
09 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Programmable built-in self-testing of embedded RAM clusters in system-on-chip architectures / Benso, Alfredo; DI
CARLO, Stefano; DI NATALE, Giorgio; Lobetti Bodoni, M.; Prinetto, Paolo Ernesto. - In: IEEE COMMUNICATIONS
MAGAZINE. - ISSN 0163-6804. - STAMPA. - 41:9(2003), pp. 90-97. [10.1109/MCOM.2003.1232242]

Original

Programmable built-in self-testing of embedded RAM clusters in system-on-chip architectures

Publisher:

Published
DOI:10.1109/MCOM.2003.1232242

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1404469 since:

IEEE

Programmable built-in self-
testing of embedded RAM clus-
ters in system-on-chip architec-
tures
Authors: Benso A., Di Carlo S., Di Natale G., Lobetti Bodoni M., Prinetto P.,

Published in the IEEE COMMUNICATIONS MAGAZINE Vol. 41 No. 9, 2003.

N.B. This is a copy of the ACCEPTED version of the manuscript. The final
PUBLISHED manuscript is available on IEEE Xplore®:

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1232242

DOI: 10.1109/MCOM.2003.1232242

© 2000 IEEE. Personal use of this material is permitted. Permission from IEEE must be

obtained for all other uses, in any current or future media, including reprinting/republishing

this material for advertising or promotional purposes, creating new collective works, for resale

or redistribution to servers or lists, or reuse of any copyrighted component of this work in

other works.

!Politecnico di Torino

1

Abstract— Multi-port memories are widely used as embedded cores in all communication System-on-Chip devices. Due to their

high complexity and very low accessibility, Built-In Self-Test (BIST) is the most common solution implemented to test the different

memories embedded in the system. This paper presents a programmable BIST architecture, based on a single micro-

programmable BIST Processor and a set of memory Wrappers, designed to simplify the test of a system containing a large number

of distributed multi-port memories of different sizes (number of bits, number of words), access protocol (asynchronous,

synchronous), and timing.

I. INTRODUCTION

Silicon area is now so cheap and integration technologies so advanced that industries can embed in a

single chip, usually referred to as System-on-Chip (SoC), all the components and functions that

historically were placed on a hardware board. Each component or function is now available as a pre-

designed complex functional block, or embedded core.

Embedded memories are the most dense components within a SoC, accounting for up to 90% of its

real estate. Today’s technologies allow the design and manufacturing of memory cores with many I/O

ports, and multi-port RAM core generators are commonly available in many ASIC vendors library as

LSI-Logic, Texas Instruments and ST Microelectronics. To have an idea of today’s SoC complexity, it

is enough to consider that typically more than 30 embedded memories are placed on a single chip, they

are scattered around the device rather than concentrated in one location, they all have different types,

sizes, and access protocols and timing, and they can even be doubly embedded inside embedded cores.

From a testability point of view, memories also are the most sensitive to process defects, making it

essential to thoroughly test them in the SoCs.

1 Contact Author: Stefano Di Carlo, Politecnico di Torino (Dipartimento di Automatica e Informatica), Corso Duca Degli Abruzzi 24, I-10129, Torino,

Italy phone: +39-011-564-7080; fax: +39-011-564-7099; e-mail: stefano.dicarlo@polito.it

Programmable Built-In Self-Testing of Embedded
RAM Clusters in System-on-Chip Architectures

A. Benso, S. Di Carlo1, G. Di Natale, P. Prinetto
Politecnico di Torino (Dipartimento di Automatica e Informatica)

Torino, Italy

M. Lobetti Bodoni
Siemens Mobile Communications
Cinisello Balsamo, Milano, Italy

2

This new design philosophy based on the use of embedded cores, leads to a radical change in the test

engineering process. First of all, direct accessibility to interconnections and cores’ boundaries is not

possible, nevertheless test patterns and test responses have still to be delivered to the core or to the SoC

boundaries.

In the case of memory cores, the test methodology of choice is Built-In Self-Test (BIST). BIST offers

a simple and low-cost means to test for failures of embedded memories without significantly impacting

the device performance. In this scenario, the implementation of an efficient BIST strategy for SoCs

including several multi-port RAMs requires to take into account the different sizes (number of bits,

number of words), access protocol (asynchronous, synchronous), and timing of the memories embedded

in the system, to minimize the BIST area and routing overhead and to fulfill power budget constraints.

Moreover while it has been used primarily for production pass/fail testing, BIST should be extended to

provide the diagnostic data required for process monitoring and repair. A successful BIST for embedded

memories has to guarantee core accessibility, scalability, In-System Programmability (ISP), low

overhead, and flexibility in the test scheduling.

This paper presents the efforts and the results obtained in designing a proprietary BIST architecture to

tackle the above-mentioned set of problems.

The paper is organized as follows: Section II summarizes some of the most significant memory BIST

architectures presented in literature; Section III gives a general overview of the proposed BIST

architectures whereas Section IV and Section V detail the structure of the main blocks of the

architecture. In Section VI and Section VII the scheduling and diagnosis facilities of the proposed BIST

are detailed, and in Section VIII a possible optimization is discussed. Section IX presents a real

application of the proposed approach on an industrial case study, and finally Section X summarizes the

main contributions of the work and concludes the paper.

II. STATE OF THE ART

Several memory BIST solutions have been proposed to test both single and multi-port memories [1]

[2], static and dynamic memories [3] [4]. Programmable memory BIST has been proposed in [5] and [7]

[14] to increase flexibility in applying different combinations of test patterns targeting different types of

faults. Despite their effectiveness, all these solutions are designed to address the problem of testing a

single type of memory, and none focuses on the problem of concurrently testing several heterogeneous

embedded memory arrays. This problem has been addressed in [6] and [8], where the authors propose a

built-in self-diagnostic method to simultaneously diagnose spatially distributed memory modules with

different sizes. The approach is based on the serial interfacing technique proposed in [9]. The basic idea

is to synthesize the I/O port of each buffer as a scan chain from which the test patterns can be provided

and memory contents can be read. The solution is very easy to implement but it is not so efficient in

3

terms of test speed and area overhead, and it does not take into account power consumption constraints.

Moreover, all the memory tested in parallel must be of the same type. A deterministic BIST state

machine was designed in [10] to test multiple RAMs with different characteristics. Although all the

memory modules are tested (truly) concurrently, each memory module receives its own control signals

from the BIST controller. This solution has the disadvantages of large routing area overhead and a

complex design of the BIST controller.

III. MEMORY BIST MANAGEMENT ARCHITECTURE

The goal of this paper is the design of a proprietary BIST scheme to tackle the problem of testing the

memory subsystem of a complex SoC. Figure 1 gives an overview of the proposed BIST architecture.

A single BIST Processor is in charge of performing the test of all (or a subset of) the memories of the

system. Using a minimal set of Communication Signals, the BIST Processor coordinates, executes, and

synchronizes the test algorithm of the memories under test. The BIST Processor is µ-programmable: the

test algorithm is stored as a sequence of elementary test primitives in a dedicated memory (µ-program

memory); these instructions include (but are not limited to) the update of the address generators, the

application of a test pattern, the comparison of a memory cell with an expected value. This solution

allows, if necessary, to program the system at run-time to execute any required test algorithm. The BIST

Processor functionalities and communication protocol are independent from the number and

characteristics of the memories embedded in the system.

The different test primitives that constitute the test algorithm are received by a Wrapper placed

around each memory. In particular, each wrapper is composed of a set of Port-Wrappers (one per each

memory port) and a Dispatcher. The Port-Wrapper contains the standard blocks required to implement

the BIST capabilities (i.e., an address generator, a pattern generator, and a comparator), and an interface

block designed to translate the communications received from the BIST Processor into the particular

memory access protocol. The Dispatcher is in charge of collecting the test commands from the BIST

Processor, and delivering them to the different Port-Wrappers.

Finally, two scan chains are used to connect all the Port-Wrappers to allow respectively the

scheduling of the memory under test and full diagnosis capability.

4

DispatcherDispatcher

BIST
PROCESSOR

BIST
PROCESSOR

SRAMSRAM

P
O
R
T
1

P
O
R
T
2

SRAMSRAM

PORT1

SRAMSRAM
P
O
R
T
2

P
O
R
T
3

PORT1
Port WrapperPort Wrapper

Port WrapperPort Wrapper

Po
rt

 W
ra

pp
er

Po
rt

 W
ra

pp
er

Po
rt

 W
ra

pp
er

Po
rt

 W
ra

pp
er

Po
rt

 W
ra

pp
er

Po
rt

 W
ra

pp
er

DispatcherDispatcher

2

Scan_Chains

Communication Signals

µ-Program
Memory

µ-Program
Memory

DispatcherDispatcher

Po
rt

 W
ra

pp
er

Po
rt

 W
ra

pp
er

Figure 1: Basic Architecture

The proposed scheme guarantees the following goals:

• Core accessibility: the test of each memory is controllable and observable using a minimal set of

communication signals, including only two scan chains connecting all the Port-Wrappers;

• Scalability: the BIST Processor implementation is independent from the number and

characteristics of the memories embedded in the system;

• In-System Programmability (ISP): implementing the BIST Processor as a µ-programmable

machine provides the test engineer a flexible and reusable block, which can be used to manage the

BIST of any number of memories of any size, and it is independent from the test algorithm, which

can be dynamically downloaded in the BIST Processor itself;

• Low overhead: using a single BIST processor and a minimum set of communication signals allows

minimizing, with respect to a traditional BIST solution where each memory has a dedicated BIST

controller, the area overhead and the connectivity around each RAM;

• Flexible test scheduling: the set of memories to be tested can be freely selected by the test

engineer, using either test primitives stored in the test program, or a dedicated scan chain to

properly set a status bit in each memory. Moreover, the proposed solution allows running

concurrently the BIST of a set of memories with different number of ports, sizes, access protocols,

and timing.

The following sections will further detail the blocks composing the architecture.

5

IV. THE BIST PROCESSOR

The proposed memory BIST is based on a single BIST Processor used to test all the memories of the

target SoC. To increase flexibility, the BIST execution is based on a µ-programmable approach. Due to

their regular structure, the most popular and widely accepted deterministic test algorithms for memory

BIST are March Tests. A March test is a finite sequence of operations (March elements) applied to each

memory cell in the memory array in either ascending or descending order before proceeding to the next

cell [1]. March tests are popular because of their low temporal complexity, regular structures, and their

ability to detect different types of faults. The proposed BIST Processor has therefore been optimized to

implement March Tests. The chosen algorithm is stored in a dedicated µ-Program memory, coded

through a set of test primitives. The µProgram-Memory can be either a ROM or an In-System

Programmable device. In the former case, the test program is fixed at design time, whereas in the latter

one any custom test algorithm can be downloaded into the µ-Program memory at test time.

After selecting the set of memories under test, the BIST Processor reads from the µ-Program memory

one test primitive at a time, forwards it to all the Wrappers of the memories under test, and waits until

its completion by all the target memories.

When the test program is completed (i.e., all the test primitives have been applied), the BIST

Processor reads the test results from each memory. If a fault is detected, the faulty memories can be

located resorting to a set of diagnosis capabilities (See Section VII).

The architecture of the BIST Processor and the µ-Program memory are strongly influenced by the

peculiar characteristics of multi-port memories. In fact, due to the possibility of concurrently accessing

several cells, new fault models must be targeted [11] and ad-hoc March Algorithms must be adopted to

cover these new types of fault. In particular, the proposed implementation is optimized to implement

March Algorithms for multi-port memories presented in [12]. The main characteristic of these

algorithms is the use of nested cycles to access the different memory ports:

{ })).......)((1
1
0

n
BC

A
BA +=
−
= ⇑⇑⇑

where ⇑A-1
B=0 ⇑

 n
C=B+1 denotes a nested addressing sequence in which cell B goes from 0 to A – 1 and,

for each value of B, cell C goes from B + 1 to n. A pseudo-C code of this nested addressing sequence

would correspond to two nested for cycles:
 for (B=0;B<A-1;B++)

 for (C=B+1; B<n; B++)

 ………

As previously explained, each step of the test-program is coded in the µ-Program memory as a

sequence of test primitives, one for each memory port. The set of test primitives needed to implement

the proposed family of March Algorithms are:

6

• W0: Write pattern
• W1: Write not(pattern)
• R0: Read and verify a pattern
• R1: Read and verify a not(pattern)
• INC: Increment the address generator and define the end of a March Element
• DEC: Decrement the address generator and define the end of a March Element
• INCCOND: Conditionally increment the address generator
• DECCOND: Conditionally decrement the address generator
• SUB: Increment the address generator of x, with x>1
• ADD: Decrement the address generator of x, with x>1
• LOAD: Load a value in the address generator
• NME: New March Element
• NOP: No Operation
• NEXTP: Next Pattern
• CONF: Define the set of SRAM under test
• RUN: Synchronization primitive
• END: End of test

The external interface of the BIST Processor can be designed in order to match the target system

requirements. Possible solutions are a P1500 compliant interface, an addressable device on the system

bus, or a JTAG interface, as in the case study presented in Section IX.

V. THE MEMORY WRAPPER

The Wrapper placed around each memory has to execute the test primitives broadcasted by the BIST

Processor regardless the particular memory access protocol. The Wrapper is therefore the only element

in the architecture taking care of the number of ports, the size, and the access protocol of the memory it

wraps.

The Wrapper generates the correct test patterns and memory addresses required to execute the

received test primitives, and compares the values read during the test with the expected ones.

The Wrapper architecture consists of a Dispatcher and a set of Port Wrappers.

A. Dispatcher

Each RAM under test has a dedicated dispatcher, which receives the test primitives for all the Port

Wrappers from the BIST Processor. Since the primitives are sent sequentially but they have to be

applied at the same time in order to execute the required operations concurrently on all the ports of the

memory, each dispatcher saves all the primitives in a temporary register and delivers them to each port

wrapper only after receiving a synchronization test primitive (RUN). This solution allows to

dramatically reducing the routing overhead that would be required to send all the primitives in parallel

using for each port a dedicated bus.

7

B. Port Wrapper

Each memory port has a dedicated Port-Wrapper that generates the test patterns (address and data)

and verifies the correct behavior of the memory according to the primitive received from the dispatcher.

The result of each primitive is signaled on an output line.

The internal structure of a Port Wrapper is drawn in Figure 2. The Address Generator (AG) is in

charge of generating the correct address where the test pattern, provided by the Pattern Generator (PG),

has to be written or verified. The PGs can be easily customized in order to target different fault types

[13]. Its implementation is nevertheless always very simple, and never more complex than an up-

counter. The correctness of the content of a memory cell is evaluated using a simple Comparator.

Interfacing
Block

Interfacing
Block

Command

Sync_IN

Sync_OUT

Background Pattern
Generator

Background Pattern
Generator

Data IN

Address
Generator
Address

Generator
Address

RAMRAM
P
O
R
T
1

P
O
R
T
2

DOUT

==

DIN

AD
DR
ES
S

Figure 2: Port Wrapper architecture

Two Status Bits are used respectively to set the memory in transparent or in test mode (the Mode

Status Bit) and to store the test results at the end of the BIST algorithm (the Result Status Bit). All the

memories set in test mode are tested in parallel, whereas those set in transparent mode are bypassed and

not tested; this feature is required to allow a flexible scheduling of the memories under test. To set and

read them, the status bits of all the Port Wrappers are dynamically connected into a global scan chain.

Finally, each Port Wrapper includes an Interfacing Block able to receive the test primitives

(Command) from the Dispatcher and to execute them on the memory using the required protocol.

Moreover, the Interfacing Block receives a synchronization signal (Sync_IN) from the previous port

wrapper, and produces an output synchronization signal (Sync_OUT) needed by the other wrappers and

by the BIST Processor to synchronize the scheduling of the next test primitive.

8

The Sync_IN signal of each Port Wrapper is directly connected to the Sync_Out signal of the

previous one, except for the last Port Wrapper whose Sync_OUT signal is connected to the BIST

Processor. The Sync_OUT signal is enabled only when the Sync_OUT signal of the previous Port

Wrapper is asserted. Therefore, the BIST Processor receives the logic-AND of the output signals

generated by all the Port Wrappers.

From a functional point of view, Sync_OUT assumes different meanings depending on the received

test primitive. As an example, in case of a Read or Write operation, it has the meaning of End of

Instruction (EOIN). It is asserted when the memory actually ends the execution of the command. This

mechanism guarantees the synchronization among memories with different timing and access protocols.

In case of a primitive to increment or to decrement the value of the address generator, Sync_OUT has

the meaning of End of Address (EOAD). It is asserted when the addressing space has been visited by the

address generator, allowing the synchronization among memories with different sizes.

Two types of Port Wrappers are available: one for the first port of each memory and one for the others

ports. The main difference between the two lays in the fact that the Port Wrapper connected to the first

port of the memory implements the main addressing loop of the march tests family discussed in Section

IV, whereas the addresses applied to the memory by Port Wrappers connected to the remaining ports are

relative to the value of the address generated by the previous Port Wrapper.

In order to minimize the routing overhead, the signals exchanged between the BIST Processor and the

memory Wrappers (command signals, synchronization signal, scan chain signals) are multiplexed. In

particular, these signals are multiplexed at the port-wrapper level. All the information is routed using

only 6 signals (4 command signals and 2 synchronization signals).

VI. TEST SCHEDULING

An important issue to be faced when running concurrently the BIST of several modules is fulfilling

power budget constraints. In fact, BIST typically results in a circuit activation rate higher than the

normal one, and an over-dissipation of power may seriously damage the devices. Moreover, the variety

of memories that can be found in a complex architecture may require different test algorithms. To

address these two issues, the proposed approach implements a very flexible scheduling mechanism. In

particular, it is possible to select the set of memories to be tested using either a dedicated test primitive

as part of the test algorithm, or setting the Mode Status Bit flag into the memory Wrapper through a

scan chain (See Section V). Only the Wrappers of the selected memories will execute the test primitives

received from the BIST Processor; all the other ones will be set in transparent mode and therefore

bypassed. In this way, several test algorithms may be stored in the µProgram-Memory and may be

applied sequentially to different sets of memories. The definition of algorithms or guidelines for the

9

selection of the best scheduling is a task that depends on the particular target system and it is therefore

out of the scope of this paper. Our main focus has been in the design of an architecture that allowed a

flexible definition of the test scheduling. The two mechanisms implemented to allow the scheduling of

the memories under test are briefly explained in the following.

A. Scheduling using the “CONF” primitive.

Using the CONF primitive, it is possible to embed scheduling information into the test Program. The

representation of this primitive in the µProgram-Memory is defined as follows:

• The CONF opcode;

• The number of 4-bit words used to code the ActivationMask

• The ActivationMask, i.e., a mask of bits, where each bit corresponds to one memory in the system.

To include a memory in the set of the SRAMs under test, the corresponding bit in the

ActivationMask has to be set.

As an example, let’s consider the system in Figure 3:

µ-Program
Memory

µ-Program
Memory

BIST
Processor

BIST
Processor

RAM1RAM1

2
CONF

1001
0000
Test

algorithm

2
CONF

0110
0000

RAM2RAM2 RAM3RAM3 RAM4RAM4 RAM5RAM5 RAM6RAM6 RAM7RAM7

RAM1

RAM4

Test
algorithm

Figure 3: Scheduling using the “Conf” primitive.

When the BIST Processor reaches a CONF primitive during the Test Program execution, it reads the

ActivationMask and configures all the memory wrappers using the scan chain defined in Section III in

order to activate the required scheduling plan. The first ActivationMask described in Figure 3 sets

RAM1 and RAM4 under test, whereas the second one sets RAM2 and RAM3 under test. In order to

10

define different test sessions and to collect test results, at the end of each algorithms the BIST processor

stops the test program execution and waits for a new start primitive to continue with the next one.

B. Scheduling using the Scan chain option.

In order to give the designer a higher flexibility, the set of memories under test can be also set loading

the appropriate ActivationMask directly from the outside using a scan chain protocol. In order to jump

to the appropriate test algorithm in the µ-program memory, also the starting value of the µ-program

memory Address Register can be loaded in the BIST processor using the same protocol.

VII. DIAGNOSIS

Fail map extraction is required to output the relevant data necessary to determine why a failure

occurred within a memory. This data is post-processed using diagnostic software to isolate the defective

memory and location within the memory. Therefore, when a faulty memory is detected, the proposed

approach allows collecting diagnostic information about the location of the faulty memories, the ports

where the fault has been detected, the addresses of the faulty cells, and the detecting patterns. This

information is stored into the Result Status Bit, the Address Generator, and the Background Pattern

Generator of each Port-Wrapper and can be scanned out via the Results_Scan_Chain. To allow even

more detailed diagnostic capabilities, it is also possible to include in the Result_Scan_Chain the test

primitive that triggered the detection of the fault. To reduce the scan chain length, depending on the

result of the test (Result_Status_Bit), each Port-Wrapper configures its portion of the

Results_Scan_Chain in one of the following two ways (Figure 4):

• Result_Status_Bit=’1’: the memory is not faulty; only the Result_Status_Bit is placed on the scan

chain;

• Result_Status_Bit=’0’: the memory is faulty; the Result_Status_Bit is chained to the content of the

Address Generator and the Background Pattern Generator.

11

ADDRESS GEN.ADDRESS GEN. BPGBPG 00

SCAN_IN

RESULT_STATUS_BIT

11

11

Port-Wrapper

ADDRESS GEN.ADDRESS GEN. BPGBPG 00

SCAN_IN

RESULT_STATUS_BIT

11

00

Port-Wrapper

Figure 4: Results_Scan_Chain

VIII. FURTHER OPTIMIZATION

To further reduce the BIST area overhead, the designer can share a single Wrapper for a cluster of

identical memories (same type, width, and size) to be tested in parallel.

This optimization is made at the Port-Wrapper level. For each Port-Wrapper only one Address

Generator and one Background Pattern generator are needed. The only difference with the previously

described Port-Wrapper structure is that a shared Port-Wrapper contains a pair of Status Bits and a

comparator for each memory. In this way, when a fault is detected, the Result Status Bit of the faulty

memory is set, the memory is disconnected, and the Wrapper keep on testing the remaining memories

of the cluster. Obviously, in this case, the status of the Address Generator and the Pattern Generator of

the faulty memory are not preserved. To collect diagnostic information, the test must be re-executed on

the faulty memory only by properly setting its Mode Status Bit.

Finally, since a fault in the BIST logic can be detected only if it causes an error that is detectable as a

memory fault by the test algorithm, the stuck-at fault coverage cannot be precisely computed a-priori

and it will be anyway quite low. Therefore, to allow high fault coverage at the end-of-production, the

BIST logic can be synthesized and tested using full-scan.

IX. CASE STUDY

A case study has been used to evaluate the proposed approach and to gather experimental results. The

target circuit, named VC12AD, is a part of a telecommunication ASIC designed by Italtel SpA. Both

Italtel SpA and Siemens ICN have also used the same circuit as a benchmark for the evaluation of

commercial BIST Insertion Tools. The target circuit has been described in VHDL and synthesized using

the G10 LSILogic™ library, which provides a set of RAMs of different sizes.

The VC12AD counts up to 860K equivalent gates (excluding RAMs), plus 36 small-sized RAMs, for

a total of 14,704 bits and 380,503 equivalent gates.

The case study aims at evaluating the BIST architecture complexity when applied to a set of

memories with very different characteristics, and the area overhead after the BIST insertion.

The 36 RAMs of the circuit are grouped into four distinct macro-areas whose characteristics are listed

in Figure 5.

12

A. BIST architecture

In the definition of the BIST architecture, we tried to minimize the number of wrappers resorting,

whenever possible, to clusters of memories (see Section VIII). As a consequence:

• Within C12A, the 2 modules tpa21x8 and the 2 modules spa*21x26 are treated as two clusters;

• Within C12D, the 2 modules spa21x34 and the 2 modules spa* are treated as two clusters;

• Within SYNDES, the memories are organized in four clusters of 7, 7, 6, and 1 element,

respectively.

The memory clustering has been strongly influenced by the actual floor plan: for example, the 3

spa21x34 memories (2 located inside C12D and 1 in PDH_INT) are too far to be included in a single

cluster.

The overall VC12AD structure after the BIST insertion is in Figure 5.

tpa
21x8

tpa
21x8

C12A

C12D

PDH_INT

SYNDES

dpa*
21x25

spa*
21x59

tpa 336x8

spa*
21x26

spa*
21x26

spa
21x34

spa
21x34

spa*
21x19

spa*
21x19

tpa
42x8

dpa
32x8

spa
21x34

spa*
21x51

qpa
32x9

qpa
32x9

qpa
32x9

qpa
32x9

µP memoryµP memory

BIST
PROCESSOR

BIST
PROCESSOR

Figure 5: VC12AD BIST Architecture

B. BIST Scheduling

Due to the different characteristics of the VC12AD memories (read/write ports, read-only ports, and

write-only ports are present), it is not possible to adopt a single March Algorithm for all of them. We

therefore organized the BIST in four sessions, each one executing a different March algorithm:

• Session 1: All the single port RAMs are tested concurrently;

• Session 2: All the dual port RAMs are tested concurrently;

• Session 3: All the triple port RAMs are tested concurrently;

13

• Session 4: All the quadruple port RAMS are tested concurrently.

C. Experimental results

The total area overhead and the area occupation of each Wrapper and its functional blocks are

summarized in Figure 6.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

2*[tp
a21x8

]

2*[s
pa*21x2

6]

dpa21x2
5

sp
a21x5

9

tpa336x8

dpa32x8

tpa42x8

2*[s
pa21x3

4]

2*[s
pa*21x1

9]

sp
a21x3

4

sp
a21x5

1

7*[q
pa32x9

]

7*[q
pa32x9

]

qpa32x9

6*[q
pa32x9

]

Eq
uiv

ale
nt

 g
at

es

Dispatcher Area
Port Wrapper 4
Port Wrapper 3
Port Wrapper 2
Port Wrapper 1

Figure 6: Wrappers area overhead

The total area overhead introduced by the port wrappers is 68,177 equivalent gates. This area is not

proportional to the number of memory ports, but depends more on the port sizes and functionalities.

The BIST processor and the µ-program memory area overheads, 5,431 and 4,459 equivalent gates

respectively, are a fixed contribution and they are not influenced by the number of memories present in

the system.

The total area overhead is, in this case study, the 17.02%. Although this result may seem quite high, it

is necessary to consider that the target circuit has a lot of small memories and therefore the overhead

introduced by the wrapper is significant. With larger memories the overhead would be much lower.

The area overhead introduced by a commercial BIST insertion tool has been the 22.5%.

X. CONCLUSIONS

In this paper we presented a proprietary solution for a particular industrial scenario, in which it is

necessary to define the BIST strategy of a complex communication SoC including several multi-port

memories of different sizes, access protocol, and timing. The proposed architecture consists in a single

14

BIST Processor, implemented as a µ-programmable machine and able to execute different test

algorithms, a Wrapper for each memory (or cluster of memories), each Wrapper including one Port-

Wrapper for each memory port and a special block named Dispatcher. Each Port-Wrapper contains

standard memory BIST modules, and an interface block to manage the communications between the

memory and the BIST Processor. The Dispatcher collects the instruction from the test processor and

delivers them to the Port-Wrappers. The proposed scheme presents several advantages. It allows

running concurrently the BIST of a set of memories of different number of ports, sizes, and access

protocols, minimizing the BIST area overhead and connectivity around each memory. In addition, the

set of memories to be tested can be freely selected by the designer, as well as the test algorithm to be

executed on each set.

The proposed memory BIST architecture deals with memory modules only. If additional modules

(e.g., random logic, legacy cores, etc.) have to be BISTed as well, more complex and sophisticated

approaches will have to be adopted.

ACKNOWLEDGMENTS

This work is partially supported by Istituto Superiore per le ICT Mario Boella under contract Test

DOC: Quality and Reliability of Complex SoC.

REFERENCES
[1] A. J. van de Goor, Testing Semiconductor Memories: Theory and Practice, John Wiley & Sons, Chichester, England,

1991

[2] Y. Wu, S. Gupta, “Built-in self-test for multi-port RAMs”, IEEE, Asian Test Symposium, Nov 1997, pp. 398-403

[3] M. H. Tehranipour, Z. Navabi, S. M. Fakhraie, “An efficient BIST method for testing of embedded SRAMs”, IEEE,

International Symposium on Circuits and Systems, 2001, Volume 5, pp. 73-76

[4] Chih-Tsun Huang, Jing-Reng Huang, Chi-Feng Wu, Cheng-Wen Wu, Tsin-Yuan Chang, “A programmable BIST core

for embedded DRAM”, IEEE, Design & Test of Computers, Volume 16, Issue 1, Jan-Mar 1999, pp. 59-70

[5] H. Koike, T. Takeshima, M. Takada, A BIST scheme using microprogram ROM for large capacity memories, IEEE,

International Test Conference, Sept. 1990, pp. 815 -822

[6] W.B. Jone, D.C. Huang, “A parallel built-in self-diagnostic method for embedded memory arrays”, IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, Volume 21, Issue 4, April 2002, pp. 449-465

[7] T. Ching-Hong, W. Cheng-Wen, “Processor-programmable memory BIST for bus-connected embedded memories”,

IEEE, Design Automation Conference, 2001, pp. 325 -330

[8] W.B. Jone, D.C. Huang, S.C. Wu, K.J. Lee, “An efficient BIST method for distributed small buffers”, IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, Volume 10, Issue 4, Aug 2002, pp. 512 -515

[9] B. N. Dostie, A. Silburt, and V. K. Agarawal, “Serial interfacing technique for embedded memory testing”, IEEE

Design Test Computers, pp. 52–63, Apr. 1990.

15

[10] L. Ternullo, R. Dean Adams, 3. Connor, G. S. Koch., “Deterministic Self-Test of a High-Speed Embedded Memory and

Logic Processor Subsystem”, IEEE, Proc. of International Test Conf., 1995, pp. 33-44

[11] S. Hamdioui, A. J. Van de Goor, “Consequences of Port Restrictions on Testing Two-Port Memories”, IEEE,

International Test Conference, 1998, pp 63-72

[12] M. Nicolaidis, V. Castro Alves, H. Bederr, “Testing Complex Couplings in Multiport Memories”, IEEE, Transaction on

VLSI systems, 3(1), March 1995, pp. 59-71

[13] A.J. van de Goor, I.B.S. Tlili, March tests for word-oriented memories, IEEE, Design Automation and Test in Europe

Conference, 1998, pp. 501-508

[14] K. Zarrineh, S. J. Upadhyaya, “On Programmable Memory BIST Architectures”, IEEE, Design Automation and Test in

Europe Conference, 1999, pp. 872-881

