
17 June 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A Hierachical Infrastrucutre for SOC Test Management / Benso, Alfredo; DI CARLO, Stefano; Prinetto, Paolo Ernesto;
Zorian, Y.. - In: IEEE DESIGN & TEST OF COMPUTERS. - ISSN 0740-7475. - STAMPA. - 20:4(2003), pp. 32-39.
[10.1109/MDT.2003.1214350]

Original

A Hierachical Infrastrucutre for SOC Test Management

Publisher:

Published
DOI:10.1109/MDT.2003.1214350

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1404465 since:

IEEE Computer Society

SoC Test Management

32 0740-7475/03/$17.00 © 2003 IEEE Copublished by the IEEE CS and the IEEE CASS IEEE Design & Test of Computers

THE CONSIDERABLE GROWTH of digital applica-

tions such as communication systems has led to strong

competition in the semiconductor industry. Part of the

global economy’s success for at least the next decade

arguably hinges not only on how fast designers can devel-

op and manufacture new chips but also on how fast they

can functionally test, diagnose, and verify them. Different

test methods are possible, but the goal is always to help

the industry grow and not slow it down. Complexity, per-

formance, and density, not to mention cost, will all

increase. Keeping up with these trends requires funda-

mental changes in IC realization methods that directly

affect test methods, tools, and equipment.

Silicon area is now so cheap that a single SoC can

hold all the components and functions that historically

required a hardware board. In addition, each compo-

nent or function is now available as a predesigned,

complex functional block. Often, this block comes as

an embedded IP core with an internal structure hidden

from the core integrator. Moreover, each core can serve

diverse scenarios and embed different test architectures

(such as full or partial scan, and BIST), so are reusable

in different designs. Designers can also integrate cores

from different vendors. When a certain combination of

cores becomes common, a system integrator or core

provider can create a new core from that combination.

Hence, today’s SoCs could become tomorrow’s IP cores

in more complex SoCs.

This new design philosophy, based on the hierar-

chical reuse of IP cores, requires system-level test archi-

tectures that can fully support core reuse,

hierarchical design, and integration of

multiple test strategies. Direct accessibil-

ity to interconnections and core bound-

aries is impossible in SoC test, but test

patterns still must travel from their source

to the core, and then to a sink. An access

architecture, or test access mechanism

(TAM), can solve this problem. The TAM must activate

the test functions, possibly deliver test patterns, and

gather the test results for every core in the SoC hierar-

chy. In general, a TAM must guarantee the following:

� Core accessibility. TAMs should permit the control

core testing through a limited set of SoC boundary

signals.

� Reusability. Easy reconfigurability is necessary to

manage the system cores’ different test architectures.

� Minimal overhead. TAMs must have small area, rout-

ing, and performance overheads.

� Flexible test scheduling. TAMs should support core

test scheduling that minimizes power consumption

during test execution.

The proposed IEEE Standard for Embedded Core

Test, P1500, will provide a plug-and-play methodology

to integrate core testability into a SoC. IEEE P1500 con-

centrates on a standardized, configurable, and scalable

core interface or wrapper that allows easy access to the

core’s internal-test methods. The TAM, which must man-

age the execution of the test for the overall chip, is out

of the current scope of IEEE P1500; therefore, the test

engineer must still design it.

Here, we present an innovative TAM, called hierar-

chical-distributed-data BIST (HD2BIST), that addresses

several critical issues in SoC testing, including core

accessibility and test reuse. This architecture allows

smooth integration and management of cores with dif-

A Hierarchical Infrastructure
for SoC Test Management

HD2BIST—a complete hierarchical framework for BIST scheduling, data-
patterns delivery, and diagnosis of complex systems—maximizes and
simplifies the reuse of built-in test architectures. HD2BIST optimizes flexibility
for chip designers planning an overall SoC test strategy by defining a test
access method that provides direct virtual access to each core of the system.

Alfredo Benso, Stefano Di Carlo, and Paolo Prinetto
Politecnico di Torino

Yervant Zorian
Virage Logic

ferent test strategies and built-in test access ports

(TAPs). The approach is fully compatible with the hier-

archical design methodology of SoCs, allowing access

to any core in the system regardless of its hierarchical

depth. To reduce power consumption, HD2BIST sup-

ports test scheduling of cores using sophisticated con-

trol-flow mechanisms. Area overhead is very low

because the HD2BIST architecture is fully customizable

and adaptable to the test requirements of the cores inte-

grated in the system. Thus, test engineers can trade off

routing, area, and test length. In an IEEE-P1500-compli-

ant design, a significant part of the HD2BIST structures

would merge with the IEEE P1500 wrapper to optimize

performance and minimize area overhead.

TAM architecture
For the sake of clarity, we introduce HD2BIST as a flat

architecture, but it actually has a hierarchical structure,

fully adaptable to the hierarchical architecture of com-

plex SoCs. (The “State-of-the-Art TAMs” sidebar dis-

cusses other proposed TAM architectures.)

Test bus
The main actor in HD2BIST is the test bus (TBus)

communication link, which provides an effective solu-

tion for core accessibility and TAM reuse. The data

exchanged over TBus falls into two categories:

� Control data configures and controls all the HD2BIST

test structures.

� Test data carries the test vectors for testing the sys-

tem-embedded cores. Test vectors can come from

the on-chip BIST controllers or from outside the chip.

To reflect this logical classification, we split TBus into

the test control bus (TCB) and the test data bus (TDB).

By implementing these as a ring bus, we can guarantee

a simple, technology-independent approach and offer

high flexibility and dependability.

Because the information exchanged on the two buses

differs, each uses different communication protocols.

Control data on the TCB is typically easily encodable as a

predefined set of commands, called test primitives.

Therefore, we chose a token-based protocol for the TCB.

Data on the TDB, on the other hand, often involves many

test patterns and test responses. Hence, we chose a scan-

chain-based protocol to transmit TDB data.

TBus structure implemented by HD2BIST provides

high reliability. Thanks to the scan chain protocol, we

can easily test the TDB using a standard scan-test

approach. Implementing the TCB as a bidirectional link

guarantees its dependability: The same information

transmitted through a forward link returns via a back-

ward link to verify correctness. If a transmission error

occurs, a diagnosis procedure can locate the fault.

Test block
TBus is an efficient TAM only if a bus manager and

an appropriate bus interface with the cores under test

are properly defined and implemented. In HD2BIST, two

special blocks—the test block (TB) and the test proces-

sor (TP)—perform these tasks. A unique address

defined at design time identifies each core connected

to TBus. Broadcast and group addresses add flexibility

and reduce the number of primitives necessary to exe-

cute each test program.

Engineers can easily customize the TB, shown in

Figure 1, to support the specific test solution imple-

mented in the core. We optimized the TB’s internal

structure for

� full- and partial-scan cores, using the TDB to apply

test vectors and gather test results;

� BIST-enabled cores, using the TCB to send BIST com-

mands and read BIST results; and

� BIST-ready cores, using the TDB to exchange test

vectors between the core under test and its BIST

controller.

Test process
Through TBus, the TP controls all HD2BIST structures

inserted in the chip and schedules the test execution for

each core in the chip. To make this task as flexible as

possible, we interface the TP to TBus through a lower-

level interface, as Figure 2 shows. We can implement

the interface as either a finite-state machine or a micro-

programmed machine. It executes a sequence of test

primitives, implementing a set of test programs defined

by the core integrator. Each test primitive corresponds

to one or more tokens exchanged over the TCB; so test

primitives are either TP generated or come from outside

the SoC through a Joint Test Access Group interface.

The JTAG interface lets a standardized protocol access

the TP and the HD2BIST structure to control execution

of the test programs from an external tester.

To accommodate the SoC hierarchical design

approach, HD2BIST lets you connect different TBus com-

munication links together via the TP. In this case, a TB-like

interface called the upper-level interface connects the TP

of one TBus to a second TBus, as Figure 3 shows. Each TP

33July–August 2003

manages only the test of the cores connected to its TBus.

The upper-level interface allows the management of each

TP as a single unit under test: The TP of the (i–1)th level

(where i = 0 indicates the chip level) considers a TP at

the ith level as a standard TB, treating it like any other core

under test. Nevertheless, this interface’s task is to translate

test primitives from the (i–1)th level to execute the appro-

priate test programs for the blocks belonging to its TBus.

Using this approach, TPs support a distributed approach

for system test execution. Each TP can resolve the com-

SoC Test Management

34 IEEE Design & Test of Computers

The two main issues in SoC testing are core isolation
and core accessibility. Zorian, Marinissen, and Dey dis-
cuss current solutions that create testable and diagnos-
able embedded-core-based system chips. They also
present a generic conceptual architecture comprising
three structural elements.1 This architecture introduces the
basic concepts of the test pattern source, test pattern sink,
and test access mechanism (TAM).

Researchers have proposed several TAM architectures.
These solutions propagate test data in the system in vari-
ous ways, such as using the functional transparent mode
of cores,2 accessing the core under test by directly multi-
plexing additional wires into the IC pins,3 and reaching the
cores by having them share multiple test buses of differ-
ent widths.4

Alternative solutions propose modifications to IEEE Std.
1149.1, Standard Test Access Port and Boundary-Scan
Architecture, developed for board-level interconnects test-
ing. Touba and Pouya present a variation of IEEE 1149.1
based on a partial-boundary-scan ring around the core.5

Whetsel suggests providing each core with an address-
able test port to directly address the core under test, and
introduces a special hierarchical test access port to man-
age a group of cores as one.6 To test interconnections
among cores, Bhattacharya requires the insertion of test
collar cells on the virtual core’s I/O pins to create different
connections between the cells and the system data bus.7

Marinissen et al. propose wrapping the cores with an ad
hoc interface (TestShell) and connecting them through a
proper test bus (TestRail) that delivers the test data pat-
terns and control signals.8

To allow flexibility in scheduling tests, Beenker, Dekkar,
and Stans propose a centralized controller to activate the
BIST sessions one at a time,9 whereas Zorian suggests dis-
tributing the test management on different BIST resource
controllers.10 Finally, Benso et al. introduced the concept
of hierarchical distribution of test management with the
hierarchical and distributed BIST architecture, to manage
different hierarchical levels of BIST-enabled blocks.11

Despite the novelty of these approaches, their modu-
larity and flexibility are limited, and their support for BIST

is less extensive than their support for scan-based tests of
full- or partial-scan cores.

References
1. Y. Zorian, E.J. Marinissen, and S. Dey, “Testing

Embedded-Core Based System Chips,” Computer, vol.

32, no. 6, June 1999, pp. 52-60.

2. I. Ghosh, N.K. Jha, and S. Dey, “A Low Overhead Design

for Testability and Test Generation Technique for Core-

Based Systems,” Proc. Int’l Test Conf. (ITC 97), IEEE

Press, 1997, pp. 50-59.

3. V. Immaneni and S. Raman, “Direct Access Test

Scheme—Design of Block and Core Cells for Embedded

Asics,” Proc. Int’l Test Conf. (ITC 90), IEEE CS Press,

1990, pp. 488-492.

4. P. Varma and S. Bhatia, “A Structured Test Re-Use

Methodology for Core-Based System Chips,” Proc. Int’l

Test Conf. (ITC 98), IEEE Press, 1998, pp. 294-302.

5. N.A Touba and B. Pouya, “Using Partial Isolation Rings to

Test Core-Based Designs,” IEEE Design & Test of

Computers, vol. 14, no. 4, Oct.-Dec. 1997, pp. 52-59.

6. L. Whetsel, “An IEEE 1149.1 Based Test Access

Architecture For ICs With Embedded Cores,” Proc. Int’l

Test Conf. (ITC 97), IEEE Press, 1997, pp. 69-78.

7. D. Bhattacharya, “Hierarchical Test Access Architecture for

Embedded Cores in an Integrated Circuit,” Proc. 16th IEEE

VLSI Test Symp. (VTS 98), IEEE CS Press, 1998, pp. 8-14.

8. E.J. Marinissen et al., “A Structured and Scalable

Mechanism for Test Access to Embedded Reusable

Cores,” Proc. Int’l Test Conf. (ITC 98), IEEE Press, 1998,

pp. 284-293.

9. F. Beenker, R. Dekker, and R. Stans, “Implementing

MACRO Test in Silicon Compiler Design,” IEEE Design &

Test of Computers, vol. 7, no. 2, Apr. 1990, pp. 41-51.

10. Y. Zorian, “A Distributed BIST Control Scheme for

Complex VLSI Devices,” Proc. 11th IEEE VLSI Test Symp.

(VTS 93), IEEE CS Press, 1993, pp. 4-9.

11. A. Benso et al., “HD2BIST: A Hierarchical Framework for

BIST Scheduling, Data Patterns Delivering and Diagnosis

in SoCs,” Proc. Int’l Test Conf. (ITC 00), IEEE Press, 2000,

pp. 893-901.

State-of-the-Art TAMs

mands from the upper bus into all the operations needed

on the lower bus, as Figure 3 shows.

HD2BIST treats each TBus as a distinct address

domain. This approach lets TBus’ addressing scheme

work when the SoC is reused as an embedded core in

a more complex system. Two cores belonging to differ-

ent TBus communication links can share the same

address without conflict. Using this approach, the only

part requiring modification is the external-most TP’s

upper-level interface. For a stand-alone SoC, this is a

JTAG interface; for a SoC used as a core, it is a TB-like

interface that connects the TP to the upper-level TBus.

HD2BIST hierarchy configuration and
scheduling

We can easily configure the hardware architecture

in different modes to create a connection in the hierar-

chy between a core and its test patterns’ source and

sink, collect the results of a BIST procedure, diagnose

faulty components, or accurately schedule test execu-

tion of the overall SoC.

Both mechanisms—for test structure configuration

and test scheduling—are possible thanks to a set of test

primitives that implement the test programs. These

mechanisms define a software level that lets engineers

partially separate the design of HD2BIST hardware from

the tasks of programming and configuring it.

Test primitives
A test program is a set of test primitives issued as tokens

to the TB and TP blocks connected to the TCB.

Conceptually, there are atomic primitives and macro-

primitives; they don’t differ semantically, but their execu-

tion results depend on the target block. Atomic primitives

are commands received by a TB and used to configure a

core’s wrapper or change the status of signals at core

boundaries. Macroprimitives go to the TPs that connect

different hierarchical levels in the TBus tree. Execution of

these test primitives activates another test program to man-

age the test of the lower hierarchical levels.

Using this software level, we can treat a SoC test as a

collection of test programs. Engineers don’t necessari-

ly need to choose the execution order of the test pro-

grams at design time. In fact, HD2BIST provides two

ways of delivering test primitives to the blocks under

test. In external mode, test instructions come from out-

side the system through the top-level TP, possibly using

a tester connected to the TP JTAG interface. In internal

mode, each TP generates the tokens on chip. The two

modes are not mutually exclusive, so we can integrate

35July–August 2003

Figure 2. Test processor architecture.

Figure 3. Connecting two rings. The upper-level

interface receives data from the upper TBus

and, if necessary, forwards it to the lower TBus

through the lower-level interface.

Figure 1. Test block and core wrapper.

them to add flexibility to the overall test strategy.

Internal mode is most suitable for activating BIST pro-

cedures and reading their results, or for connecting a

BIST-ready core to its BIST controller. External mode is

suitable for creating a direct data path from outside the

core under test, to diagnose problems in or apply test

patterns to full- or partial-scan cores.

For external mode, we use the SETENV and

UNSETENV macroprimitives to configure the TCB and

TDB lines, allowing direct access from outside the chip

to any core of the system regardless of its hierarchical

depth. SETENV goes to the TP blocks to create a bypass

connection between two adjacent hierarchical levels.

After receiving a SETENV primitive, a TP begins for-

warding all test instructions from the ith level to the

(i+1)th level. A sequence of SETENV primitives, there-

fore, makes it possible to reach any level of the hierar-

chy from outside. The UNSETENV primitive restores

normal functionality to TBus.

Test structure configuration
Each test program requires a different configuration

of the HD2BIST. Here, a configuration is a connection

scheme between the cores under test and the TDB lines

for transmitting test vectors. We call each connection

scheme a configuration mode, and the set of configura-

tion modes is fully customizable. The only constraint is

that each TB must implement at least bypass mode,

which disables each TDB line and automatically forwards

all the data coming into a TB to the next block on the bus,

as Figure 4 shows. The multiplexer lets you select

between data coming from the bus (bypass mode) and

data coming from the core. The two flip-flops shown in

the lower part of Figure 4 perform the routing of the infor-

mation from the bus to the core and vice versa.

The user can set the configuration mode using the

CONF test primitive. The possibility of setting different

configuration modes allows width sharing (sharing the

TDB lines between different blocks in a single test ses-

sion) or time sharing (reusing the same data line to test

different cores in different test sessions).

Test scheduling
The last issue solved by the bus-based approach is

the test scheduling problem. Four test primitives man-

age the test session of BIST-enabled and BIST-ready

blocks. We can translate the definition of a scheduling

algorithm for BIST-enabled and BIST-ready cores into

an appropriate sequence of configurations, activations,

and collections of a BIST routine’s test results.

The START command starts the execution of a BIST

routine; the COLLECT command collects the results.

These two primitives are useful for defining simple

sequential tests but do not allow complex scheduling

algorithms for decisions that depend on certain test

results. To overcome this problem, we define two addi-

tional test primitives:

� WAIT suspends the execution of a test program until

the completion of the BIST procedure or the test pro-

gram execution of one or more blocks. This instruc-

tion lets test engineers address possible power

consumption issues with concurrent testing of mul-

tiple blocks in the system.

� JUMP improves flexibility in test scheduling, letting

test engineers make decisions on the fly—for exam-

ple, to skip testing additional parts of an already-

revealed faulty component. Depending on the result

of the BIST (or test program) for one or more blocks,

the test program execution jumps to a certain label.

Case study
To demonstrate the proposed TAM’s effectiveness,

we implemented the HD2BIST architecture in LSI Logic’s

DacTOPplus circuit for transmission devices. We chose

this example to highlight our approach’s flexibility.

DacTOPplus architecture
DacTOPplus contains four identical macrocores

(DacTOPs) and two BIST-enabled 8192x8 RAMs, as

Figure 5 shows. Each DacTOP macrocore has four sub-

modules: one transmission macrocell (NDS_TX), one

receiving macrocell (NDS_RX), and two identical NDS

macrocells. The NDS_RX and NDS_TX macrocells are

SoC Test Management

36 IEEE Design & Test of Computers

Figure 4. Test data bus (TDB) connections.

full-scan modules with seven scan chains. The HD2BIST

implementation treats the two NDS modules as glue

logic, and all their flip-flops connect through a single

scan chain. The circuit uses the G11 LSI Logic library.

Table 1 gives the area that DacTOPplus, shown in Figure

5, occupies in Synopsys equivalent gates.

DacTOP test structure
The test structure implemented in each DacTOP

macro consists of a single HD2BIST chain controlled by

the TP. Two TBs control the NDS_TX and the NDS_RX

macros, packaged by a P1500-like wrapper. The TP

directly controls or tests the NDS modules. Therefore,

as Figure 6 shows, the HD2BIST structure inserted in

each DacTOP macro consists of one TBus, two TBs, and

one TP. TBus splits into one 1-bit-wide TCB and one 9-

bit-wide TDB. Because each module has seven scan

chains, and the TDB must transmit the scan-enable and

reset signals driven by the ATPG patterns, we decided

to drive all scan chains in parallel; thus, we set the TDB

width at 9 bits.

Each TB can implement three connection modes:

� Bypass. The TDB merely forwards information to the

next level’s TB, as described earlier.

� Connect. The TDB connects to the scan chains and

delivers the scan patterns to the module.

� Glue. The core wrapper isolates the core and,

through the TDB, applies test patterns to the glue

logic at the core boundary.

The TP implements three test programs, PROG[1-3],

to connect NDS_RX, NDS_TX, and the two NDS macros

to the TDB. Each program sets a different target block

in connect mode, and the other TBs in bypass mode.

The TP implements three connection modes:

� Bypass. Unlike in the TBs, a TP’s bypass mode con-

trols only the uppermost TDB.

� Connect. The upper-level TDB connects to the lower

one.

� Glue. The TP creates a direct path from outside the

chip to the scan chain connecting the glue logic.

Tables 2 and 3 report the area obtained in synthe-

sizing the DacTOP test case and the HD2BIST architec-

ture using the G11 LSI Logic library.

The area overhead of the HD2BIST structure is 7.03%

of the original DacTOP area, and 2.97% of the area of

DacTOP with wrappers. We single out the wrapped ver-

sion of the DacTOPplus because we consider this test

requirement to be independent of the HD2BIST structure.

DacTOPplus test structure
The test structure inserted in the DacTOPplus test

case contains one HD2BIST chain at the top level and

one HD2BIST chain for each DacTOP module. The test

37July–August 2003

Figure 5. DacTOPplus scheme.

NDS_RX NDS_TX

NDS NDS

DacTOP

NDS_RX NDS_TX

NDS NDS

DacTOP
BIST-

enabled
RAM

NDS_RX NDS_TX

NDS NDS

DacTOP

NDS_RX NDS_TX

NDS NDS

DacTOP
BIST-

enabled
RAM

Table 1. Area for the DacTOPplus circuit.

No. of

Core equivalent gates

NDS 99,801

NDS_RX 102,688

NDS_TX 102,802

DacTOP 430,356

BIST-enabled RAM 163,694

DacTOPplus 2,048,814

NDS_RX NDS_TX

NDS NDS

Test block (TB) TB

Test process
(TP)

Test bus

Figure 6. DacTOP HD2BIST scheme.

architecture in each top-level DacTOP macro is

reusable without modification. As Figure 7 shows, the

top-level chain includes one test bus, two TBs, four TPs

(one for each DacTOP macro), and one top-level

processor with a JTAG interface. The test bus splits into

one 1-line-wide TCB and one 9-line-wide TDB (each

DacTOP module needs nine lines, whereas the BIST-

enabled RAMs do not need any data lines).

In the TP, we implemented 13 different test pro-

grams. In the top-level processor, the following pro-

grams can execute in any desired order:

� PROG[1] starts the BIST of the two RAMs, waits for

BIST to end, and reads the test results.

� PROG[2-4] start PROG[1-3] of the first DacTOP and

wait for their end. They then connect the TAP inter-

face’s scan-in with the first DacTOP to scan out the

test results.

� PROG[5-7], PROG[8-10], and PROG[11-13] perform

the same function as PROG[2-4] but with the second,

third, and fourth DacTOP modules.

Table 4 reports the area obtained in synthesizing the

DacTOPplus using the G11 LSI Logic library.

The area overhead of the HD2BIST structure is 6.61%

of the original DacTOPplus area, and 3.06% of the area

of the DacTOPplus with wrappers.

Running a test program
To demonstrate how HD2BIST runs a system test,

Figure 8 gives the test program, which activates the

BIST procedures of the two BIST-enabled RAMs and

then starts polling the two TBs until the end of the BIST

procedure. This test program allows flexible imple-

mentation of any test scheduling; here, it executes BIST

for the two memories in parallel, but by simply

exchanging instructions 3 and 4, it can execute BIST

sequentially.

SoC Test Management

38 IEEE Design & Test of Computers

Table 2. DacTOP area with wrapped modules.

No. of

Core equivalent gates

Glue Logic 199,602

Wrapped NDS_RX 112,049

Wrapped NDS_TX 110,976

DacTOP with wrappers 447,891

Table 3. HD2BIST-enabled DacTOP area.

No. of

Core equivalent gates

TB of NDS_RX 3,695

TB of NDS_TX 3,701

TP 6,145

HD2BIST-enabled DacTOP 461,434

NDS NDS

NDS_RX

TB

NDS_TX

TB

TP3

NDS NDS

NDS NDS NDS NDS

NDS_RX

TB

NDS_TX

TB

TB5

BIST-
enabled

RAM

TB6

BIST-
enabled

RAM

NDS_RX
TB

NDS_TX
TB

NDS_RX
TB

NDS_TX
TB

TP4

TP2 TP1

TAP

JTAG

TP

Figure 7. DacTOPplus with HD2BIST.

FUTURE WORK will continue to apply and refine the

design methodology presented here to achieve higher

levels of testability and dependability. In particular,

more work is necessary to better integrate the present-

ed methodologies with existing standards. We espe-

cially need to investigate the possibility of automatically

integrating the HD2BIST structures with test structures

produced by commercial tools for BIST insertion. �

Acknowledgments
This work is partially supported by Istituto Superiore

per le ICT Mario Boella under contract Test DOC:

Quality and Reliability of Complex SoC.

Alfredo Benso is a researcher in the
Department of Automation and Infor-
mation Technology at Politecnico di
Torino, Italy. His research interests
include DFT techniques, BIST for com-

plex digital systems, dependability analysis of com-
puter-based systems, and software-implemented
hardware fault tolerance. Benso has an MS in com-
puter engineering and a PhD in information technolo-
gies, both from Politecnico di Torino. He chairs the
IEEE Computer Society Test Technology Technical
Council (TTTC) Web-Based Activities Group.

Stefano Di Carlo is a research
assistant in the Department of Automa-
tion and Information Technology at
Politecnico di Torino. His research
interests include DFT techniques, SoC

testing, BIST, and FPGA testing. Di Carlo has an MS in
computer engineering and a PhD in information tech-
nologies, both from Politecnico di Torino. He chairs the
IEEE Computer Society Test Technology Technical
Council (TTTC) Electronic Submissions Committee.

Paolo Prinetto is a full professor of
computer engineering at Politecnico di
Torino and a joint professor at the Uni-
versity of Illinois at Chicago. His
research interests include testing, test

generation, BIST, and dependability. Prinetto has an
MS in electronic engineering from Politecnico di Tori-
no. He is a Golden Core Member of the IEEE Comput-
er Society and is the TTTC’s chair-elect.

Yervant Zorian is editor in chief
emeritus of IEEE Design & Test, vice
president and chief scientist of Virage
Logic, and chief technology advisor of
LogicVision. His research interests

include developing embedded test and repair strate-
gies for IP cores, chips, and systems. Zorian has an
MSc in computer engineering from the University of
Southern California and a PhD in electrical engineer-
ing from McGill University. He is a Golden Core Mem-
ber of the IEEE Computer Society, an honorary doctor
of the National Academy of Sciences of Armenia, and
a Fellow of the IEEE.

Direct questions and comments about this article
to Stefano Di Carlo, Politecnico di Torino, Corso Duca
degli Abruzzi 24, 10129 Turin, Italy; dicarlo@polito.it.

For further information on this or any other computing

topic, visit our Digital Library at http://computer.org/

publications/dlib.

39July–August 2003

Table 4. Area result of DacTOPplus.

No. of

Core equivalent gates

HD2BIST-enabled DacTOP 461,434

TB of RAM 2,956

TP_TAP 5,958

HD2BIST-enabled DacTOPplus 2,184,997

Program PROG[1]
{

Conf ALL,BYPASS // Configure all TPs and TBs in bypass mode
(the TDB isn’t used during the BIST phase).

Start TB5 // Start the first RAM BIST by sending a start
primitive to TB5.

Start TB6 // Start the second RAM BIST.
Wait ALL // Wait for the end of all BISTs. A polling

mechanism implements this primitive.
Collect ALL // Read the BIST results contained in the RAM

TBs, storing them in the top-level TP. If
there’s a fault, external mode gives direct
access to the TBs and BIST controllers to
locate the faulty block.

}

Figure 8. Test program PROG[1] of the top-level test process.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

