIM located on the host.

• The Observer module, which is in charge of observing the value of target
application variables, thus checking whether the application is behaving as in
the fault-free fashion or not. When differences are observed, these are
communicated to the FIM through the serial interface. The observer module is
activated at proper times, depending on the target application characteristics.

704 Benso A., Rebaudengo M. Reorda M.S.: Fault Injection ...

5.1.2 Prototypical Version

We implemented a software-based version of FlexFI for a commercial M68KIDP
Motorola board [Moto92b]. This board hosts a M68040 microprocessor with a 25Mhz
frequency clock, 2 Mbytes of RAM memory, 2 RS-232 Serial I/O Channels, a Parallel
Printer Port, and a bus-compatible Ethernet card. To guarantee a deterministic
behavior the internal caches have been disabled during the FI campaign.

The Fault Injection Manager is composed of the scheduler procedure, which
amounts to about 50 Assembly code lines, of the modified Exception handling routine,
which needs about 10 Assembly code lines more than the original one, and of the
Initialization procedure, which is written partly in ISO-C and partly in Assembly
language and globally amounts to about 200 source lines. Due to the high modularity
of the FIM code, the task of adapting it to a new application program can easily be
accomplished.

When run on some sample benchmark applications, this version of FlexFI showed
a slow-down factor due to Fault Injection of about 25 times.

5.1.3 Comments

The software-based version of FlexFI is the most general one (the approach can be
implemented on virtually any system) and does not require any special hardware, thus
being very inexpensive.

On the other side, this approach has some drawbacks:
• there is some code intrusiveness, due to the need for storing the scheduler

procedure, as well as the Injector, Observer, and Time-out procedures, in the
target system memory

• there is also some data intrusiveness, since some small data structures, such as
the one for storing the information about the current fault and the observation
points, must also be stored in the target system memory

• forcing the target system to work in Trace mode causes a very high
degradation in the execution speed of the application program; thus
preventing this approach from being used with real-time embedded systems.

5.2 Hybrid Solution

5.2.1 Description

This solution overcomes the major drawbacks of the previous software-based
solution, at the cost of introducing some custom hardware. An external board is
exploited during the Fault Injection experiment to implement the scheduler.

The board is equivalent to a low-cost and specialized logic-analyzer. It is
connected to the target system bus and is able to count the number of executed
instructions by monitoring the values on the processor status pins. When one of the

705Benso A., Rebaudengo M. Reorda M.S.: Fault Injection ...

pre-defined points is reached, the board activates an interrupt protocol and triggers the
proper FI module. Running concurrently with the target processor, the board avoids
the overhead introduced by the software-based version. Therefore, the execution
speed of the target system is not changed during the FI experiment, and the
environment can be effectively exploited for evaluating real-time applications.

The board can work in two different modes:
• in off-line mode, it acts as a peripheral device, and can properly receive and

react to read and write commands from the target system CPU
• in on-line mode, it continuously monitors the processor status pins, and counts

the number of executed instructions from the last start command; as soon
as the instruction counter matches the injection time, the board sends an
interrupt to the processor. The interrupt handling routine is in charge of
injecting the fault.

During the experiment initialization phase, the host computer must program the
board by sending it the following commands:

• set_injection: it defines the fault injection time, i.e., the number of
executed instructions before the fault injection

• set_timeout: it defines the time-out threshold, i.e., the maximum number
of instructions that can be executed before stopping the experiment

• set_observation_point: it defines an observation point,
corresponding to a 3-uple composed of an observation time (in terms of
number of instructions), a variable address, and a variable value.

• start: the board begins to count the instructions executed by the processor
• stop: the board becomes idle and waits for other commands to start the next

experiment.
At the end of every fault injection experiment (no matter its result), the control

returns to the Fault Injector Manager, which classifies the fault according to the
observed system behavior and updates the statistics stored on the host computer.

5.2.2 Prototypical Version

We implemented a prototypical version of the board, which is customized for a
MC68040 microprocessor. The FI board has then been evaluated on the same
commercial M68KIDP Motorola system used for the software-based version of FlexFI
described in the previous subsection. In our implementation, the board is a memory-
mapped device, thus allowing the CPU to program and control it through simple
memory writes and read instructions. The board has been implemented using two
Programmable Logic Devices, thus guaranteeing its re-programmability and
flexibility. The board includes 2 Xilinx XC3130 FPGAs, a 256K x 56 bits memory,
and some glue logic. Although in the current version the board has been customized
for a MC68040 microprocessor, the same approach can be followed for other
microprocessors, provided that they make status information available through the
pins.

When run on sample benchmark applications, the hybrid version of FlexFI showed
a slow-down factor which was almost exclusively due to the time required by the

706 Benso A., Rebaudengo M. Reorda M.S.: Fault Injection ...

experiment initialization phase, thus strongly dependent on the size of the memory
image of the target applications, and on the speed of the communication link between
the target system and the host computer. The external board does not introduce any
slow-down on the system clock of the target system, thus it is not time intrusive.

5.2.3 Comments

The intrusiveness of the fault injection process into the target system from the time
point of view is practically removed so that this version of the FlexFI system can be
adopted to deal with real-time embedded systems.

On the negative side, this solution requires the design and implementation of a
hardware device which must match the characteristics of a specific target system.

5.3 BDM-based Solution

The most recent Motorola’s microprocessors and microcontroller devices feature a
special mode of operation called Background Debugging Mode (BDM) [Moto96].
When enabled, this mode allows an external host processor to control the internal
microcontroller unit (MCU) and access both memory and I/O devices via a simple
serial interface. BDM was originally introduced to easy code development and
debugging, but is also well suited for supporting the implementation of efficient and
barely intrusive Fault Injection Systems.

During the fault injection experiment, the application program is executed in
debugging mode and BDM is in charge of resetting the system, downloading the
application target program, executing the fault injection, and triggering a possible
time-out condition. The method allows the injection of faults both in the memory
image of the process (data and code) and in the internal registers of the processor.

To allow BDM to perform fault injection, the injection time is converted in the
following format:

• Instruction address: the address of the instruction to be interrupted for fault
injection

• Instruction repetition: the number of times n the considered instruction has to
be executed before injecting the fault.

During the experiment initialization, the FIM sets a breakpoint at the instruction
corresponding to the considered fault. Thanks to the above mentioned breakpoint, the
scheduler process is activated at every execution of the instruction where the fault has
to be injected. At its n-th activation, the scheduler activates the injector. Note that in
this version the scheduler is a software module running on the host computer, while
the injector corresponds to a single BDM command that modifies the memory location
or user register determined by the content of the fault location field.

After the fault has been injected in the system, its behavior has to be observed, and
the differences with respect to the fault-free system behavior have to be identified.
When temporal constraints are not the main concern, this can be done by observing
the values of some specified variables when a given point in the target program

707Benso A., Rebaudengo M. Reorda M.S.: Fault Injection ...

execution is reached. A suitable sequence of BDM commands has been included in
the observer module. Preliminarily, a breakpoint is set each time a variable or register
must be observed: every time one of these breakpoints is reached, the scheduler is
activated, that in turns issues a BDM command, which accesses the variable or
register value and verifies whether it corresponds to the fault-free value or not.

Also the Time-out module is managed by BDM and programmed by the host
processor. A BDM command sets the watchdog period to a time exceeding the one
needed by the fault-free execution. If the program is still running when the watchdog
period limit is reached, it is stopped, the fault is classified as “time-out”, and the
experiment continues by injecting the next fault in the list.

5.3.1 Practical Experience

A prototypical version of the described Fault Injection environment has been
implemented on the commercial Evaluation Board LA-7902 produced by Lauterbach
GmbH. This board hosts a MC68332 microcontroller with a 16Mhz frequency clock,
128 kbytes of RAM memory and a V.24 interface. The BDM interface is managed by
the TRACE32-ICD commercial tool produced by Lauterbach GmbH. The host
computer is an 80486 PC, running Microsoft Windows95 Operating System.

The whole Fault Injection system is composed of about 500 lines of BDM
program written in the PRACTICE language and running on the host computer. Apart
from the module implementing the observer module, the system can be easily adapted
to deal with any target application program.

When running it on the usual benchmark applications, we observed two kinds of
slow-down phenomena. The first one is due to the time required by the experiment
initialization phase, and is dependent on the size of the memory image of the target
application, which is downloaded on the target system before every FI experiment
starts. The second one is due to the fact that forcing the microprocessor into the BDM
mode causes its clock to slow-down by a factor of about 2 times.

5.3.2 Comments

The approach is minimally intrusive in terms of code modification: the only
required modification on the application software is the one concerning Exception
procedures. It is also easily portable from one system to another, provided that BDM
availability is given. Similar (and even more general) debugging features are
supported by other microprocessor families, and can effectively be exploited for Fault
Injection purposes [CMSi95].

A certain slow-down in the execution time of the target application can be
observed, mainly due to the slow-down on the system clock forced by the activation of
the BDM mode. Due to this fact, this approach can hardly be exploited with real-time
applications.

708 Benso A., Rebaudengo M. Reorda M.S.: Fault Injection ...

6 Summary

In this Section we provide the reader with a comparative overview of the different
versions of the FlexFI system, gathering the results of the practical experiences we
made with our prototypical system.

First of all, [Tab. 1] summarizes the ways the critical modules of the FIM are
implemented in the three versions. FW stands for firmware, being the BDM
commands implemented in the microcode of the processor. Experiment initialization
mainly aims at rebuilding the proper environment for the fault to be injected, by
downloading from the host computer the target application memory image in the
system and setting up the system variables.

FI scheduler Injector
Observer
Time-out

Experiment
Initialization

SW-based SW SW ROM Monitor
Hybrid HW SW ROM Monitor

BDM-based FW FW FW

Table 1: implementation solutions for the main modules of the FIM.

[Tab. 2] summarizes the main characteristics of the three versions in terms of cost
(for equipment and for development), intrusiveness, and speed.

Cost Intrusiveness Speed
for equipment for development

SW-based Low Medium High Low
Hybrid Medium High Low High
BDM-based Low Low Medium Medium

Table 2: comparing the characteristics of the three versions of the FlexFI system.

[Tab. 2] shows that the three versions of the FlexFI system, although easily
interchangeable within the environment, have complementary characteristics, thus
providing the designer with a high flexibility in choosing solution which is best suited
to his needs.

7 Conclusions

When evaluating the fault tolerance mechanisms of embedded microprocessor-
based systems used in safety-critical applications, the designer needs a suitable
environment allowing to effectively perform FI experiments.

The paper describes the architecture of the FlexFI system, which is particularly
suited for embedded microprocessor-based systems, and whose main characteristic is
that it is customizable to the specific needs of the considered application. In particular,
we presented three versions of FlexFI, which allow the designer to chose the best

709Benso A., Rebaudengo M. Reorda M.S.: Fault Injection ...

solution in terms of cost, intrusiveness, and speed of the FI experiments. Prototypical
implementations of the three versions have been built to verify their feasibility and
effectiveness, and a comparison between their characteristics has been reported.

Further work is currently being done to improve FlexFI from the user friendliness
point of view, and to evaluate it on other applications.

References

[AAAC90] J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J.C. Fabre, J.-C. Laprie, E.
Martins, D. Powell, Fault Injection for Dependability Validation: A
Methodology and some Applications, IEEE Transactions on Software
Engineering, Vol. 16, No. 2, February 1990, pp. 166-182

[ABCI96] A. M. Amendola, A. Benso, F. Corno, L. Impagliazzo, P. Marmo, P. Prinetto,
M. Rebaudengo, M. Sonza Reorda, Fault Behavior Observation of a
Microprocessor System through a VHDL Simulation-Based Fault Injection
Experiment, EURO-VHDL’96, September 1996, Geneva (CH), pp. 536-541

[BCRS99] A. Benso, P.L. Civera, M. Rebaudengo, M. Sonza Reorda, A low-cost
programmable board for speeding-up Fault Injection in microprocessor-
based systems, RAMS’99: Annual Reliability and Maintainability
Symposium, Washington, DC (USA), January 1999, pp. 171-177

[BPRS98] A. Benso, P. Prinetto, M. Rebaudengo, M. Sonza Reorda, A Fault Injection
Environment for Microprocessor-based Boards, ITC’98: IEEE International
Test Conference, Washington (USA), September 1998

[BRIM98] A. Benso, M. Rebaudengo, L. Impagliazzo, P. Marmo, Fault List Collapsing
for Fault Injection Experiments, Annual Reliability and Maintainability
Symposium, January 1998, Anaheim, California, USA, pp. 383-388

[ClPr95] J. Clark, D. Pradhan, Fault Injection: A method for Validating Computer-
System Dependability, IEEE Computer, June 1995, pp. 47-56

[CMSi95] J. Carreira, H. Madeira, J. Silva, Xception: Software Fault Injection and
Monitoring in Processor Functional Units, DCCA-5, Conference on
Dependable Computing for Critical Applications, Urbana-Champaign, USA,
September 1995, pp. 135-149

[CTIy97] M.C. Hsueh, T. Tsai, R.K. Iyer, Fault Injection Techniques and Tools, IEEE
Computer, Aprile 1997, pp. 75-82

[DJPr96] T.A. Delong, B.W. Johnson, J.A. Profeta III, A Fault Injection Technique for
VHDL Behavioral-Level Models, IEEE Design & Test of Computers, Winter
1996, pp. 24-33

[HSRo95] S. Han, K.G. Shin, H.A. Rosenberg, Doctor: An Integrated Software Fault-
Injection Environment for Distributed Real-Time Systems, Proc. IEEE Int.
Computer Performance and Dependability Symposium, 1995, pp. 204-213

[JARO94] E. Jenn, J. Arlat, M. Rimen, J. Ohlsson, J. Karlsson, Fault injection into
VHDL Models: the MEFISTO Tool, Proc. FTCS-24, Austin (USA), 1994, pp.
66-75

[KKAb95] G.A. Kanawati, N.A. Kanawati, J.A. Abraham, FERRARI: A Flexible
Software-Based Fault and Error Injection System, IEEE Trans. on
Computers, Vol 44, N. 2, February 1995, pp. 248-260

[KLDJ94] J. Karlsson, P. Liden, P. Dahlgren, R. Johansson, U. Gunneflo, Using Heavy-
Ion Radiation to Validate Fault-Handling Mechanisms, IEEE Micro, Vol. 14,
No. 1, pp. 8-32, 1994

710 Benso A., Rebaudengo M. Reorda M.S.: Fault Injection ...

[IyTa96] R. K. Iyer and D. Tang, Experimental Analysis of Computer System
Dependability, Chapter 5 of Fault-Tolerant Computer System Design, D. K.
Pradhan (ed.), Prentice Hall, 1996

[Lala85] P.K. Lala, Fault Tolerant and Fault Testable Hardware Design, Prentice Hall
Int., New York, 1985

[Lovr95] T. Lovric, Processor Fault Simulation with ProFI, European Simulation
Symposium ESS95, 1995, pp. 353-357

[Moto92a] Motorola Inc., M68000 Family Integrated Development Platform (IDP), 1992
[Moto92b] Motorola Inc., M68000 Family Programmer’s Reference Manual -

M68000PM/AD, 1992
[Moto96] Motorola Inc., A Background Debugging Mode Driver Package for Modular

Microcontrollers, by S. Howard, Motorola Semiconductor Application Note
AN1230/D, 1996

[PVBW88] D. Powell, P. Verissimo, G. Bonn, F. Waeselynck, D. Seaton, The Delta-4
Approach to Dependability in Open Distributed Computing Systems, Proc.
FTCS-18, Tokyo (J), 1988, pp. 246-251

[SCMC96] J. G. Silva, J. Carreira, H. Madeira, D. Costa, F. Moreira, Experimental
Assessment of Parallel Systems, Proc. FTCS-26, Sendaj (J), 1996, pp. 415-
424

[RSeo99] M. Rebaudengo, M. Sonza Reorda, Evaluating the Fault Tolerance
Capabilities of Embedded Systems via BDM, VTS'99: 17th IEEE VLSI Test
Symposium, Dana Point (CA), 1999

[Stei98] A. Steininger: “How Reproducible should Fault Injection Experiments be?”,
IEEE Fault Tolerant Computing Symposium, Digest of FastAbstracts, 1998,
pp. 80-81

[YIGo93] L. T. Young, R. Iyer, K. K. Goswami, A Hybrid Monitor Assisted Fault
injection Experiment, Proc. DCCA-3, 1993, pp. 163-174

711Benso A., Rebaudengo M. Reorda M.S.: Fault Injection ...

