
26 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Comparison of spatial filter selectivity in surface myoelectric signal detection – Influence of the volume conductor model /
D., Farina; Mesin, Luca; S., Martina; Merletti, Roberto. - In: MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING. -
ISSN 0140-0118. - STAMPA. - 42:1(2004), pp. 114-120. [10.1007/BF02351020]

Original

Comparison of spatial filter selectivity in surface myoelectric signal detection – Influence of the volume
conductor model

Publisher:

Published
DOI:10.1007/BF02351020

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1402969 since:

Springer



 1 

Medical & Biological Engineering & Computing 

 

 

 

 

COMPARISON OF SPATIAL FILTER SELECTIVITY IN SURFACE 

MYOELECTRIC SIGNAL DETECTION – INFLUENCE OF THE VOLUME 

CONDUCTOR MODEL 

 

Dario Farina, Luca Mesin, Simone Martina, Roberto Merletti 

 

 

Centro di Bioingegneria, Dip. di Elettronica, Politecnico di Torino, Torino, Italy 

 

 

 

 

Keywords: electromyography, EMG modeling, spatial filters, selectivity, end-of-fiber components 

Running title: Volume conductor model and spatial selectivity 

 

 

 

Corresponding author: 

Dario Farina, PhD 

Dipartimento di Elettronica,  Politecnico di Torino; Corso Duca degli Abruzzi 24, Torino, 10129 ITALY 

Tel.   0039-0114330476; Fax.  0039-0114330404; e-mail : dario.farina@polito.it  

Acknowledgements 

This work was supported by the European Shared Cost Project Neuromuscular assessment in the Elderly Worker 

(NEW) (Contract n° QLRT-2000-00139). 

mailto:dario.farina@polito.it


 2 

ABSTRACT 

Spatial filters are used for increasing selectivity in surface EMG signal detection. This study 

investigated the importance of the description of the volume conductor for inferring conclusions on 

comparing filter selectivity from simulation analyses. A cylindrical multi-layer description of the 

volume conductor was used for the simulation analysis. Different anatomies were analyzed with this 

model and results on filter selectivity compared. The longitudinal single (LSD), double (LDD) and 

normal double differential (Laplacian, NDD) filters were investigated. Largely different conclusions 

could be drawn when comparing filter selectivity resulting from simulations with different volume 

conductor models. A filter which performed best with a particular anatomy could be the poorest 

with another anatomy. While with a bone/muscle model and superficial fibers, the ratio between 

peak-to-peak values of the propagating and non-propagating signal components was approximately 

220% for LDD and LSD and lower than for NDD (approximately 290%), with a 

bone/muscle/fat/skin model LSD performed significantly worse (150%) than both LDD and NDD, 

which showed similar performance (approximately 300%). Similarly, increasing the lateral distance 

of the recording by 10°, signal amplitude was reduced to 2% with LSD and LDD and to 4% with 

NDD. With another anatomy, LSD and LDD reduced signal amplitude to 20-25% while NDD 

reduced it to 4%. Similar considerations could be drawn for other selectivity indexes. Thus, 

modeling should be used carefully to infer conclusions on spatial selectivity and to indicate 

particular selections of spatial filters. 
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1. INTRODUCTION 

During voluntary muscle contractions, the electrical activity of the active motor units (MUs) may be 

detected by electrodes placed over the skin. The resultant surface electromyographic (EMG) signal 

is termed interference since the contributions of the MUs are superimposed and difficult to separate. 

The tissues interposed between the signal sources and the detection electrodes indeed act as low-

pass filters, causing a blurring effect on the surface potentials. The electrical potential generated by 

a source is thus spread in a large region over the skin. The sources are poorly localized in space 

with the consequence that many sources contribute to the signal generated at the detection location.  

As in image processing, spatial selectivity can be enhanced by proper signal filtering. Since the 

volume conductor can be described as a spatial low-pass filter (LINDSTROM and MAGNUSSON, 1977; 

STEGEMAN et al., 2000), a high-pass filtering in the spatial domain may be used to counteract the 

blurring effect of the tissues. As high-pass filters enhance the edges in image processing, in the case 

of surface EMG detection, spatial high-pass filters may reduce the spatial spread of the surface 

potentials, thus allowing better localization of the sources. 

In surface EMG, spatial filtering is performed by the weighted summation of signals detected by 

electrodes arranged in particular geometrical configurations. A bipolar recording can be described 

by a sinusoidal transfer function in the spatial frequency domain (LINDSTROM and MAGNUSSON, 

1977), thus it is a high-pass spatial filter for signals with spatial bandwidth smaller than half of the 

inverse of the inter-electrode distance. The same can be done for more complex configurations of 

point (REUCHER et al., 1987; REUCHER et al., 1987; DISSELHORST-KLUG et al., 1997) or non-point 

(FARINA and CESCON, 2001) electrodes. The detection of surface EMG by two-dimensional (2-D) 

configurations of electrodes, representing selective high-pass spatial filters in a limited bandwidth, 

has been termed as high spatial resolution EMG (HSR-EMG) (RAU and DISSELHORST-KLUG, 1997), 

to indicate the high selectivity of these recording systems. Although not as widespread as the classic 

bipolar recordings, 2-D spatial filters have been recently applied by many research groups for single 

MU studies (HOGREL and DUCHENE, 1999; HUPPERTZ et al., 1997; RAMAEKERS et al., 1993). 
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Given the extensive use of spatial filtering in recent EMG studies, comparison of selectivity of these 

systems is an important issue. Indeed, theoretically highly selective spatial filters are usually 

comprised of more detection surfaces than less selective ones (REUCHER et al., 1987a; REUCHER et 

al., 1987b). Signal detection is thus more complex in the case of HSR-EMG than for classic bipolar 

recordings. For establishing if complex systems are worth to be used instead of classic ones, it is 

necessary to quantify the gain in terms of spatial selectivity obtained at the expenses of a more 

complex detection modality. 

Spatial selectivity should be interpreted as selectivity with respect to propagating and non-

propagating signal components (FARINA et al., 2002a; FARINA et al., 2002b; DIMITROVA et al., 

2002). The former are generated by the intra-cellular action potential (IAP) traveling along the 

muscle fibers, the latter are due to the generation and extinction of the IAP at the end-plates and 

tendon junctions. A system may be more selective than another with respect to a specific 

component and not for another signal component. For example, experimental results on leg muscles 

showed that, among a number of one-dimensional (1-D) and two-dimensional (2-D) detection 

systems, the longitudinal double differential filter is the most selective for cross-talk signals 

(DISSELHORST-KLUG et al., 1999; VAN VUGT and VAN DIJK,  2001), while more isotropic filters, 

such as the Laplacian, are best with respect to propagating components (FARINA et al., 2003a; 

FARINA et al., 2003b). 

Selectivity to propagating signal components is related to the feasibility of detecting single MU 

activities (RAU and DISSELHORST-KLUG,1997) since propagating components are dominant in case 

of sources close to the detection point. On the other hand, the ability to reduce non-propagating 

signals is important for crosstalk since crosstalk is mainly due to these signal components (FARINA 

et al., 2002b). Moreover, a better reduction of non-propagating signals implies a lower bias of 

conduction velocity estimates (FARINA et al., 2002a).  

There are a few studies reporting comparison of spatial filters for surface EMG detection. 

Comparison of selectivity can be achieved by 1) theoretical considerations (GYDIKOV et al., 1986), 
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2) surface EMG signal modeling (DIMITROV et al., 2003), or 3) experimental observations 

(DISSELHORST-KLUG et al., 1997; FARINA et al., 2003a; FARINA et al., 2003b; VAN VUGT and VAN 

DIJK, 2001). The first approach is based on the comparison of spatial filter transfer functions and 

theoretical up-take areas or volumes and provide indications whose validity is limited to simplified 

conditions which may be far from practice. Modeling allows investigation of a large range of 

conditions which is often not possible in experimental analyses. However, a model is still a 

simplified description of the actual surface EMG generation and detection system and conclusions 

reached by modeling should be considered carefully. The experimental approach is preferable to the 

modeling one but may be difficult to perform for obvious technical difficulties.  

It has been shown that different volume conductor models may lead to different results in terms of 

decrease of monopolar potential amplitude with distance from the source (ROELEVELD et al., 1997). 

In particular, it is well known that adding subcutaneous layers in addition to the muscle tissue in a 

model results in larger spread of the surface potential distribution (e.g., FARINA and RAINOLDI, 

1999). This is due to both the increased distance of the sources with respect to the detection points 

and the different conductivity properties of the subcutaneous layers with respect to the muscle tissue 

(ROELEVELD et al., 1997).  

Relative comparison of selectivity of spatial filters, that is the analysis of which filters are more or 

less selective with respect to others, may also be affected by the use of different simulation models, 

in particular of different anatomical conditions. This is due to the different characteristics of the 

muscle tissue (anisotropic) with respect to subcutaneous layers (isotropic). Different filters, in 

particular highly anisotropic versus almost isotropic ones, may be more or less sensitive to the 

anatomy. Thus, a filter more selective than another for a certain volume conductor description may 

be less selective when applied to another description. These issues should be considered in 

simulation studies which aim at investigating differences in selectivity of spatial filters and/or at 

proposing new filters on the basis of a simulation-based validation of performance. 
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The hypothesis tested in the present simulation study is that adding subcutaneous layers to the 

volume conductor may lead to different conclusions on relative comparison of selectivity of spatial 

filters to both propagating and non-propagating signal components. 

 

2. METHODS 

2.1 Simulation model 

The analytical model used describes the volume conductor as a cylindrical layered medium (BLOK 

et al., 2002; GOOTZEN et al., 1991) and has been implemented as described by Farina et al. (2003c). 

Different numbers of tissue layers may be included. We analyzed three sets of layers, corresponding 

to a volume conductor comprised of 1) bone and muscle, 2) bone, muscle, and fat, 3) bone, muscle, 

fat, and skin (Figure 1). The conductivity of the bone was set to 0.02 S/m, that of the muscle was 

0.5 S/m in the fiber direction and 0.1 S/m in the transverse directions, that of the fat layer was 0.05 

S/m, and that of the skin varied among 0.1 S/m, 0.5 S/m, and 1 S/m. Fat layer thickness varied 

among 1 mm, 3 mm, and 5 mm. In total, the latter choices led to 13 volume conductor descriptions 

(Table I). The 13 configurations have been compared in the case of muscle fibers located at the 

same depth within the muscle (Figure 1). 

 

Table I and Figure 1 about here 

 

The model accounts for the generation, propagation, and extinction of the IAPs at the end-plate, 

along the fiber, and at the tendons, respectively. These phenomena are described by the progressive 

generation, propagation, and extinction of the first derivative of the IAP (DIMITROV and 

DIMITROVA, 1998; FARINA and MERLETTI, 2001; FARINA et al., 2003c). The IAP shape was 

described as proposed by ROSENFALCK (1969). Point electrodes were considered in all cases and 

only single fiber action potentials were simulated. The simulated conduction velocity was 4 m/s. 
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2.2 Spatial filters and indexes of selectivity 

The analyzed spatial filters were the longitudinal single and double differential (LSD and LDD) and 

the normal double differential (NDD) (Figure 1c). Inter-electrode distance was 5 mm in the results 

shown, although the simulations were performed also for 10 mm inter-electrode distance. 

Selectivity was evaluated in the longitudinal and transverse directions with respect to muscle fiber 

orientation and in the depth direction. Signals were simulated as detected at different transverse 

distances from fibers located at different depths (Figure 1). The selectivity indexes were defined as 

the percent ratio between the peak-to-peak signal components for depths of the fiber of 5 mm and 1 

mm within the muscle, and for transverse distances of 10 degrees and 0 degrees with respect to the 

detection system. It is clear that there are many alternative ways of defining selectivity indexes 

other than the previous definitions. We decided to compare the initial amplitude decrease (for short 

distances) since similar indexes have been used for assessing transverse selectivity in recent 

experimental studies (FARINA et al., 2003b). The more selective the detection system, the higher the 

amplitude decrease. In particular, we will compare in the following the percent of signal amplitude 

from a deeper source with respect to a more superficial one (depth selectivity, DS) and the percent 

of signal amplitude from a transversally distant source with respect to a source located under the 

detection system (transverse selectivity, TS). Smaller percentages of signal amplitude generated by 

sources more far away with respect to closer sources will indicate higher selectivity of the detection 

system. 

We defined the interval of time Tp with “propagating” signal component as that corresponding to 

the generation and propagation of the IAP; non-propagating signals corresponded to the interval of 

time during which the IAP extinguished at the tendon junctions. With the above definition, the 

“propagating” component does not travel without shape changes because of the effect of the end-

plate and of the traveling of the IAP along the opposite fiber semi-length. Being aware of this 

ambiguous definition, we will refer in the following to propagating signal component as the part of 
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the signal corresponding to IAP generation and traveling. The selectivity indexes will be reported 

for both the propagating and the non-propagating signal components. 

Longitudinal selectivity was evaluated by the temporal support of the simulated potentials, defined 

as the square root of the normalized second order central moment of x
2
(t), as indicated below: 
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where T is the total time interval in which the signal x(t) is simulated. With respect to other 

definitions of duration, Bt has a resolution not limited by the sampling period. The smaller Bt, the 

more selective the filter. It has to be noted that Bt may assume much smaller values than other 

indexes of time duration, such as those based on a high fraction of signal energy contained within a 

certain interval of time. As for the other selectivity indexes, alternative definitions are possible. 

These choices are not critical for the results shown in this study.  

 

3. RESULTS 

Figure 2 shows representative potentials simulated at different transverse distances (at steps of 2.5 

degrees, corresponding to 2.18 mm for a radius of 50 mm) from the fiber and detected by the LDD 

and the NDD systems. Two anatomies have been simulated in this example. The signals detected by 

both filters are affected by the anatomy selected. NDD signals show an inversion of polarity which 

is due to the geometrical relations between the electrodes and the fiber. This inversion is clearly 

visible with one anatomy but not with the other. It is also evident that the difference in signal 

attenuation with distance between the two filters is more pronounced with one anatomy than with 

the other. 

 

Figure 2 about here 
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3.1 Relative weight of propagating and non-propagating signal components  

Figure 3 reports the ratio (PNP) between propagating and non-propagating signal components for 

the 13 anatomies, the three spatial filters, and two angles of inclination (0 and 15 degrees) of the 

recording systems with respect to the muscle fiber orientation. A short semi-fiber length (30 mm) 

has been selected for representative purposes. Note that in this case the relative weight of non-

propagating components is rather large.  

Considering, e.g., results from the first anatomy, in case of superficial fibers, the LDD and LSD 

recordings show similar PNP, lower than with NDD. The differences are rather large. With other 

anatomies the situation changes significantly. With bone, muscle, fat, and a highly conductive skin 

layer, LSD shows PNP significantly lower than LDD (approximately 160% versus approximately 

280%) with NDD still showing higher PNP. Increasing the fat layer thickness and decreasing skin 

conductivity, LDD and NDD perform similarly with LSD leading to significantly smaller PNP 

(150% versus 300%).  

Increasing fiber depth (Figure 3b), in average, PNP is lower than for superficial fibers, as expected. 

In this case, LDD leads to significantly higher PNP than NDD with all the anatomies. However, 

LSD may be significantly worse or better than both LDD and NDD, depending on the description of 

the volume conductor. Again the differences are quite large. While with a bone/muscle model, LSD 

performs worse than the other two filters (PNP approximately 150% versus PNP higher than 

200%), with other anatomies it performs best. 

 

Figure 3 about here 

 

3.2 Selectivity in depth direction  

Figure 4a reports the percent amplitude of the propagating component of the signal with depth of 

the fiber 5 mm with respect to that obtained from a fiber at 1 mm within the muscle. Results from 
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the 13 anatomies, the three spatial filters, and two angles of inclination (0 and 15 degrees) of the 

recording systems with respect to the muscle fiber orientation are reported. As expected, the 

anatomy influences results with a general decrease of selectivity when isotropic layers are added. 

The relative performance of the different filters is not much affected by the anatomy. On the 

contrary, when investigating the selectivity with respect to end-of-fiber components (Figure 4b), the 

anatomy selected leads to different conclusions on the relative comparison of filter selectivity. NDD 

is in general less selective with respect to these components than LDD and LSD, although the 

difference depends on the anatomy. LSD may be more or less selective than LDD depending on the 

description of the volume conductor (compare, e.g., anatomies 5, 7, and 11). 

 

Figure 4 about here 

 

3.3 Selectivity in transverse direction  

The effect of the anatomy on the percent of signal amplitude with increasing transverse distance by 

10 degrees with respect to the amplitude obtained from a fiber under the detection system is large 

(Figure 5). Both in case of propagating and non-propagating signal components, relative behavior 

of spatial filters is highly influenced by the anatomy. LSD, LDD, and NDD show similar 

performance with some anatomies (e.g., the first) while they perform significantly differently with 

other anatomies (e.g., the 11
th

). The differences are not negligible and important for practical 

applications. With the fifth anatomy, for example, when lateral displacement of the detection 

system increases from 0° to 10°, the propagating components are reduced to approximately 2% with 

LSD and LDD and to approximately 4% with NDD. With the 11
th

 anatomy, LSD and LDD reduce 

the signal amplitude to approximately 25% and 20% respectively, while with NDD amplitude 

decreases to 4%. Similar considerations hold for the non-propagating part of the signal (Figure 5b). 

 

Figure 5 about here 
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3.4 Selectivity in longitudinal direction  

As for the other selectivity indexes, also longitudinal selectivity is affected by the volume conductor 

description (Figure 6). Comparison of spatial filters depends on the anatomy. In general, the action 

potentials are longer when tissue layers are added, as expected. For superficial fibers (Figure 6a), 

LDD potentials have longer duration than NDD and LSD in case of the bone/muscle model, while 

LSD shows longer potentials than the other two filters for other volume conductor descriptions. 

Increasing fiber depth (Figure 6b), the duration of the potentials increases, as expected. In this case, 

LSD shows always longer potentials than the other two filters. 

 

Figure 6 about here 

 

4. DISCUSSION 

Roeleveld et al. (1997) indicated that complex volume conductors are needed for EMG signal 

simulation when interpreting experimental results. These authors showed that experimental 

monopolar data could not be matched with simple models while they could be explained by more 

complex simulation approaches. The presence of subcutaneous layers increases the geometrical 

distance between the muscle fibers and the detecting electrodes, thus increasing the spread of the 

potential distribution over the detection surface. In addition, the combination of isotropic and 

anisotropic layers may increase the spatial distribution of the surface potentials more than expected 

by simple depth increase (ROELEVELD et al., 1997; STEGEMAN et al., 2000). The hypothesis to be 

tested in the present work was that the spatial potential spread over the detection surface may be 

influenced by the volume conductor in different ways depending on the spatial filter applied for the 

detection. Thus, relative comparisons of different filters by simulations strongly depends on the 

model used. In terms of selectivity, one filter may be better than another with one volume conductor 

description while the opposite may happen with another description. The addition of isotropic layers 
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makes the volume conductor transfer function more isotropic than with muscle only. This is 

especially true for superficial fibers. Highly anisotropic and almost isotropic spatial filters may thus 

have different effects for different volume conductor models. Differences in relative comparison of 

spatial filters may probably be obtained also with simpler ways of describing subcutaneous layers, 

e.g., by increasing source depth within the muscle. In the latter case, the volume conductor transfer 

function changes due to depth without the effect of isotropic transfer functions. The results would 

still be different from those reported in this study, showing the large sensitivity of the conclusions 

to the model used. Moreover, other generation and detection system parameters may have an 

influence on the results. Changing inter-electrode distance, for example, scales the theoretical 

transfer function of the spatial filters. Depending on the inter-electrode distance, it is also possible 

that the spatial bandwidth of the signal is larger than the period of repetition, in the spatial 

frequency domain, of the transfer function of the spatial filter. The same simulations shown in this 

study were repeated with 10 mm inter-electrode distance (results not shown) and the general 

conclusion was of a large effect of the volume conductor on the comparison of the filters, as for the 

case of 5 mm. 

Selectivity should be evaluated in depth, transverse, and longitudinal direction for both propagating 

and non-propagating components. A simulation study on the issue of selectivity is very complex 

since the factors to be considered are many. Both the model used for the simulations and the 

number of conditions simulated are important.  

The previous observations lead to the considerations that 1) in practical applications improvement 

of spatial selectivity by complex spatial filters may be more or less pronounced (or may even be 

absent) depending on the muscle and subject analyzed (i.e., on the anatomy), and 2) modeling 

should be carefully used to infer conclusions on spatial selectivity and to indicate particular 

selections of spatial filters.  

Simplified descriptions of the volume conductor provide significantly different conclusions on 

spatial filter selectivity than more complex descriptions. It is doubtless that other volume conductor 



 13 

models (e.g., planar, FARINA and MERLETTI, 2001) with respect to those analyzed in this study 

would lead to still different results and different conclusions on the comparison of spatial filters. 

Indications limited to a particular aspect of spatial selectivity and obtained with simple models may 

thus be confusing since may not cover all the aspects important for filter comparison. A model can 

not reproduce the real muscle anatomy in practical measures; even considering simplifications, such 

as layered volume conductors, it is not possible to measure and introduce exactly in the model some 

important parameters, such as conductivity of the layers. Moreover, the model used in this study 

assumes homogeneous bone, muscle, fat, and skin layers with sharp borders. In real situations the 

edges are not sharp and a number of other tissues (blood vessels, glands, etc.) make the media rather 

dishomogeneous, likely altering the shape of the surface motor unit action potentials. All these 

parameters play a role not only on the monopolar potential spread over the skin but also on the 

relative comparison of selectivity of spatial filters. Thus, interpretation of experimental results on 

selectivity by modeling is very critical. Suggestions on spatial filter selection by a modeling 

approach leads clearly to even greater problems. 

The differences in spatial selectivity and reduction of end-of-fiber components for different 

anatomies observed in this study were rather large. When addressing the ratio between propagating 

and non-propagating signal components for superficial fibers, we obtained values between 150% 

and 350% for LSD, LDD, and NDD, depending on the volume conductor description. The 

difference between LDD and NDD with a bone/muscle model was reduced with other models 

(Figure 3). Experimental results showing a similar bias in single MU conduction velocity estimates 

when signals are collected by LDD and NDD (SCHULTE et al., 2003) are in agreement with the 

present simulation results in case of some anatomies but not with others. Since optimal reduction of 

non-propagating components is reached by different filters depending on the anatomical condition, 

estimation of conduction velocity may be improved by adaptive selection of the spatial filters for 

signal detection (FARINA and MERLETTI, 2003). 
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As for the ratio between propagating and non-propagating signal components, the selectivity of 

individual spatial filters is highly dependent on the description of the volume conductor. Transverse 

selectivity is, in particular, largely affected by the tissues interposed between the muscle fibers and 

the electrodes. The improvement in spatial selectivity by 2-D recordings with respect to 1-D ones is 

more or less pronounced depending on the volume conductor. A bone/muscle model predicts a 

similar transverse selectivity of LDD and LSD with respect to NDD. With other anatomies, 1-D 

systems are even more selective than the 2-D one. The latter observation is not in agreement with 

experimental results on tibialis anterior, biceps brachii, and upper trapezius muscles (FARINA et al., 

2003a; FARINA et al., 2003b). For these muscles it was indeed shown that NDD significantly 

increased selectivity of the recordings in the transverse direction with respect to LDD. Anatomical 

descriptions more complex than the bone/muscle may explain these experimental results. 

 

5. CONCLUSIONS 

Relative performance of spatial filter selectivity largely depends on the anatomy. A spatial filter 

may be more or less selective than another depending on the volume conductor description. With 

different models or adding layers of different conductivities to the same description of the volume 

conductor (e.g., layered with circular symmetry), one filter may be best among others while it may 

be the worst with other volume conductor structures. Since the real surface EMG generation and 

detection system is more complex than any model, this variability of results with different models is 

critical and indicates that modeling should be carefully used when addressing the issue of spatial 

filter selectivity. This is in general true for many other issues which may be investigated by 

modeling. For issues in which the description of the volume conductor is critical, the experimental 

paradigm should be used rather than or in addition to modeling. Practical indications provided by 

modeling about the optimal filter to use are inherently limited. For the same reasons, the proposal of 

new filters should be accompanied by an experimental validation rather than or in addition to a 

simulation-based test of performance.  
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Thus, the main conclusion of this study is that the description of the volume conductor significantly 

affects the relative comparison of spatial filter selectivity in simulation analysis. Results on 

selectivity obtained with models should be considered with caution when discussing practical 

applications. 
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TABLE CAPTION 

 

Tab. I The 13 simulated anatomical conditions. The conductivity (indicated by C) and thickness 

(indicated by Thick; Radius in the case of the bone) of the different layers are reported. VC stands 

for “Volume conductor”. NP stands for “Not Present” and indicates that the layer was not included 

in the specific anatomical condition. Summation of the bone radius and the thicknesses of the other 

layers leads in all cases to 50 mm, which is the radius of the simulated limb fixed for the 13 

anatomies. Bone, fat, and skin are isotropic in all cases, thus a single conductivity value is reported. 

The muscle tissue is anisotropic and two conductivity values are reported, corresponding 

respectively to conductivity in the radial and angular direction and in the longitudinal direction. 
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FIGURE CAPTIONS 

 

Fig. 1 a) Section of the volume conductor for three anatomical configurations corresponding to 

bone/muscle, bone/muscle/fat, and bone/muscle/fat/skin. The muscle fiber is simulated at the same 

depth within the muscle. b) Lateral view of the volume conductor with the simulate finite-length 

muscle fiber. Each detection point corresponded to the center of the detection system, which was 

the central electrode for LDD and NDD and the middle point between the two electrodes for LSD. 

At the detection point, in this figure, an LSD system is placed, for representative purposes. c) The 

spatial filters investigated. 

 

Fig. 2 Simulated single fiber action potentials detected at different transverse distances (at steps of 

2.5 degrees) from the source and detected by NDD and LDD. Results with two anatomical 

conditions (corresponding to the 1
st
, (a), and the 11

th
, (b), in Table I) are reported. The fiber is at a 

depth of 1 mm within the muscle in both cases. Fiber semi-length is 50 mm. 

 

Fig. 3 Ratio (PNP) between the peak-to-peak amplitude of the propagating and the non-propagating 

signal components for a superficial (1 mm within the muscle) (a) and a deeper (5 mm within the 

muscle) (b) fiber. Fiber semi-length is 30 mm. The cases of an inclination angle of 0 or 15 degrees 

between the detection system and the muscle fiber are reported. The anatomies reported on the 

abscissa axis refer to the descriptions provided in Table I. 

 

Fig. 4 Ratio (DS, %) between the peak-to-peak amplitude of the signals generated by fibers at 5 mm 

and 1 mm depth within the muscle in case of the propagating (a) and the non-propagating (b) part of 

the potential. Fiber semi-length is 50 mm (a) and 30 mm (b). The cases of an inclination angle of 0 

or 15 degrees between the detection system and the muscle fiber are reported. The anatomies 

reported on the abscissa axis refer to the descriptions provided in Table I. 
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Fig. 5 Ratio (TS, %) between the peak-to-peak amplitude of signals generated by fibers at 10 

degrees and 0 degrees of transverse distance from the detection point. The fiber is 1 mm deep 

within the muscle. Fiber semi-length is 50 mm (a) and 30 mm (b). The cases of an inclination angle 

of 0 or 15 degrees between the detection system and the muscle fiber are reported. The anatomies 

reported on the abscissa axis refer to the descriptions provided in Table I. 

 

Fig. 6 Temporal support (Bt) of the propagating part of the simulated potentials for a superficial (1 

mm within the muscle) (a) and a deeper (5 mm within the muscle) (b) fiber. Fiber semi-length is 50 

mm. The cases of an inclination angle of 0 or 15 degrees between the detection system and the 

muscle fiber are reported. The anatomies reported on the abscissa axis refer to the descriptions 

provided in Table I. 
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Tab 1 

 

 

 

VC 

model 

Bone   (isotropic)  Muscle (anisotropic)   Fat layer 

(isotropic)   
Skin layer 

(isotropic)   

C (S/m) Radius 

(mm) 

C    (S/m) Thick 

(mm) 

C (S/m) Thick 

(mm) 

C (S/m) Thick 

(mm) 

1 0.02 20 0.1; 0.5 30 NP NP NP NP 

2 0.02 20 0.1; 0.5 29 0.05 1 NP NP 

3 0.02 20 0.1; 0.5 28 0.05 1 1 1 

4 0.02 20 0.1; 0.5 28 0.05 1 0.5 1 

5 0.02 20 0.1; 0.5 28 0.05 1 0.1 1 

6 0.02 20 0.1; 0.5 27 0.05 3 NP NP 

7 0.02 20 0.1; 0.5 26 0.05 3 1 1 

8 0.02 20 0.1; 0.5 26 0.05 3 0.5 1 

9 0.02 20 0.1; 0.5 26 0.05 3 0.1 1 

10 0.02 20 0.1; 0.5 25 0.05 5 NP NP 

11 0.02 20 0.1; 0.5 24 0.05 5 1 1 

12 0.02 20 0.1; 0.5 24 0.05 5 0.5 1 

13 0.02 20 0.1; 0.5 24 0.05 5 0.1 1 
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Fig 1 
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Fig 4 
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Fig 5 
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Fig 6 
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