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ABSTRACT 

We propose a model for surface EMG signal generation with cylindrical description of the volume 

conductor. The model is more general and complete with respect to previous approaches. The 

volume conductor is described as a multi-layered cylinder in which the source can be located either 

along the longitudinal or the angular direction, in any of the layers. The source is represented as a 

spatio-temporal function which describes the generation, propagation, and extinction of the intra-

cellular action potential at the end-plate, along the fiber, and at the tendons, respectively. The layers 

are anisotropic. The volume conductor effect is described as a two dimensional spatial filtering. 

Electrodes of any shape or dimension are simulated, forming structures which are described as 

spatial filters. The analytical derivation which leads to the signal in the temporal domain is 

performed in the spatial and temporal frequency domains. Numerical issues related to the 

frequency-based approach are discussed. The descriptions of the volume conductor and of the 

source are applied to the cases of signal generation from a limb and a sphincter muscle. 

Representative simulations of both cases are provided. The resultant model is based on analytical 

derivations and constitutes a step forward in surface EMG signal modeling, including features not 

described in any other analytical approach. 
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1. INTRODUCTION 

Many methods for the simulation of surface EMG signals have been proposed previously (e.g., 

[2][4][6][7][11][12][16][17][20][25]). Modeling has been fundamental to investigate the 

relationships between EMG signal features and the underlying physiological processes. Surface 

EMG signal modeling has also didactic and many other important applications [26].  

In recent years, advances in surface EMG modeling have focused on the description of the volume 

conductor [2], the detection system [7], and the phenomenon of generation and extinction of the 

intracellular action potentials at the end-plate and tendons [4]. Both analytical [2][4][6][7][11][20] 

and numerical [17] approaches have been proposed for the description of the volume conductor. 

We will refer to analytical approaches when the volume conductor impulse response is provided by 

a mathematical expression, which depends on the parameters of the system.  

Analytical methods are usually computationally more efficient than numerical ones. They also 

allow an easier interpretation than numerical approaches of the changes of signal features with 

system parameters. Many theoretical issues related to surface EMG were indeed derived from 

analytical modeling methods; some examples are the relation between muscle fiber conduction 

velocity and spectral surface EMG changes during fatigue [16][27], the presence of dips in the 

frequency bandwidth of EMG signals [16], and the selectivity of EMG detection systems 

[5][23][24]. Nonetheless, a numerical approach allows description of complex muscle architectures, 

which is less tenable with analytical derivations. 

Recently, Blok et al. [2] analytically described a cylindrical volume conductor that included 

muscle, fat, and skin layers. Lowery et al. [17] proposed a similar description of the volume 

conductor, including an internal bone, but used a numerical method instead of an analytical one. 

We recently presented an approach for surface EMG signal modeling based on the spatial and 

temporal Fourier frequency characteristics of the signal [7]. This approach was applied to generate 

signals in a layered (muscle, fat, and skin tissues) volume conductor in Cartesian coordinates with 

infinite parallel planes separating the tissues. Although this description is rather far from some 
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experimental conditions, e.g., EMG detection from limb muscles, it may fit well in other cases, e.g., 

back muscles. The interesting aspect of the model was the new perspective with respect to classic 

model derivations. The signal in the temporal domain was generated by an equivalent one-

dimensional (1-D) filter in the time domain. The latter filter was computed on the basis of the 

spatial transfer functions of the volume conductor and detection system and of the spatio-temporal 

function describing the evolution in space and time of the intracellular action potential. This 

description allowed direct interpretation of surface EMG spectral characteristics. For example, the 

presence of spectral dips in the case of two-dimensional (2-D) detection systems was investigated 

theoretically with this modeling approach [7][8]. The model also allowed efficient computation of 

the simulated potentials by the application of properties of the 2-D Fourier transformation.  

A cylindrical volume conductor can be used to describe limb muscles [2] as well as sphincter 

muscles. In the latter case, the fibers are located around a circumference and the detection system is 

placed in an internal layer with respect to the source. The description of the volume conductor is 

similar to the case of the limb but the layers have different conductivities and there is no way of 

avoiding layers that are internal with respect to that containing the source; the latter characteristic 

led to numerical problems in the solution of the limb case [2]. The description of the source as well 

as of the detection modality in the case of modeling a limb or a sphincter is different.  

There are no analytical descriptions of the volume conductor representing a limb muscle with layers 

that are internal with respect to that containing the source and no modeling descriptions of sphincter 

muscles. We will show that the approach proposed in [7] can be generalized to the case of 

cylindrical volume conductor. This leads to a very general approach for the simulation of fibers 

located both along the longitudinal and angular directions. As for the case of infinite parallel planes 

separating the tissues [7], all the effects of generation and detection of the action potentials will be 

described by equivalent spatial and temporal filters in the cylindrical volume conductor. No 

additional computations in the temporal domain are required. 
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Hence, the main objectives of this study are to: 1) derive an analytical solution that describes the 

transfer function in the spatial frequency domain of a multi-layer cylindrical volume conductor, 

with layers both internal and external with respect to that containing the source or the detection 

system, 2) generalize the approach proposed in [7] for the case of the cylindrical volume conductor 

investigated, with sources traveling both in the longitudinal and in the angular direction for 

simulating surface EMG signals generated by a limb or a sphincter muscle, 3) include in the 

resultant model a complete description of the source (with generation, propagation, and extinction 

of the intracellular action potentials) and of the detection system, and 4) provide interpretation in 

the light of sampling of the temporal and spatial domains of the numerical issues related to the 

implementation of the model in the frequency domain. The developed model is based on analytical 

derivations and constitutes a step forward in surface EMG signal modeling, including features not 

described in any other analytical approach. The presented concepts constitute an original and 

general way of simulating surface EMG signals. 

 

2. METHODS 

The investigated geometry is reported in Fig. 1, which describes both the case of a limb and of a 

sphincter muscle. The coordinates in which the volume conductor is studied are cylindrical (,,z). 

The volume conductor is a multi-layer cylinder with the source located in any of the layers, along 

the z or  coordinate. All the layers are limited in the radial direction, i.e., they have finite thickness, 

except for one which is infinite. The infinite layer may be anisotropic. Different numbers of layers 

and locations of the detection points lead to different volume conductor models, i.e., different 

volume conductor transfer functions. In the following, when we refer to the number of layers, we 

will always include the infinite layer; e.g., a two layer volume conductor model may be constituted 

by a muscle layer and an infinite air layer.  

The source may be in the most internal layer, as in [2], in an intermediate layer, or in the external 

(infinite) layer. Each layer is homogeneous but may be anisotropic; thus isotropy is not imposed in 
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any of the layers. This geometry is very general and applies to the case of limb as well as of 

sphincter muscles. The derivation of the spatial impulse response of the volume conductor is the 

same in the two cases while the description of the source is different.  

In the case of the limb, we assume the source to be placed in an intermediate layer and the recording 

system to be placed at the boundary between the most external limited layer and the infinite layer 

(which will be air in this case); in the case of the sphincter, we assume the source to be located in an 

intermediate or in the infinite layer (which will represent the muscle) and the detection system to be 

placed at the boundary between the most internal layer (which will be insulating) and the second 

layer. The intracellular action potentials travel along z or , where the fibers are located, in the limb 

and sphincter case, respectively. Thus, the muscle tissue has higher conductivity in the z or  

direction than in the other directions, in the two cases, respectively. 

Since some of the derivations provided below are independent of the coordinate along which the 

source travels (z or ), in these cases, we will indicate with xlo and xtr the coordinate longitudinal 

and perpendicular (transverse) to the muscle fiber direction, respectively. However, the longitudinal 

coordinate will always be reported as a length, rather than as an angle, to keep the notation uniform. 

Hence, in the case of the limb, we will have xlo=z and xtr=, while, for the sphincter case, xlo=R 

and xtr=z, where R is the radius of the circumference along which the fiber is located (Fig. 1b). 

 

Figure 1 about here 

 

2.1 Source description 

A current density source located along one of the spatial coordinates and which originates, 

propagates, and extinguishes along a finite length muscle fiber, can be described as: 

 )2/()()2/()(),( 2211
LxxpvtxxLxxpvtxx

dx

d
txi

iloloLiloloiloloLilolo

lo

lo     (1) 
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where t is the time coordinate; i(xlo,t) is the current density source; v the velocity of propagation of 

the source; )( lox  the first derivative of Vm(-xlo) (with Vm(xlo) the intracellular action potential); 

pL(xlo) a function that takes the value 1 for –L/2  xlo  L/2 and 0 otherwise; 
ilox  the position of the 

end-plate; L1 and L2 the semi-lengths of the fiber from the end-plate to the right and to the left 

tendon, respectively. This modelization describes sources traveling longitudinally in Cartesian 

coordinates [7]. Eq. (1) is a generalization of those concepts (see also Fig. 6 in [7]). In the case of 

the source traveling in the angular direction, we have xlo=R, as indicated above. With this notation, 

Eq. (1) applies for sources propagating both along z and . Eq. (1) represents two waves traveling at 

velocity v in opposite directions, originating at a common point (the end-plate), and extinguishing at 

distances L1 and L2 from the origin. 

 

2.2 Computation of the surface signal in time domain 

Assuming that the effects of the volume conductor and detection system can be described as an 

equivalent 1-D transfer function )( lokB  [with corresponding impulse response )( loxb ] in the spatial 

domain ( lolo fk 2  is the spatial angular frequency in the longitudinal direction) and considering 

the potential detected at a specific location 
0lolo xx  , we obtain the potential in the time domain as: 
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where 1

tk  indicates the inverse Fourier transformation in time domain, s  for propagation 

along the z axis, Rs   for propagation along , and with [7]: 
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   
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where 






v

k t  is the Fourier transform of )( lox  [Eq. (1)] evaluated at 
v

k t ; * denotes the complex 

conjugate; 
v

k
kk t

lo  , 
v

k
kk t

lo  , and tt fk 2  the temporal angular frequency. Note, when 

xlo=R in Eqs. (2), that the variable klo is discrete, due to the periodicity of 2 in . Thus, the 

integrals in klo should be interpreted as series. However, the same issue arises when considering the 

numerical implementation in which also kz should assume a finite number of values (see below). 

The notation with integrals rather than series can be maintained considering a multiplication of the 

argument of the integral by a train of Delta functions which describes in the frequency domain the 

periodicity in the angular coordinate. The same notation, which assures uniformity in the 

mathematical derivations between the limb and the sphincter case, is used in the section “Derivation 

of the spatial transfer function”. 

Eqs. (2) show that, given the transfer function in the spatial domain, for each instant of time the 

potential along the coordinate lox  is computed by a convolution of the spatial impulse response and 

the source. If the potential is detected at the point 
0lolo xx  , the sampling of the potential can be 

seen as an integral in the frequency domain, which is a special case of the Radon transform. These 

concepts have been described in detail for a Cartesian coordinate system in [7][8]. Eq. (3) is the 2-D 

Fourier transform of the current density source given in (1). 

Eqs. (2) are general and allow calculation, through a 1-D inverse Fourier transform, of the potential 

generated by the source [Eq. (1)] in a generic volume conductor and detected by a generic detection 

system at a specific point along the xlo axis (Fig. 1). The transfer function )( lokB  is assumed to be 

known and will be calculated below. None of the derivations depends on the propagation axis of the 

source.  
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Fig. 2 shows a block diagram representing this modeling approach. The entire surface EMG 

generation and detection model is described as the multiplication of two 2-D functions, an 

integration and a 1-D inverse Fourier transform. This is equivalent to a filtering in the time domain 

[7]. 

 

Figure 2 about here 

 

2.3 Derivation of the spatial transfer function 

The function B(klo) in Eqs. (2) represents the transfer function to be applied to a generic source in 

the spatial domain to compute the spatial potential distribution along the xlo axis, at a transverse 

distance 
0trtr xx   from the source. ),(

00 trlo xx  are the coordinates of the detection point (Fig. 1). 

Assuming an impulsive source in the spatial domain to which the 2-D transfer function Hglo(kz,k), 

describing all the spatial phenomena, is applied, the potential detected in the longitudinal direction 

at the transverse location 
0trtr xx   is: 
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where 1

lok  stands for the inverse Fourier transformation in the longitudinal spatial coordinate,  

Hglo(kz,k) is the 2-D transfer function of the volume conductor and detection system (Fig. 2), xlo = 

z, xtr = , klo = kz, ktr = k, 00
trx , for the limb case, and xlo = R, xtr = z, klo = k/R, ktr = kz, 

00
zxtr  , for the sphincter case. trtr fk 2  is the spatial angular frequency in the transverse 

direction. Note that in Eqs. (4), Hglo(kz,k) is a function of kz and k for both the limb and the 

sphincter. This transfer function describes the spatial phenomena related to the volume conductor 

and detection system, as discussed below. These phenomena do not depend on the propagation 
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direction of the source. Eqs. (4) indicate that the signal detected along xlo at position 
0trtr xx   and 

generated by an impulsive source can be viewed as a section of the 2-D inverse Fourier transform of 

the spatial transfer function of the system. This is equivalent to the 1-D inverse Fourier transform of 

an integral in the spatial frequency domains, which is again a special case of the Radon transform 

[7].  

From Eqs. (4), the transfer function applied in Eq. (2) is given by (Fig. 2): 





 tr

xjk

zglolo dkekkHkB trtr 0),(
2

1
)( 

                                                   (5) 

with klo = kz, ktr = k, for the limb case, and klo = k/R, ktr = kz, for the sphincter case. 

The previous derivations are extensions of the concepts proposed in [7] to a generation and 

detection system in a cylindrical coordinate system. With these notations, the model is defined once 

the volume conductor and the detection system transfer functions have been computed.  

 

2.4 Computation of the transfer function of a multi-layer cylindrical volume conductor 

In the following we derive the transfer function of the volume conductor of Fig. 1. The approach 

includes layers either internal or external to the source, with detection system placed at any layer 

interface, and describes both limb and sphincter muscles. The notations used are consistent with the 

description of the source, i.e., the volume conductor is described in kz and k. Numerical issues 

related to the sampling of the solution in space and time are treated in the section “Numerical 

issues”. 

The electric potential in a volume conductor is obtained from the following relationship in the case 

of quasi-stationary conditions [3][13][21]: 

IJ  )(                                                                 (6) 

where J  is the current density ( 2mA ), I  is the source current density ( 3mA ), and   the 

conductivity tensor. 
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Considering a cylindrical, homogeneous medium that is symmetric in cylindrical coordinates, and 

an impulsive source, Eq. (6) becomes: 
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where )0,0,(R  are the coordinates of the source in the cylindrical coordinate system and  ,  , 

z  are the conductivities in the three coordinates. With the following change of variables: 
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zkx  ,                                                                 (8) 

and assuming that the solution can be written, separating the three variables [14], as the product of 

three functions in , , and z: 

)()()(),,( zZTz   ,                                                   (9) 

we obtain from Eq. (7) the following system in )(),(),( zZT  : 
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where Rkx z
z




0  [from Eq. (8)]. 

The general solution of the system in Eq. (10) is [14]: 
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where 0z , 0T , 1z , and 1T  are arbitrary constants, )( zn kA  and )( zn kB  are arbitrary coefficients,  




 


kn  , and )(xI n , )(xKn  are modified Bessel functions of order n  of the first and second 

type, respectively [1]. In Eqs. (11), zk  is a real number while k  is an integer number, given the 



 12 

periodicity of the solution in  , as discussed above. Substituting Eq. (11) in Eq. (9), we obtain a 

particular solution of Eq. (7) for each choice of the arbitrary terms )( zn kA , )( zn kB , 0z , 0T , 1z , 1T , 

and for each selection of zk  and k . Due to the linearity of Eq. (7), the general solution can be 

expressed as a linear combination of the solutions obtained above, yielding the following 

expression:  
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where it has been explicitly stated that the function )(x  depends on zk  and k , and where the 

arbitrary constants 0z , 0T , 1z , and 1T  have been included in the coefficients )( zn kA  and )( zn kB . 

From Eq. (12), the potential in the cylindrical coordinate system is obtained as an inverse Fourier 

transform in zk  and an inverse Fourier series in k . Thus, k  is the integer index in the Fourier 

series. In practical implementations, both zk  and k  assume a finite number of values and are, thus, 

limited. Note also that when the source travels in the  direction, the longitudinal coordinate is 

related to k, which is equivalent to zk  when the source travels parallel to the main axis of the 

cylinder.  

The coefficients )( zn kA  and )( zn kB  in Eq. (11) should be computed to satisfy the boundary 

conditions and to allow the discontinuity of the first derivative of )(x  imposed by the impulsive 

source. In the general case of N  layers with the source located in one of them, there are )1(2 N  

arbitrary coefficients to be determined, )1(2 N  conditions imposing the continuity of the potential 

and of the flux at the )1( N  interfaces, two conditions imposed by the source, one condition of 

convergence for 0 , and one for  . The conditions at the boundaries of the layers are 

determined by the following relations [11]: 
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where 0  indicates the location of the interface under consideration and 
0

 , 
0

  are the radial 

conductivities of the two layers under consideration.  

The conditions related to the source are the continuity of the potential and the discontinuity of its 

first derivative in correspondence of the source [28]: 
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with x0 defined as in Eq. (10) and   the radial conductivity of the layer containing the source. 

Moreover, to obtain a solution that is internal to the source ( R ), the coefficient multiplying 

)(xKn  in Eq. (11), which diverges for  = 0, should vanish to account for the source being placed 

in the most internal layer; to obtain a solution that is external to the source ( R ), the coefficient 

multiplying )(xI n  in Eq. (11), which diverges for  , should be set to zero to account for the 

source being in the most external layer. Thus: 
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                 (15) 

The following general solution, which is the transfer function of the volume conductor, is obtained 

in the angular spatial frequency domains zk  and k : 
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with 



 


kn  . The last term of the solution in Eq. (16) is obtained from Eq. (11) by the source 

conditions [Eq. (15)] and is different for parts of the volume conductor that are internal and external 

with respect to the source. In this case, R  is used for the first two conditions in Eq. (15) and 

R  is used for the third and fourth expressions in Eq. (15). 
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The transfer function in Eq. (16) is different for the layers that are internal or external to the source. 

Blok et al. [2] noted that their solution could not work for internal layers but did not generalize their 

solution to these cases. When there are no layers internal to that of the source and the recording is 

performed for R , conditions described in Eq. (14) are not used. When modeling structures such 

as a bone in the limb or a sphincter muscle, the correct solution for layers that are internal to the 

source is necessary. In particular, the detection is always performed in internal layers for the 

sphincter (Fig. 1).  

In the above derivation, the transfer function was obtained in the two spatial frequency domains. 

The computation of the signal in time domain, as described in Fig. 2, does not require any 

calculations in the spatial domain. The truncation of the series in Eq. (12) is viewed in our case as 

setting the frequency axis to finite limits, which implies a sampling in the spatial domain (see 

section “Numerical issues”). This applies for both the coordinates. The selection of the frequency 

axis leads to the same issues, addressed below, in the two spatial domains. Limiting the maximum 

frequencies, i.e., truncating the series in Eq. (12), does not involve any approximation if the Nyquist 

theorem is satisfied in all the domains (two spatial and one temporal). 

The solution given above does not assume any isotropic layer and can be used in the case of any 

number of layers. It can be simplified in particular cases. For example, studying a limb and 

including bone, muscle, fat, skin, and infinite air, we may assume that all the layers are isotropic, 

except for the muscle. In the case of the sphincter that involves a mucosa and an infinite muscle 

layer, we set the mucosa to be isotropic and the muscle to be anisotropic. For the isotropic layers, 

the argument of the Bessel functions in Eq. (16) is zkx   and the order is kn  . For the limb 

muscle tissue, it is z    , 





z
zkx   and kn  . In the case of the sphincter muscle, 

the fibers are located around circumferences, hence    z , the argument of the Bessel 

functions is zkx  , and  .  
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The arbitrary coefficients in Eq. (16) are determined considering the specific cases. In general, they 

are specified by a linear system that derives from the conditions described in Eqs. (13) and (14): 

bXA                                                              (17) 

with X  the vector of coefficients to be determined and A  and b  dependent on the volume 

conductor structure. 

In the case of a limb with the bone, muscle, fat, skin, and air, with the layers isotropic except for the 

muscle, we have: 
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with kn   and with the following notations: 

2

)()()(
)(';

2

)()()(
)('

;;;

1111 xKxK

dx

xdK
x

      (19) 

being a, b, c, and d defined in Fig. 1, b , mz ,  m , f , and s  the conductivities of the bone, of 

the muscle in longitudinal and radial direction, of the fat, and skin, respectively. 
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In the case of the sphincter muscle, assuming an infinite external muscle layer (anisotropic), an 

intermediate layer modeling the mucosa (isotropic), and an internal non-conductive layer where the 

detection probe is placed, we have:  
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with the notations of Eq. (19),   the conductivity of the mucosa, kn  , 



 


m

mkp  ,  m  and 

 m  the conductivities of the muscle in the angular and radial direction, respectively. 

For both the limb and sphincter, determination of the arbitrary coefficients given above can be 

generalized to any number of layers and location of the source. Note that Eqs. (13, 14, 15, 16) 

determine a system of equations for the determination of the arbitrary coefficients that is different to 

the description by Gootzen [11] when there are layers internal to the source. Figs. 3 and 4 show the 

impulse responses computed as described above for the limb and sphincter case with different 

numbers of layers. Although impulse responses were not used in any of the modeling derivations 

because all the calculations are performed in the frequency domain (Fig. 2), they are shown here for 

clarity, due to the ease with which they can be interpreted. In Fig. 3, note that the addition of 

isotropic layers reduces the frequency support in the angular direction, which corresponds to poorer 

selectivity in the corresponding spatial direction.  

 

Figures 3 and 4 about here 

 

2.5 Numerical issues 

The arbitrary coefficients in Eq. (16) are obtained from the system described in Eq. (17) for each 

value of kz and k, which are both discrete in the numerical implementation. Given the symmetry of 

the volume conductor, the transfer function represented by Eq. (16) is symmetric with respect to kz 
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and k. Thus, the transfer function of the volume conductor has to be computed only for positive 

values of the two frequencies which leads to a reduction to one fourth of the number of systems in 

Eq. (17) that should be solved.  

Numerical problems may arise in the inversion of the ill-conditioned matrix A , as indicated for the 

case of two layers plus air in [11]. To reduce the conditioning number for the inversion of the 

matrix A , we propose the following substitution of the vector X , which is derived from the 

method proposed in [11]:  































)()(

)()(

)()(

)()(

)()(

)()(

)()(

'

4

4

3

3

2

2

1

dkKkB

dkIkA

ckKkB

ckIkA

bkKkB

bkIkA

akIkA

X

znzn

znzn

znzn

znzn

mznzn

mznzn

znzn

                                                             (21) 

for the case described in Eq. (18) and 
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for the case represented in Eq. (20). Eqs. (21) and (22) are related to Eqs. (18) and (20), but can be 

extended to any number of layers and position of the source. The entries of the matrix A  are 

changed accordingly. With the substitutions described in Eqs. (21) and (22), the conditioning 

number for the inversion of A  reduces by some orders of magnitude with respect to the technique 

proposed in [11] and [2], providing more stable solutions, even for the case of many layers (see also 

“Results”). 

For the numerical implementation of the model, as described in Fig. 2, sampling of the frequency 

coordinate systems implies periodic repetition of the solution in the spatial and temporal domains, 

and vice versa.  
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The longitudinal coordinate (along which the source travels) and time are linked by the propagation 

velocity: 

vtxlo                                         (23) 

where v is the conduction velocity. A similar relation occurs between the spatial frequency and the 

time frequency domains ( tlo k
v

k
1 ). In the time domain, the frequency bandwidth is limited to the 

interval [-fsamp/2,+fsamp/2], with fsamp being the sampling frequency of the simulated signal. Thus, 

with 
maxlok  as the maximal angular spatial frequency, we get: 

v

f
k

samp

lo 
max

                 (24) 

The spatial frequency is also discrete with steps: 

w

k
k

lo

lo
max

2
                  (25) 

where lok  is the frequency resolution and w is the number of spatial frequency bins used in the 

numerical implementation. We also have, from the sampling of lok , a limit to the interval of 

definition of xlo: 
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      (26) 

max

1

lo

lo
k

x


       (27) 

Outside the interval ],[
maxmax lolo xx  , the impulse response of the volume conductor is repeated 

periodically in the longitudinal direction. In the  direction this reflects the physical periodicity of 

the volume conductor with the condition 
maxlox , which is imposed by the physical structure. For 

a limb, the repetition of the impulse response function is equivalent to doubling the potential at the 

longitudinal borders which is the same as applying the image theorem and modeling a limited 
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volume conductor in the z direction [2]. In the latter case, the length of the limb in z can be fixed by 

selecting an appropriate value of w. 

From Eqs. (24, 25, 26), the parameter w (number of bins in the frequency axis) is given by: 

v

fxxk
w

samplololo maxmaxmax
22




     (28) 

For example, with sampling frequency fsamp = 4096 Hz, zmax = 125 mm and v = 4 m/s, we get, for 

the limb muscle,  kz,max = 2 512 m
-1

, w = 256, Δkz = 2 4 m
-1

, and Δz = 0.977 mm. 

In the case of the sphincter muscle, 
maxlox  and Eq. (28) becomes: 

v

f
w

samp2
       (29) 

In practice, the number of frequency points is then reduced to w/2, due to the symmetry of the 

solution. 

The limitation of the spatial coordinate  to the interval [-π,+π] imposes a sampling of the spatial 

frequency, as in the case of the z coordinate. Eq. (27) also describes the effect of limiting to a finite 

frequency. This implies a sampling in the spatial and, thus, temporal domains. 

The same problems of limitation and sampling occur for the transverse coordinate; in this case, 

however, space and time are not linked by the propagation velocity. The above derivations show 

that the sampling problem is the same for the two spatial dimensions in practical cases. Truncation 

of the series in Eq. (12) is viewed with our approach as a limitation of the frequency axis, which 

implies sampling in the spatial domain. This sampling should be done in agreement with the 

Nyquist theorem and in this case does not imply any approximation of the solution. 

 

2.6 Electrode configuration and physical dimensions of the electrodes 

Considering the linear summation of signals detected by different point electrodes, we obtain a 

spatial filter [24][25] whose transfer function Hsf(kz,k) is given by: 
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with l, q, h, g positive integers (l+q is the number of electrodes in the z direction and h+g the 

number of electrodes in the  direction), aiu the weights given to the electrodes, dz and dθ the 

interelectrode distances in the two directions. Assuming a matrix of electrodes that can be adapted 

to the shape of the volume conductor, the distance dθ in Eq. (30) is given by: 

eleR

d
d                                                                          (31) 

where d is the distance between the electrodes and Rele is the radius of the circumference along 

which the electrodes placed along  are located. Note that Eq. (31) derives from the convention of 

Eq. (30) which assumes the angular spatial frequencies related to z and , thus d should be 

expressed in radians. These notations are in line with the previous derivations. 

The transfer function Hsize(kz,k) describing the electrode shape can be derived as proposed in [7] 

and adapted to the particular geometry of the volume conductor. The method adopted for the 

description of the effect of electrodes of physical dimensions proposed in [7] assumes that the 

potential distribution under the electrode area is integrated by the electrode, which, as indicated in 

[7], is valid as a first approximation. The correct description of electrodes with physical dimensions 

would imply the solution of a mixed boundary condition problem. Assuming a simple integration, 

for rectangular electrodes we obtain the following transfer function: 
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with aele and bele the length of the edges of the electrode and sinc(x) = sin(x)/(x) if x ≠ 0, sinc(0) = 

1. 

For elliptical/circular electrodes: 
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where J1(x) is the Bessel function of the first order [1] and aele and bele the semi-axes of the elliptical 

electrode (aele = bele = rele in case of a circular electrode of radius rele). Any other electrode shape can 

be described adapting the concepts presented in [7]. 

The transfer function Hele(kz,k) describing the spatial filtering and the electrode shape is thus: 
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with d given by (31) and ),( kkH z

iu

size  the transfer function describing the shape of the electrode 

with weight aiu of the spatial filter. 

If the detection system is inclined with respect to the fiber, the transfer function (34) is also rotated 

in the frequency domain. In Cartesian coordinates, the rotation by the angle  is given by the 

following change of variables:  








zxx

zxz

)sin()cos('

)cos()sin('




                                                         (35) 

The corresponding changes of variables in the coordinates (z,θ) is obtained from Eq. (35) with the 

substitutions x = Releθ, x’ = Releθ’:  
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Applying the transformation described in Eq. (36), the transfer function represented in Eq. (34) may 

be written as: 
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with: 
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Eqs. (38) represent the transformation that should be applied to the spatial frequency domain to 

account for the inclination of the detection system with respect to the fiber. Application of the 

transformation in Eq. (38) to Eq. (34) will produce a transfer function in kz and k that accounts for 

electrodes of finite dimensions (first approximation with integration), arranged in different 

configurations, and with an eventual inclination with respect to the axis of propagation of the 

source. 

Hglo(kz,k) in Eq. (5) is the multiplication of the transfer function of the volume conductor 

),,(),(   kkkkH zzvc   [Eq. (16)] and the transfer function of the detection system ),( kkH zele  

[Eq. (34) with change of variables (38)] (Fig. 2). The simulated signal in time domain is then 

obtained from Eqs. (2). 

 

3. RESULTS 

The concepts described above have been included in a model of surface EMG signal generation 

which simulates single muscle fiber as well as motor unit action potentials. Consequently, the 

model is a filtering operation in the time domain [Eqs. (2)]. The model also includes the possibility 

of summing together motor unit action potentials with the corresponding firing patterns and thereby 

describing the complete generation of the interference surface EMG signal, as described in [9][10]. 

Fig. 5 shows examples of simulated signals from a limb muscle in the case of two (muscle and air) 

and five (bone, muscle, fat, skin, and air) layers. Monopolar and single differential recordings are 

performed in transverse locations around the limb. 

With the derivation provided and with the numerical implementation proposed, we did not find any 

problem of convergence for the solution, even adding another internal layer in addition to the bone 

(thus having six layers in total, two internal, one containing the source, and three external with 
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respect to the source). We tested the analytical solutions for different numbers of layers by 

comparing the results of a structure with N layers with those of a model with one more layer whose 

thickness tended to zero. All the solutions were stable for any position of the source.  

Fig. 6 reports examples of simulated signals generated by a sphincter muscle. Note the different 

time needed for the potentials to extinguish at the tendons depending on the depth of the source. 

Conduction velocity is thus apparently lower for deeper motor units. Signals of similar 

characteristics have been detected in previous experimental work from sphincter and urethral 

muscles [18][19]. In particular, experimental recordings from sphincter muscles often showed 

potentials with very low apparent conduction velocity [18], which can be interpreted on the basis of 

the present model. Indeed, the delay between action potentials recorded from electrodes placed 

along a circumference is related to the angular velocity of propagation, which depends on the radius 

of the circumference along which the source travels. A motor unit action potential recorded 

experimentally from the anal sphincter is also reported in Fig. 6 as a representative example of 

signal features. 

 

Figures 5 and 6 about here 

 

4. DISCUSSION AND CONCLUSIONS 

In this study we proposed a general approach for modeling the generation of the surface EMG 

signal. The adaptation of the modeling concepts proposed in [7] to a cylindrical volume conductor 

and to sources traveling both in the z and  direction shows that those concepts represent a very 

general way of interpreting surface EMG signal generation. Fig. 2 represents the entire model in 

which each block can be changed according to the specific anatomical conditions and detection 

system parameters. The volume conductor may be either cylindrical, which we focused on in this 

work, or comprised of parallel planes, as described in [7], allowing simulation of a large range of 

anatomical conditions.  
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The proposed model is more general than previous ones. It allows the description of 1) any current 

density source, 2) a cylindrical volume conductor of a number of layers with the source either in an 

internal, intermediate or external infinite layer, 3) layers that are anisotropic in the three directions, 

4) sources traveling either in the longitudinal (z) or in the angular () direction, 5) any kind of 

detection system, including electrodes of any shape and any spatial-filtering characteristics, and 6) 

the generation and extinction of the intracellular action potential at the end-plate and tendons by 

progressive appearing and extinguishing of the potential, without any approximation with 

equivalent sources. The model is analytical and designed entirely in the Fourier domains, spatial 

and temporal. The simulated potentials are given by a 1-D inverse Fourier transform of a function in 

the temporal frequency domain, obtained by spatial and temporal filtering operations on the current 

density source [Eq. (2) and Fig. 2]. The numerical issues related to this approach have been 

addressed. The inherent periodic repetition of the solution in the spatial domain implies constraints 

in the selection of the frequency bins. Given the frequency axis sampling and limitation, the two 

spatial frequencies have equivalent properties and can be viewed in the same way, assuming a 

sampling and a periodic repetition of the solution. Periodicity is inherently present in the angular 

direction while it is imposed by the numerical implementation in the z direction. Constraints on the 

sampling intervals are also imposed by the relation between the temporal domain and the 

longitudinal spatial coordinate. The longitudinal coordinate may be either z or . No approximations 

are introduced at any step of the numerical implementation of the model if the Nyquist sampling 

limit is satisfied in the spatial and temporal coordinate systems. 

The generation and extinction phenomena are not described as equivalent sources, as in other 

models [2][11][12][15][17], but a progressive appearing and disappearing of the first derivative of 

the intracellular action potential at the end-plate and tendons is simulated. 

The description of the volume conductor includes both limb and sphincter muscles. For the limb 

case, there are no reports in the literature in which the bone, muscle, fat, and skin layers have been 

described analytically. With respect to this, we also obtained stable solutions with an additional 
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internal layer, leading to a model with the bone divided in an internal and a cortical part. Blok et al. 

[2] indicated that the inclusion of an internal layer with respect to the muscle in their model 

produced oscillations in the solution. In the present work, we simulated limb muscles with layers 

internal or external with respect to the source. Moreover, we also analyzed sphincter muscles, 

which have never been simulated before, for which the fiber is always in a layer external to the site 

of signal detection. The generalization of the approach allows the use of different transfer functions 

to represent the volume conductor with the same description of the generation phenomena and 

detection modalities provided in this study.  

The main contribution of this work is thus to present a method for the simulation of surface EMG 

signals, which allows a general description of the signal source and of the detection system in a 

complex cylindrical volume conductor. We provided an analytical solution for the description of a 

cylindrical volume conductor with many layers, with the source and the detection system placed in 

any of the layers. The approach can be extended to different volume conductor models, such as one 

comprised of infinite parallel layers [7]. The generality of the approach led to a similar treatment of 

sources traveling along z or , with similar concepts related to the description of the source and to 

the numerical implementation of the solution. 
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FIGURE CAPTIONS 

Fig. 1 (a) The investigated layered volume conductor. The most external infinite layer can be air or 

a tissue of any conductivity. The source (muscle fiber) may be located both in the z and in the  

direction, is of finite length, and may be placed in any of the layers. The layers have conductivities 

which, in general, may be different in the three spatial directions. The detection points may be at the 

interface of any two layers. (b) A section of the volume conductor shown in (a). In (a) and (b) two 

fibers are reported, corresponding to the case of propagation in the longitudinal and angular 

direction (indicated as Source 1 and 2). The radial distance of the fibers from the center of the 

volume conductor is indicated with R1 and R2 for Source 1 and 2, respectively. L1 and L2 are lengths 

of the fibers from the end-plate to the tendon (semi-lengths). The number of layers may be 

increased or decreased with respect to those shown in the figure. Both Source 1 and 2 can be 

located in different layers with respect to what is shown. Two possible locations of the detection 

points are shown. a, b, c, and d are the radial distances defining the interfaces between layers. z0 and 

0 are the z and  coordinates of the detection point.  

Fig. 2 a) A general schematic representation of the model, containing the description of the volume 

conductor, fibers of finite length, and the detection system. Given the transfer function B(klo), which 

represents all the spatial related phenomena, the calculations to obtain the simulated signal in time 

domain are entirely performed in the frequency domain (spatial and temporal). The final simulated 

signal is the 1-D inverse Fourier transform of the integral of a 2-D function in the spatial and 

temporal frequency domain. The scheme is derived from the concepts proposed in [7] and is 

adapted to the cylindrical coordinate system. b) The scheme describing how B(klo) is obtained. 

),( kkH zvc  is the transfer function of the volume conductor, ),( kkH zsf  of the spatial filter, 

),( kkH zsize  of the electrode shape (see text for details). The notations in this case are loz kk  , 

trkk   for the limb case, and loRkk  , trz kk   for the sphincter case, with R the radial distance 
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of the source from the origin of the coordinate system and trtr fk 2  the spatial angular frequency 

in the transverse direction. 

Fig. 3 The impulse response of the volume conductor describing a limb, in the case of two layers 

(muscle and air) (a) and five layers (bone, muscle, fat, skin, and air) (b). In the case of (b), the 

thickness of the skin layer (isotropic, conductivity 1 S/m) was 2 mm, the fat layer (isotropic, 

conductivity 0.05 S/m) was 3 mm, the muscle tissue (anisotropic, longitudinal conductivity 0.5 S/m, 

radial and angular conductivities 0.1 S/m) was 25 mm, and the bone (isotropic, conductivity 0.02 

S/m) had a radius of 20 mm. In the case of (a), the muscle had the same properties as in (b) and a 

radius of 50 mm. The potential distribution is detected at the interface between the air and the 

muscle in (a) or the skin in (b). The fiber is at a distance of 6 mm from the detection surface in both 

cases.  

Fig. 4 The impulse response of the volume conductor describing a sphincter with three layers 

(internal insulating, mucosa, semi-infinite muscle). The mucosa (2 mm thick) has the same 

conductivity properties as the skin layer in Fig. 3, while the muscle has its greatest conductivity in 

the angular direction. The internal insulating layer has a radius of 7 mm, and the fiber is 1 mm deep 

within the muscle.  

Fig. 5 Examples of simulated monopolar and single differential muscle fiber action potentials in the 

case of limb muscle with (a) two layers (muscle and air) and (b) five layers (bone, muscle, fat, skin, 

and air). The potentials are detected in five (to the left and right) locations around the limb 

circumference. The locations are 5 degrees apart. The conductivities and thickness of the different 

layers are the same as in Fig. 3. Two fibers (F1 and F2) were simulated at a depth of 1 and 5 mm 

within the muscle in (b) and 6 mm and 10 mm within the muscle in (a). The total distance between 

the sources and the detection points is the same in (a) and (b). The fibers have semi-lengths 50 mm 

and 40 mm, the detection system is placed over the shorter semi-length, at a distance of 20 mm 

from the end-plate. For the single differential recording, the interelectrode distance is 5 mm. In all 

cases, the current density source is described as proposed in [22] (see also [7]) and conduction 
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velocity was 4 m/s. Point electrodes have been simulated in all cases. Note the presence of both 

propagating and end-of-fiber signal components, especially in the case of monopolar recordings. 

Note also the different rate of decrease with increasing distance from the source between 

propagating and end-of-fiber components and between the two- and the five-layer case. The 

potentials in (a) and (b) are normalized with respect to the amplitude of the largest potential in (a) 

and (b), respectively.  

Fig. 6 Examples of monopolar [(b), (c)] and single differential [(e), (f)] simulated signals in the case 

of the sphincter muscle, with the geometry represented in (a). In (a) the numbers 1, …, 16 indicate 

the electrodes, i.e., the detection points for monopolar recordings, while the letters A, …, R indicate 

the middle points between two consecutive electrodes, i.e., the detection points for the single 

differential recordings. The model assumes an internal insulating layer, mucosa, and the infinite 

muscle layer with the same properties as in Fig. 4. Two fibers (F1 and F2) at a depth of 1 mm and 4 

mm within the muscle, with the same conduction velocity of 2.3 m/s, have been simulated. The 

lengths of the two fibers are different, so that they start and end at the same angles (total angular 

length 200 degrees). Location of end-plates and tendons is indicated. In all cases, the current density 

source is described as proposed in [22] (see also [7]) and point electrodes have been simulated. Note 

the apparently different velocity of propagation of the two fibers when observing the simulated 

signals. This is due to the fact that the angular velocity, which is observed by the simulated 

detection system, is different in the two cases. In all cases, the potentials are normalized with 

respect to their maximum values, thus their amplitudes can not be compared. In (d) a motor unit 

action potential extracted from experimental signals is shown. The signals have been detected from 

the anal sphincter of a healthy male subject using a cylindrical probe of 14 mm diameter. 16 silver 

contact bars 10 mm long (transverse muscle fiber direction) and 1 mm diameter are equally spaced 

around the circumference of the probe. Single differential technique is used for signal detection. 

Contact 1 and 16 are dorsal and 8 is ventral. A maximal voluntary contraction is produced by the 

subject. There was no attempt to match the experimental signals with the modeling ones. The real 
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signals are reported only as representative examples of the features of surface EMG signals detected 

from the anal sphincter. Similar signals have been shown in detail in [18][19]. 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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