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On the Stability of Isolated and Interconnected
Input-Queueing Switches Under Multiclass Traffic

Marco Ajmone Marsan, Fellow, IEEE,
Emilio Leonardi, Member, IEEE, Marco Mellia, Member, IEEE,

and Fabio Neri, Member, IEEE

Abstract—In this correspondence, we discuss the stability of scheduling
algorithms for input-queueing (IQ) and combined input/output queueing
(CIOQ) packet switches. First, we show that a wide class of IQ schedulers
operating on multiple traffic classes can achieve 100% throughput. Then,
we address the problem of the maximum throughput achievable in a net-
work of interconnected IQ switches and CIOQ switches loaded by multi-
class traffic, and we devise some simple scheduling policies that guarantee
100% throughput. Both the Lyapunov function methodology and the fluid
modeling approach are used to obtain our results.

Index Terms—Data network, network stability, performance evaluation,
switching architectures.

I. INTRODUCTION AND PREVIOUS WORK

A major issue in the design of input-queueing (IQ) switches based
upon bufferless crossbar is that the access to the switching fabric must
be controlled by some form of scheduling algorithm which operates on
a (possibly partial) knowledge of the state of input queues. This means
that control information must be exchanged among line cards, either
through an additional data path or through the switching fabric itself,
and that intelligence must be devoted to the scheduling algorithm, ei-
ther at a centralized scheduler, or at line cards in a distributed manner.

We refer in this correspondence to the case of fixed-size data units,
called “cells” from the asynchronous transfer mode (ATM) jargon, pos-
sibly obtained by segmenting variable-size packets (for example, In-
ternet Protocol (IP) datagrams), and to a synchronous switch opera-
tion, according to which input/output connections are changed syn-
chronously at every cell time (called “slot”) for all ports.

The problem faced by scheduling algorithms for IQ switches with
virtual output queues (VOQs) can be formalized as a maximum size or
maximum weight matching on the bipartite graph in which nodes rep-
resent input and output ports, and edges represent cells to be switched.
Edges may be associated with weights related to the state of input
queues.

In order to achieve good scalability in terms of switch size and port
data rate, it is essential to reduce the computational complexity of the
scheduling algorithm. This objective has been often pursued by intro-
ducing a moderate speedup with respect to the data rate of input/output
lines [2] in the switching fabric, as well as in the input and output mem-
ories. In this case, buffering is required at outputs as well as inputs, and
the term “combined input/output queueing” (CIOQ) is used.

Pure IQ switches (i.e., switches with no speedup), whose scheduling
policy implements a maximum weight matching (MWM) at each slot,
were proved in [3], [4] to achieve the same throughput performance
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of output queueing (OQ) switches, under a wide class of traffic pat-
terns, when considered in isolation, and dealing with a single class of
traffic. This result holds provided that edge weights are proportional
to the length of the corresponding VOQ (LQF policy), or to the age
of the head-of-the-line cell (OCF policy) in the corresponding VOQ,
or, finally, to the sum of all cells stored in the corresponding input and
output ports (LPF policy) [5]. To the best of our knowledge, instead, no
general result exists about the performance of pure IQ switches dealing
with multiple traffic classes; only heuristic scheduling algorithms sup-
porting multiple traffic classes were proposed in the literature [6]–[9],
and their performance was assessed by simulation for a limited number
of traffic patterns.

CIOQ switches with speedup equal to 2 were proved able to exactly
emulate OQ switches implementing any monotonic work-conserving
queueing discipline [2]. The scheduling algorithm considered in [2],
however, is very complex. A wide class of low-complexity scheduling
policies, among which maximal size matching algorithms, have been
proved, in [4] and [10] to achieve the same performance of OQ switches
in terms of throughput, with speedup equal to 2.

Finally, in [11] it was shown that a specific network of IQ switches
implementing an MWM scheduling policy can exhibit an unstable be-
havior also when switches are not overloaded. This new, counterintu-
itive result, opened new perspectives in the research on IQ and CIOQ
switches, reducing the value of most of the results obtained for switches
in isolation. In [11], the authors also proposed a policy named LIN
that, if implemented in each switch of the network, leads to 100%
throughput under any admissible traffic pattern when each traffic flow
in the network is leaky-bucket compliant. The LIN policy, however, is
based on a prescheduling of cell transmissions at each switch of the net-
work, thus relying on an exact knowledge of the traffic pattern at each
switch (which calls for a large signaling bandwidth), and leading to ex-
cessive computational complexity when the traffic load approaches 1.

In this correspondence, we perform a theoretical investigation of the
performance achievable by IQ switch architectures dealing with mul-
tiple traffic classes. We also focus on the performance achievable by
a network of IQ and CIOQ switches. Our results are obtained by ap-
plying both the Lyapunov function and the fluid model methodologies.
The interested reader can refer to [12] for a presentation of the basic
theoretical results that form the background necessary to our analysis.

We first show that the extension of schedulers for IQ switches to
multiclass traffic leads to surprising results. For example, we show that
no IQ scheduler can achieve 100% throughput in a two-traffic-class
environment, if strict priority is given to cells of one class with respect
to cells of the other class. We then define a large class of scheduling
policies that allow a pure IQ switch to achieve 100% throughput under
multiclass traffic.

We then analyze the performance of a network of interconnected IQ
switches, trying to provide a better understanding of the instability phe-
nomena first presented in [11], which can occur in networks of IQ or
CIOQ switches, even when each switch implements efficient sched-
uling policies.

The long-term objective of this study is the design of scheduling poli-
cies that guarantee good performance also when switches are intercon-
nected in a network offering multiple service classes. In general, the
implementation of optimal scheduling policies designed for a network
of switches is rather complex, and requires a coordination among dif-
ferent switches, as already pointed out in [11]. However, generalizing
to the context of networks of IQ switches the result obtained in [13] for
networks of interacting queues, we show that the deployment of quite a
simple policy, that requires a minimum amount of information to be ex-
changed only among neighboring nodes, guarantees 100% throughput
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in a network of pure IQ switches. Moreover, we show that a class of
simple scheduling policies based on local information guarantees 100%
throughput in a network of pure CIOQ switches with speedup equal
to 2.

II. PRELIMINARY DEFINITIONS AND NOTATIONS

A. Queueing Systems

Consider a system of J discrete-time queues (of infinite size) rep-
resented by row vector Q, whose jth component, 0 � j < J , is a
descriptor associated with the jth queue in the system. The system
of queues handles N � J classes of customers. Each customer ar-
rives at the network from the outside, receives service at a number of
queues, and leaves the network. Customers change class every time
they move through the network. We suppose that each class k of cus-
tomers, 0 � k < N , universally identifies a queue in the system at
which all class-k customers are enqueued, i.e., all customers of class k
are enqueued at the same queue. Let L(k) = j be the system location
function that associates each class k of customers with the queue j at
which class k customers are enqueued. L�1(j) is the counter-image of
j through function L(k). In general, L�1(j) returns a set of customer
classes. WhenN = J , each customer class is in one-to-one correspon-
dence with a queue.

Let

Xn = (x(0)n ; x
(1)
n ; . . . ; x(N�1)n )

be the row vector whose kth component x(k)n , 0 � k < N , represents
the number of customers of class k in the system at time n. We say
that the set of customers of the same class forms a virtual queue in the
system of queues; thus, in the correspondence we indicate the set of
customers of class k with the term “virtual queue k.” We suppose that
the service times required by customers of all classes are deterministic
and equal to one unit of time. We consider only nonpreemptive atomic
service policies, i.e., service policies that serve customers in an atomic
fashion, never interrupting the service of the customer that is currently
in service.

The evolution of the number of queued customers is described by

x
(k)
n+1 = x

(k)
n + e

(k)
n � d

(k)
n

where e(k)n represents the number of class-k customers that entered
virtual queue k (and thus physical queueL(k)) in time interval (n; n+
1], and d(k)n represents the number of customers departed from virtual
queue k in time interval (n; n + 1].

En = (e(0)n ; e
(1)
n ; . . . ; e(N�1)n )

is the vector of entrances in the virtual queues, and

Dn = (d(0)n ; d
(1)
n ; . . . ; d(N�1)n )

is the vector of departures from the virtual queues. With this notation,
the system evolution equation can be written as

Xn+1 = Xn +En �Dn: (1)

The entrance vector is sum of two terms: the vector

An = (a(0)n ; a
(1)
n ; . . . ; a(N�1)n )

representing the customers arrived at the system from outside, and the
vector

Tn = (t(0n ; t
(1)
n ; . . . ; t(N�1)n )

of recirculating customers; t(k)n is the number of customers departed
from some virtual queue and entered into virtual queue k in time in-
terval (n; n+ 1]. Note that when customers do not traverse more than
one queue (as it is typically the case for an IQ switch in isolation),
vector Tn is null for all n, and En = An.

The N � N matrix Rn = [r
(k;l)
n ] is the routing matrix, whose ele-

ment r(k;l)n represents the fraction of customers departing from virtual
queue k in time interval (n; n + 1] that enter virtual queue l.

We assume that the system of queues forms an open network, i.e.,1

� = I +E[Rn] + E[Rn]
2 + E[Rn]

3 + � � � = (I �E[Rn])
�1

exists and is finite, i.e., I � E[Rn] is invertible for all n. We further
assume that the routing matrix is time invariant, i.e., E[Rn] = R does
not depend on the time instant. We also impose that R satisfies the
strong law of large numbers

lim
n!1

n�1
i=0 Ri

n
= R with probability 1:

Note that Tn = DnRn. The law of evolution of virtual queues can thus
be rewritten as

Xn+1 = Xn +An �Dn(I �Rn): (2)

Let us consider the external arrivals process

An = (a(0)n ; a
(1)
n ; . . . ; a(N�1)n );

we suppose that arrival processes are stationary, i.e.,

E[An] = � = (�(0); �(1); . . . ; �(N�1))

does not depend on the time interval (n; n+1]. Moreover, we suppose
that arrival processes at each virtual queue satisfy the strong law of
large numbers, i.e.,

lim
n!1

n�1
i=0 Ai

n
= � with probability 1:

The workloadWn provided at each virtual queue by customers that
in time interval (n; n + 1] entered the system of queues is given on
average by E[Wn] = W = �(I � R)�1.

To simplify our notation, we define the following matrix associated
with queue length vectors.2

Definition 1: Given vector X 2 IRN , the N � N diagonal matrix
U [X] is such that U (j;j)[X] is equal to 1 if the jth component of X ,
x(j), is nonnull, and it is equal to 0 otherwise. U (i;j)[X] = 0 when
i 6=j.

B. Stability Definitions for a System of Queues

Several definitions of stability for a network of queues can be found
in the technical literature. We recall here two of them.

Definition 2: A system of queues achieves 100% throughput if

lim
n!1

Xn

n
= lim

n!1

1

n

n�1

i=0

(Ei �Di) = 0 with probability 1

whereXn is the queue length vector at time n.

1E[X] denotes the expectation of random quantityX . I denotes the identity
matrix, whose elements are equal to 1 on the diagonal, and null everywhere else.

2In this correspondence, IN denotes the set of nonnegative integers, IR de-
notes the set of real numbers, and IR denotes the set of nonnegative real num-
bers.
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A system that achieves 100% throughput is also called rate stable.

Definition 3: A system of queues is strongly stable if

lim
n!1

supE[kXnk] <1

where the operator k � k represents any possible norm over IRN .

III. ONE SWITCH IN ISOLATION WITH MULTICLASS TRAFFIC

A. Notation

We consider IQ or CIOQ cell-based switches with P input ports and
P output ports, all running at the same cell rate (andwe call themP�P
IQS or CIOQS). The switching fabric is assumed to be nonblocking and
memoryless, i.e., cells are only stored at switch inputs and outputs.

At each input, cells are stored according to a multiclass virtual output
queueing (MCVOQ) policy: one separate queue is maintained at each
input for each output and for each traffic class. We do not model pos-
sible output queues since they never become unstable under admissible
traffic patterns.

We suppose that cells belonging toC different traffic classes arrive at
input (and output) ports. Thus, the total number of input queues in each
switch is N = CP 2. With respect to the definitions of Section II, we
underline the difference between traffic classes and customer classes in
the network of queues: we map cells belonging to a given traffic class
onto different customer classes which depend on the VOQ at which
cells are enqueued. According to the definitions of Section II, we have
a single traffic class when J = N (the number of VOQs equals the
number of customer classes).

The switch in isolation can be modeled as a system comprising N
virtual queues. Let q(k), k = CPi+Cj+l be the virtual queue at input
i storing cells of class l directed to output j, with i; j = 0; 1; 2; . . . ; P�
1 and l = 0; 1; 2; . . . ; C � 1.

We define three functions referring to VOQ q(k):

• I(k): returns the index of the input card in which the VOQ is
located;

• O(k): returns the index of the output card to which VOQ cells
are directed;

• C(k): returns the index of the traffic class associated with the
VOQ.

We consider a synchronous operation, in which the switch configu-
ration can be changed at slot boundaries. We call internal time slot the
time necessary to transmit a cell from an input toward an output. We
call instead external time slot the duration of a cell on input and output
lines. The difference between external and internal time slots is due to
the switch speedup, and to possibly different cell formats (e.g., due to
additional internal header fields).

At each internal time slot, the switch scheduler selects cells to be
transferred from input queues to output queues. The set of cells to be
transferred during an internal time slot must satisfy two constraints:
i) at most one cell can be extracted from the MCVOQ structure at
each input, and ii) at most one cell can be transferred toward each
output, thus resulting in a correlation among servers activities at dif-
ferent queues.

We define a norm function that will be helpful in the sequel:

Definition 4: Given a vector Z 2 IRN ,Z=(z(k); k=CPi+Cj+l;
i; j=0; 1; . . . ; P�1; l=0; 1; . . . ; C�1), the norm kZkIO is defined
as

kZkIO = max
j=0;...;P�1

k2I (j)

jz(k)j;

k2O (j)

jz(k)j :

Fig. 1. Scenario in which any CIOQ switchwith speedup smaller than 2�1=P
implementing a strict priority discipline cannot achieve 100% throughput.

The constraint on the set of cells transferred through the switch can
be formalized in the following manner.
Definition 5: At each time slot, the scheduler of an IQS selects for

transfer from queues Q = (q(k)) a set of cells denoted by vector D 2
INN , D = (d(k) 2 f0; 1g; k = CPi+Cj+ l; i; j = 0; 1; . . . ; P �1;
l = 0; 1; . . . ; C � 1) so that kDkIO � 1. Set D is said to be a set of
noncontending cells, or a switching vector.

In order not to overload any input and output switch port, the total
average arrival rates in cells/(external slot) must be less than 1 for all
input and output ports; in this case, we say that the traffic pattern is
admissible.

Definition 6: The traffic pattern loading an (isolated) IQS is admis-
sible if and only if kWkIO = kEkIO = k�kIO < 1, where E is the
stationary average of En.

Note that any admissible traffic pattern can be sustained in an output
buffered switch architecture with infinite queues.

B. Results for a Switch in Isolation

In [3] and [4], it has been proved, using two different approaches,
that IQ switches subject to a single traffic class can achieve 100%
throughput under a wide class of arrival processes.

In this section, we extend the discussion to IQ switches operating on
multiple traffic classes. We first show that the extension of schedulers
for IQ switches to the multiclass case leads to the surprising result that
no IQ scheduler can achieve 100% thoughput with two (or more) traffic
classes when strict priority is given to cells of one class. We then define
a wide class of scheduling policies which allow the switch to achieve
100% throughput in a multiclass environment.

Let us consider a multiclass CIOQS operating according to a strict
priority discipline.

Theorem 1: 2�1=P is the minimum speedup S required to achieve
100% throuphput in a P � P CIOQ switch handling multiclass cells
according to a strict priority rule.

Proof:
Necessity. Let us consider the traffic pattern described in Fig. 1, in

which flows i ! i, with 0 � i < P , have strict higher priority with
respect to flows P �1! i, with 0 � i < P �1. Suppose that the high
priority arrival process at input i, with 0 � i < P � 1, is Bernoulli,
with probability p = (P � 1)=P . Let us further suppose that high
priority cells arrivals at input i, 0 � i < P �1, are correlated in such a
way that in each slot either no high-priority cells arrive at the switch, or
P � 1 high-priority cells arrive at the switch, one at each input i, with
0 � i < P � 1. Finally, high-priority cells arrive at input P � 1 with
rate q = 1=P��, but they can arrive only when no other higher priority
cells arrive at other inputs. Low-priority cell arrivals are described by
independent Bernoulli processes, with probability q = 1=P � �. It
is immediate to verify that, for every small � > 0, the traffic pattern
loading the switch is admissible.
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We notice that, under these assumptions, high-priority and low-pri-
ority cells are never transferred at the same time. All i! i cells, with
0 � i < P�1, are transferred together, while (P�1)! (P�1) cells
traverse the switch alone. Thus, in order to guarantee the full transfer
of all the cells arriving at the switch, it must be (P �1)q+p+ q � S,
i.e., S � 2 � 1=P .
Sufficiency. It was proved in [2] that a CIOQS with speedup 2�1=P

can exactly emulate an OQ switch operating on different traffic classes
with a strict priority discipline (in the sense that cells can depart from
the two systems at the same time). The proof follows immediately.

Speedup 2� 1=P is sufficient, as proved in [2], to guarantee 100%
throughput (and to guarantee strong stability) under any admissible
traffic pattern for quite a large class of multiclass service disciplines.
However, since the implementation cost of the scheme proposed in [2]
can be significantly large, both in terms of internal bandwidth due to the
required speedup, and in terms of algorithmic complexity of the sched-
uler, the identification of simpler multiclass schedulers that allow an
IQS to achieve good performance is fundamental.

In the rest of this section we focus on the definition of a wide class
of IQ schedulers that achieve 100% throughput in a multiclass traffic
environment.

Definition 7: Let F (X) be a regular function3

F 2 C1[IR+N ! IR+N ]:

An IQS adopts an F (X)-max-scalar scheduling policy if the selection
of the switching vector in each slot is implemented according to the
following rule:

Dn = arg max
D 2D

F (Xn)D
T
i (3)

where Xn is the vector of queue lengths, and DX denotes the set of
all possible switching vectors at time n.

Theorem 2:

Let F (X) be a regular function F 2 C1[IR+N ! IR+N ] such that

1) F (X) defines a conservative field, i.e.,

�

F (X)d�(X)T = 0 (4)

for each regular closed line � in IR+N ;
2) F (X) grows to infinity when X grows to infinity; formally,

there exists a finite s > 0 such that

lim inf
kXk!1

kF (X)k

kXk
� s; (5)

3) all null elements of X remain null

U [X]F (X) = F (X): (6)

Then an IQ switch adopting the F (X)-max-scalar policy is strongly
stable under any admissible independent and identically distributed
(i.i.d.) traffic pattern.

Due to lack of space, the proof of this theorem is omitted. The in-
terested reader can refer to [1], [12]. Note that condition (5) of The-
orem 2, while permitting to associate different finite weights with dif-
ferent traffic classes, prevents strict priorities among traffic classes,
which would require infinite weight ratios. Using fluid models [14],
the previous theorem can be extended as follows to more general traffic
processes, by relaxing the stability conditions.

Theorem 3: An IQ switch adopting the F (X)-max-scalar
policy satisfying the conditions of Theorem 2, and such that
F (�X) = �F (X) for all scalars �, achieves 100% throughput

3C denotes the set of continuous functions with continuous ith derivative,
1 � i � n.

under any admissible traffic pattern satisfying the strong law of large
numbers.

We omit also the proof of this theorem for lack of space (see [1],
[12]); however, we notice that Theorem 4, whose proof is reported in
Section IV, provides a more general result, from which the statement
of this theorem can be directly derived as a particular case.

It can be easily verified that, for each symmetric co-positive diag-
onal matrix W , F (X) = XW (note that F (X) is now a function in
C1[IR+N ! IR+N ]) satisfies properties (4) and (5). Note that F (X)
can be seen as the gradient of function L(X) = 1

2
XWXT . To meet

also constraint (6), we requireW to be diagonal, and state the following
result.

Corollary 1: LetW be a diagonal co-positive matrix, and let F (X)
be a function in C1[IR+N ! IR+N ] defined as F (X) = XW .
Then, a multiclass switch implementing the F (X)-max-scalar policy
is strongly stable under any admissible traffic pattern if the number of
arrivals at VOQs in each slot forms an i.i.d. sequence. The switch is rate
stable, under any admissible traffic pattern, if the sequences of arrivals
at the VOQs satisfy the strong law of large numbers.

IV. NETWORKS OF IQS

A. Notation

We consider in this section a network ofK IQS. Switch k, 0 � k <
K , has Pk input ports and Pk output ports, all at the same cell rate.
Each switch handles C classes of traffic, and performs an MCVOQ at
inputs. Thus, there are CP 2

k different VOQs at switch k.
The network of switches can thus be modeled as a system Q con-

tainingN =
k
CP 2

k virtual queues. We restrict our study to the case
Pk = P 8 k, so that N = CP 2K . Let S(n) be the function that re-
turns the switch on which VOQ n is located; let I(n) be the function
that returns the index of the input card at switch S(n) on which the
VOQ is located; let O(n) be the function that returns the index of the
output card at switch S(n) to which VOQ cells are directed; let, finally,
C(n) be the function that returns the index of the traffic class associ-
ated with queue n. The queue at input I(n) of switchS(n) storing cells
of class C(n) directed to output O(n) is called q(n).

We adapt as follows the concept of kZkIO to the case of a network
of switches handling multiclass traffic.

Definition 8: Given a vector Z 2 IRN , Z = fz(n); n = CP 2k+
CPi+Cj+l; 0�k<K; i; j=0; 1; . . . ; P�1; l=0; 1; . . . ; C � 1g,
the norm kZkIO is defined as

kZkIO = max k=0;...;K�1
i=0;...;P�1 n2S (k)\O (i)

jz(n)j;

n2S (k)\I (i)
jz(n)j : (7)

At each time slot, a set of noncontending cells departs from the
VOQs of each switch. More formally, we say that, at each time slot,
the departure vector D 2 f0; 1gN satisfies

kDkIO � 1:

Definition 9: The traffic pattern loading a network of IQSs is ad-
missible if and only if

kWkIO = kEkIO = k�(I �R)�1kIO � 1

where R = E[Rn] is the N � N average routing matrix defined in
Section II-A.
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Note that an admissible traffic pattern can be transferred without
losses in a network of output buffered switches.

B. Main Result for a Network of IQS

In [11], it was shown that a particular network of IQS exhibits an
unstable behavior under admissible traffic patterns, even when the
switches implement a policy that would guarantee the stability of
each switch in isolation under the same load. In this subsection, we
formalize and generalize such result by providing through the fluid
models theory a general definition of the stability region of a network
of IQS.

Let us introduce our main result.

Theorem 4: An open network of multiclass IQS implementing the
F (X)-max-scalar policy is rate stable under each admissible traffic
pattern such that arrival sequences at VOQs satisfy the strong law of
large numbers if

• G(X) = F (X)[(I � R)�1]T defines a conservative field;
• F (X) satisfies conditions (5) and (6);
• F (�X) = �F (X) for all scalars �.
Proof: Let us write the fluid equations [4]

X(t) = �t�D(t)(I �R)

with the constraints for a max-scalar service policy

_d(k)(t) =
�

_w�(t)�
(k)
�

�

_w�(t) = 1

_w�(t) = 0 if 9�0 : F (X(t))�T
� > F (X(t))�T

� :

Note that the expression that defines the F (X)-max-scalar policy is
equivalent to

_D(t) = argmax
�

F (X(t))��
T
:

Being the network of switches open, and being F (X)[(I �R)�1]T a
conservative field, 1

i=0R
i converges to the finite co-positive matrix

(I � R)�1. We define as Lyapunov function of the system

L(X) =
�

F (Y )[(I �R)�1]Td�TX(Y )

where �X is a regular line whose endpoints are 0 and X .
Since (I � R)�1 � I = 1

i=1 R
i is weakly co-positive,4 it results

in

L(X) �
�

F (Y )d�TX(Y ) > 0; 8X 6= 0:

Let us write the time derivative of L(X(t))

_L(X(t)) = rL(X(t)) _X(t)T = F (X(t))[(I �R)�1]T _XT (t):

Substituting in the relation above the expression

_X(t) = �� _D(t)(I �R)

we obtain

_L(X(t)) = F (X(t))[(I �R)�1]T [�� _D(t)(I �R)]T :

Then

_L(X(t)) =F (X(t))[(I �R)�1]T�T � F (X(t)) _DT (t)

=F (X(t))[(I �R)�1]T�T

� F (X(t)) argmax
�

��F (X(t))T
T

:

4MatrixW 2 IR
IN
� IR

IN is said weakly co-positive if, for each X 2

IR
IN , XWX is nonnegative.

By definition of the F (X)-max-scalar policy, for each � such that
�(I �R)�1 belongs to the convex hull of ��, expression (8) is nega-
tive. Thus, for each traffic pattern such that k�(I�R)�1kIO < 1, the
network of switches is rate stable.

Similarly to the case of the single switch in isolation, it is possible
to extend the result to more general functions F (X) under any admis-
sible i.i.d. traffic pattern (i.e., under a smaller class of traffic patterns
with respect to the assumptions of Theorem 4), by directly applying the
Lyapunov function methodology to equations describing the stochastic
evolution of the system.

Theorem 5: An open network of multiclass IQSs implementing the
F (X)-max-scalar policy is strongly stable under each i.i.d. admissible
traffic pattern if

• G(X) = F (X)[(I �R)�1]T defines a conservative field;
• F (X) satisfies conditions (5) and (6).

For a proof of this theorem the interested reader is, again, referred to
[12].

The F (X)-max-scalar policy defined in this subsection represents a
generalization of the policy originally defined in [13] for the context of
networks of IQSs dealing with multiclass traffic.

The problem of the existence of a scheduling policy for intercon-
nected IQS that makes the network rate stable under any admissible
traffic pattern is thus related to the existence of a functionF (X) at each
switch such that (5) and (6) are satisfied, and in addition, F (X)[(I �
R)�1]T defines a conservative field.

Note that F (X) = XM(I � R)T , where M is a co-positive diag-
onal matrix, satisfies both (5) and (6), and

F (X)[(I �R)�1]T = XM(I �R)T [(I �R)�1]T = XM

hence F (X)[(I � R)�1]T defines a conservative field. The policy
F (X)-max-scalar can be implemented in a distributed fashion by run-
ning, at each switch, a “local” MWM algorithm, for which the weight
associated with VOQ q(k) is given by the kth component of vector

F (X) = XM(I �R)T = XM �XMR
T

i.e.,

x
(k)
M

(k;k) �

N�1

j=0

x
(j)
M

(j;j)
r
(k;j)

:

Since r(k;j) is nonnull only for directly connected downstream
switches, only the knowledge of VOQ’s lengths at neighboring
switches is required to correctly compute the weight of VOQ q(k).
This requires some form of interaction (through signaling) among
adjacent switches in the network. The policy above cannot be exactly
implemented in a network due to the propagation delay between
switches. However, it can be approximately implemented by acquiring
periodically at each switch an approximate knowledge of the queue’s
state at neighboring switches. It is possible to show (see, e.g., [15],
[16]) that finite delays in propagating the queue’s state information
may affect general performance indices, such as average packet delays,
but they do not reduce the stability region of the scheduling algorithm.
As a consequence, by properly choosing the frequency at which
the exchange of the queue’s state information among neighboring
nodes takes place, it is possible to limit the required communication
overhead.

In general, when F (X)[(I � R)�1]T does not form a conserva-
tive field, Theorems 4 and 5 provide no insight into the stability re-
gion of the network of switches. The methodology developed in the
proof of the theorem can be, however, extended to find conditions on
the stability region of policies that do not define a conservative field.
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Indeed, restricting our analysis to F (X) = XM policies, whenever
M [(I � R)�1]T is not symmetric, and thus does not define a conser-
vative field, it is always possible to find a matrix B, such thatM [(I �
R)�1]T + B becomes symmetric; by defining as Lyapunov function
of the system

L(X) =
1

2
XfM [(I �R)�1]T +BgXT

we get

_L(X(t)) =X(t)fM [(I �R)�1]T +Bg _X(t)T

=X(t)fM [(I �R)�1]T +Bg[�� _D(t)(I �R)]T

=X(t)fM [(I �R)�1]T +Bg�T

�X(t)M _D(t)T �X(t)B(I �R)T _D(t)T

=X(t)fM [(I �R)�1]T +Bg�T

�X(t)M�T
F �X(t)B(I �R)T�T

F

=X(t)M [[(I �R)�1]T +M�1B]�T

�M�1B(I �R)T�T
F �X(t)M�T

F

where �F is the switching matrix selected according to the
F (X)-max-scalar policy. Thus, the policy is rate stable for each
� when the term inside the braces belongs to the convex hull defined
by departure vectors, i.e., when

k[(I �R)�1]T +M�1Bg�T �M�1B(I �R)T�T
F kIO < 1: (8)

Note that, since �F depends on X(t), and in general can be any
switching matrix, the above inequality must be satisfied for any
switching matrix. Note, finally, that the satisfaction of the equation
above represents a sufficient (but not necessary) condition for stability.

V. NETWORKS OF CIOQS

In this section, we investigate the stability properties of networks of
CIOQS by applying the fluid models methodology. Switch k is pro-
vided with CP 2

k different VOQs at input ports, and CPk queues at
output ports. We assume that queues at output ports implement any
work-conserving service discipline. Since, under admissible traffic, all
queues at output ports are rate stable, the network of queues is stable
whenever queues at input ports are rate stable, i.e., instabilities may
originate only at input queues. We therefore neglect output queues
in the fluid models. Note, indeed, that applying fluid scaling, each
rate-stable queue reduces to a fluid queue that is permanently empty
and can thus be neglected without inducing any perturbation in the be-
havior of other fluid queues.

A. Minimum Speedup for the F (X)-Max-Scalar Policy

An interesting problem is, given a network of CIOQ switches and an
assignedF (X)-max-scalar policy, to find the rate stability region of the
policy. Particularly, we are interested in the minimum speedup required
at switches in order to make the network stable under any admissible
traffic pattern.

Although this problem cannot be exactly solved, by restricting the
investigation to the particular case F (X) = XM , an upper bound
to the required speedup is provided by the solution of the following
quadratic optimization problem.

Let � be a binary switching vector in IR+N , and B be a matrix in
IR+N � IR+N satisfying the following constraints:

k�kIO =1

M [(I �R)�1]T +B 2Ssym

where R is the routing matrix, and Ssym is the set of all symmetric
matrices. Find the minimum speedup

minS

subject to the constraint

S �k [(I �R)�1]T +M�1B �T

�M�1B(I �R)T�T kIO; 8 � : k�kIO � 1:

The above optimization problem stems from (8): if all switches are
stable under the traffic pattern assumed by Theorem 4, the network is
also stable.

B. Networks of Switches With Per-Flow Queueing

We are now interested to find conditions for stability in a network
of switches where each switch schedules cells according to local infor-
mation. We restrict our investigation to switches performing per-flow
queueing at inputs, i.e., storing each network flow in a separate queue.

In this case, the routing matrix R has as many rows and columns
as the number of flows, and, under deterministic routing, it is a binary
matrix. This means thatR is subunitary; i.e.,RRT = Is, where Is is a
binary diagonal matrix with unitary and null eigenvalues. Let us intro-
duce the diagonal matrix H whose diagonal element h(i;i) represents
the number of switches that packets stored in VOQ q(i) must still tra-
verse, i.e., the residual hop count.

Definition 10: A scheduling policy is said to be “rate-fair” if, for
some finite integer numberw in every window of sizew slots, the ratio
between the service rate given at VOQ q(k) (with S(k) = s, I(k) = i,
and O(k) = j) that never empties during the considered window, and
the total service rate of VOQs either residing at input i of switch s, or
directed to output j of switch s, is larger than [�(I �R)�1](k)=2.

In plain words, a rate-fair policy serves contending nonempty queues
proportionally to their average arrival rates.

Note that rate-fair policies can be easily implemented in switches.
For example, the policy RED-SP described in [10], and PIM [17] with
queue selection probabilities at input and output arbiters proportional
to the average rates, are rate-fair policies. Also i-SLIP [2] can be
made rate-fair by modifying pointers update rules, which must follow
a weighted round robin adapted to the average rates. However, the
implementation of all rate-fair policies requires the exact knowledge
of average arrival rates of individual flows.

We propose here a Rate-Fair maximal Size Matching Selection
Policy (RFmSM-SP), a rate-fair maximal5 size matching policy that
does not require the knowledge of average rates. The proposed sched-
uling policy works as follows: in each internal time slot, the queues
at which an arrival occurred in the corresponding external time slot
are considered. Among them, a maximal set of noncontending queues
(matching) is selected, by solving the possible contentions on output
ports at random. Then, the matching is completed to maximal size
by considering also queues at which no arrivals were observed. Note
that, since RFmSM-SP operates on the basis of local information, it
does not require any form of information exchange (signaling) among
switches.

It can be easily proved that RFmSM-SP is rate-fair under any ad-
missible traffic pattern satisfying the strong law of large numbers, by
repeating the same calculations performed in [10] to prove the stability
of the Random Rate-Driven (RRD) policy.

5A maximalmatching is such that no input/output pairs can be added without
violating admissibility constraints; by contrast, a maximum matching has max-
imum weight or size.



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 3, MARCH 2005 1173

Theorem 6: A network of CIOQS that performs per-flow queueing
at the inputs, with speedup S � 2, implementing RFmSM-SP, achieves
100% throughput under any admissible traffic pattern satisfying the
strong law of large numbers.

Proof: To simplify the notation, we assume in the proof that all
switches are of the same size P � P , but the same arguments can be
easily extended to more general cases.

In order to prove the theorem, we need to introduce the following
assertions.

Proposition 1: Let 1l be a vector in IR+IN whose components are
all equal to 1. Then

[(I �R)H]1lT � 1lT = 0:

This property can be immediately verified by direct inspection. Indeed,
the rows of (I �R)H contain only two nonnull elements: the element
on the diagonal is equal to the distance of the corresponding queue from
the flow destination, while the other nonnull element is equal to minus
the distance of the first downstream queue from the destination.

Proposition 2: For any admissible external rate vector �

�H1lT = �(I �R)�11lT = (�+ �R+�R2 + � � �+ �R�)1lT

where � is the network diameter.

This property can be either verified by direct inspection, or from
Proposition 1

H1lT = (I �R)�11lT :

Proposition 3: For each empty queue i, at any regular point t,
[ _X](i)(t) = 0, i.e., _d(i)(t) = _e(i)(t).

This property was proved for a general network of queues in [14].
Let Q be the normalized matrix defined by

• q(i;i) = 1, 8 i;
• q(i;j) = 1, 8 i; j such that i and j refer to two VOQs that are

either both located at the same input port of the same switch, or
located at different input ports of the same switch but leading to
the same output port;

• q(i;j) = 0 otherwise.

Note that Q is symmetrical.

Proposition 4: For each queue i such that x(i)(t) > 0:
[ _D(t)Q](i) � S.

This property immediately derives from the definition of max-
imal matching scheduling policy, as pointed out in [4], and from
the available speedup S. This property implies that, for each queue
such that x(i)(t) > 0, the aggregate service rate at the associated
input [

k2S (i)\I (i)
_d(k)(t)] and the aggregate service rate at

the output [
k2S (i)\O (i)

_d(k)(t)], counting _d(i)(t) only once,
cannot be less than S. Thus, by the definition of rate-fair policy, we
have the following.

Proposition 5: Under any admissible traffic, for each queue q(i)

such that x(i)(t) > 0, there exists an � > 0 such that

_d(i)(t) � [�(I �R)�1](i) + �; if S � 2:

Indeed, the definition of rate-fair policy implies that

_d(i)(t)

[ _D(t)Q](i)
>

[�(I �R)�1](i)

2
:

Proposition 5 is immediately obtained by combining Proposition 4with
the equation above, under the assumption S � 2.

Proposition 5 can be extended also to empty queues, i.e., to queues
such that x(i)(t) = 0. In this case, however, the assumptions of Propo-
sition 5 must be relaxed in order to allow _d(i)(t) = [�(I � R)�1](i).
Indeed, since by Proposition 3, for each empty queue q(i), the depar-
ture rate _d(i)(t) must equal the arrival rate at the queue, and the arrival
rate at the queue cannot be less than [�(I �R)�1](i), since it must ei-
ther be equal to the departure rate of the last nonempty upstream queue
traversed by the considered flow, or be equal to the external flow arrival
rate if no nonempty queues are encountered by the considered flow on
its way to queue q(i). Thus. we obtain the following.

Proposition 6: For each empty queue q(i) (i.e., for each queue i such
that x(i)(t) = 0), under speedup S � 2: _d(i)(t) � [�(I �R)�1](i).

We are now ready to prove Theorem 6.
Let L(X) = XH1lT be the Lyapunov function. Note that L(X) �

0, for any X 2 R+IN; in addition L(X) = 0 iff X = 0.
For any t such that X(t) is derivable

_L(X) = _XH1lT :

Thus, for X(t) 6= 0, and for each t such that X(t) is derivable

_L(X) = [�� _D(I �R)]H1lT

=�H1lT � _D(I �R)H1lT = (by Proposition 1)

=�H1lT � _D1lT = (by Proposition 2)

=�(I �R)�11lT � _D1lT � (by Propositions 5 and 6)

��(I �R)�11lT � �(I �R)�11lT � �1lU[X]1l
T

< 0

where 1lTU [X] is a vector whose kth component is 1 if queue
x(k)(t) > 0, and 0 otherwise. Thus, _L(X) < 0 whenever L(X) > 0,
so that the system is rate stable.

VI. CONCLUSION

We considered in this correspondence input-queued packet switches
under multiclass traffic. Here are our three most important re-
sults. We defined a large class of scheduling algorithms, called
F (X)-max-scalar, that guarantee stability to a switch in isolation
under admissible multiclass traffic patterns. We extended the above
result to networks of interconnected switches, showing that state
information must be exchanged among adjacent switches to guarantee
stability. We defined a class of scheduling policies requiring no
exchange of information among switches, that guarantee the stability
of networks of combined input/output queued switches operating
with internal speedup; we also proposed RFmSM-SP, a simple, easily
implementable, scheduling policy belonging to the above class.
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Diversity Combining for the Z-Channel
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Abstract—Corrupted packets that cause retransmission requests in au-
tomatic retransmission request (ARQ) systems can be reused. They can be
combined with additional stored copies of the transmitted packet in order
to obtain a single packet which is more reliable than any of the constituents.
A scheme which suits the Z-channel is proposed here and the performance
is analyzed under different coding assumptions.

Index Terms—Asymmetric errors, automatic retransmission request
(ARQ) protocols, error detection, optical communication, packet com-
bining.

I. INTRODUCTION

Error detection as part of a feedback error control system is a re-
liable alternative to feedforward error correction in asymmetric chan-
nels. This is because of simpler hardware implementation of the en-
coding/decoding system and, further, the lack of asymmetric error-cor-
recting codeswith better rates than the corresponding binary symmetric
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codes. Asymmetric errors are typical in optical communication be-
cause, upon transmission, photons may fade or decay but new pho-
tons cannot be generated [1]. Also, the most likely faults that affect
address decoders and word lines in very large scale integration (VLSI)
memories and stuck-faults in a serial bus cause asymmetric errors. The
common channel model for this type of errors is the Z-channel.

For noisy channels repeated retransmission requests can decrease the
throughput efficiency of the system. The method proposed here im-
proves this throughput for feedback error control in asymmetric chan-
nels using diversity packet combining. The idea was first introduced by
Sindhu in [2] who discussed a scheme that made use of the packets that
cause retransmission requests, which are simply discarded in pure and
type-I hybrid automatic retransmission request (ARQ) protocols. Such
packets can be stored and combined with additional retransmissions of
the packet, thus creating a single packet that is likely to be the correct
version of the transmitted one.

There are two basic categories of packet combining systems: code-
combining systems and diversity combining systems. In code com-
bining systems, the packets are concatenated to form noise-corrupted
codewords from increasingly longer and lower rate codes. This is the
basis for type-II hybrid ARQ protocols [3]. On the other hand, in diver-
sity-combining systems, the individual symbols from identical copies
of a packet are combined to create a packet with more reliable con-
stituent symbols. Most of the discussions on diversity combining sys-
tems are based on majority logic decoding [4], [5], or on soft channel
outputs [6]. The Z-channel error characteristic provides a simple frame-
work which can improve the performance of an ARQ system without
adding much to the hardware complexity of the decoder.

The correspondence begins with introducing the proposed asym-
metric error-correction scheme. Then the undetected error probability
and the average number of transmissions are determined for unordered
codewords under the assumption that there are at most k � 1 retrans-
mission requests for a given codeword. The case of unlimited number
of retransmissions, that is, a codeword is retransmitted upon error de-
tection until accepted, follows immediately. Further, some bounds are
proposed for the more general case when some codewords of the asym-
metric error detecting (AED) code cover others.

II. DIVERSITY COMBINING SCHEME AND PROBLEM FORMULATION

As already mentioned, instead of discarding the erroneous packets
which cause retransmissions requests, they can be saved and combined
with the retransmitted ones as in Fig. 1.

Packet combining consists of a bit-by-bit logic OR operation. As-
suming only 1! 0 errors (the 0! 1 type will require complementing
the words prior to the OR operation), note that any bit in error may or
may not be corrected, but new errors cannot be created. An example is
given in Table I. We assume that xxx = 0100111010101 is transmitted
and suffers three bit errors during the initial transmission. Assuming
that the first two retransmissions yield the words shown in Table I, the
codeword is recovered after these two retransmissions.

In other words, a codeword is transmitted repeatedly over a
Z-channel. At the receiving end, the OR of the received copies is
stored (we will call this the combined word). When the combined
word becomes a codeword, this is passed on, and a new codeword is
transmitted. If the passed codeword is different from the one sent, then
we have an undetected error. This process is illustrated in Fig. 2, where
the states T, RQ, and FWD represent word transmission, retransmis-
sion request, and next word transmission, respectively. We will further
assume that there is a limit k on the number of transmissions of a
codeword, that is, if the combined word is not a codeword after k
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