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The Complex Way to Laser Diode Spectra: Example
of an External Cavity Laser Strong Optical Feedback

Enrico Detoma, Bjarne Tromborg, and Ivo Montrosset, Member, IEEE

Abstract—An external cavity laser with strong grating-filtered
feedback to an antireflection-coated facet is studied with a time-do-
main integral equation for the electric field, which reproduces the
modes of the oscillation condition as steady-state solutions. For
each mode, the stability and spectral behavior is determined by
analysis of the location of side modes in the complex frequency
plane. The complex frequency diagrams are shown to be a useful
tool to determine the self-stabilization effect of mode coupling and
its dependence on laser parameters and external cavity design. The
model is used to simulate the large signal time evolution after start
from unstable modes.

Index Terms—External cavity, four-wave mixing, mode cou-
pling, optical feedback, semiconductor lasers.

I. INTRODUCTION

N THIS PAPER, we study the static and dynamic prop-

erties of a Fabry—Pérot laser diode with an antireflection
(AR)-coated facet and strong optical feedback from an external
grating to the facet (see Fig. 1). This kind of external cavity laser
(ECL) system finds applications where single-mode output is re-
quired over a broad range of wavelengths with narrow linewidth,
high side-mode suppression ratio (SMSR), and without mode
hopping. The applications include its important use as tunable
laser source in optical communications, sensor applications and
spectroscopy. If the combined laser cavity includes a saturable
absorber, the system may operate as a mode-locked laser and
serve as an optical pulse generator. This mode of operation will
not be discussed here, but the formalism can easily be general-
ized to include mode-locking.

The ECL has been the subject of a vast number of publi-
cations. We refer to the review article [1] for an extensive list
of references (see [2] for more recent references). Most of the
theoretical papers on ECLs deal with laser diodes with weak
to moderate feedback and are focussed on the particularly rich
nonlinear dynamics of these laser systems. If we disregard the
work on mode-locking, there have been surprisingly few papers
addressing the dynamics of laser diodes with strong and filtered
optical feedback and with an external cavity that is much longer
than the active region. The papers [3]-[9] are some of the ex-
ceptions. The ECL with short external cavity operates in much
the same way as a DBR laser on which there is a comprehensive

Manuscript received July 21, 2004; revised September 21, 2004. This work
was supported by the BIGBAND Project under the EU-IST 5th Framework Pro-
gramme.

E. Detoma and I. Montrosset are with the Politecnico di Torino, Di-
partimento di Elettronica e PhotonLab, 10129 Torino, Italy (e-mail:
enrico.detoma@polito.it).

B. Tromborg is with the Research Center COM, Technical University of Den-
mark, DK 2800 Lyngby, Denmark.

Digital Object Identifier 10.1109/JQE.2004.839705

Reference

plane \

External

grati\ng
Output D Q
R L AR
facet 4/Coating
h { h £

Fig. 1. Structure of the external cavity laser.

literature. However, the ECL with long external cavity is from a
theoretical point of view a qualitatively different system because
the gain section can, to a good approximation, be considered as
a lumped section, and the narrow mode spacing makes mode
coupling a more important mechanism.

The purpose of the present paper is to perform a detailed
theoretical investigation of the effect of mode coupling, due to
four-wave mixing (FWM), on the stability properties of the lon-
gitudinal modes of the ECL composite cavity. This “self-stabi-
lization” effect was analyzed in [3], [8], [10]-[13]. We show that
a stability analysis of each longitudinal mode of the ECL can be
easily performed in the frequency domain, and we support our
claim through the use of complex frequency diagrams which
show how stability is affected by bias current and mode de-
tuning from the frequency of the peak of the external reflectivity.
The complex frequency diagrams can also help to understand
the dynamical effects of mode coupling on the noise spectra. In
particular, we give a precise explanation of the appearance of
a double-peaked relative intensity noise (RIN) spectrum [14],
[15] in terms of small-signal self-oscillations, whose frequency
can be quantitatively identified in the complex frequency dia-
grams. The method of complex frequency diagrams is a way to
precisely determine the location and strength of the side modes
of a mode, which can be applied to other laser systems.

Complementary to the complex frequency diagrams for the
stability, we developed a time-domain model that can be used
to analyze the evolution of both stable and unstable modes. The
time-domain model consists of an integral equation for the elec-
trical field, with steady-state solutions that coincide with the
conventional solutions to the oscillation condition. The use of
the integral equation avoids the frequency cutoff that is intrinsic
in the usual differential rate equations. This feature leads to an
excellent agreement between the spectra obtained with the fre-
quency-domain and the time-domain models for stable modes
over a large range of frequencies. In addition, the time-domain
model is the only available tool to study the rich dynamics of an
unstable mode, which range from limit cycle to chaos but may
also end up in mode hops to stable modes.

0018-9197/$20.00 © 2005 IEEE
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The paper is organized as follows. Section II presents the
locus curve method for finding the modes of an ECL at and
above threshold. Section III contains the small-signal analysis
which determines the stability properties of a given mode in
terms of the location of zeros of the system determinant in
the complex frequency plane. The analysis is illustrated by
a specific example for which the frequency tuning range of
stable operation is calculated as a function of the bias current.
A time-domain integral equation for the field is derived and
simulated noise spectra are compared to small-signal spectra.
In Section IV, the time-domain model is used to study the large
signal dynamics and to illustrate the route to chaos and mode
hopping by numerical simulations. Appendix gives details
of the noise model and the way to eliminate the singularities
which appear in the field power spectrum to first order in the
noise diffusion constant.

II. MODES OF AN EXTERNAL CAVITY LASER

The structure of the external cavity laser is shown in Fig. 1.
The output facet to the left is assumed to be cleaved while the
chip facet to the right is assumed to be AR coated. The external
reflector is a selective grating which provides filtered optical
feedback over a small range of frequencies.

Referring to Fig. 1, 71 and 75 are, respectively, the amplitude
reflectivity of the output cleaved facet and that of the AR-coated
facet. r3(w) represents the frequency-dependent reflectivity
of the external grating that will be modeled by a Lorentzian
equation

Tg

T 1+ (W - wy)/Aw)

73 (w) 6]

where 7, is the amplitude reflectivity peak at the angular fre-
quency wgy, and Aw provides the filter bandwidth.

The laser operates in the strong feedback regime because the
residual reflectivity ro of the AR-coated facet is taken to be
much smaller than the external reflectivity 7.

The frequency-domain analysis of the device starts from the
laser field equation [13]

[1—7rg(w)rL (w, N, P)] € (w) = F (w) (2)

where £ (w) is the right travelling electric field at the reference
plane of Fig. 1, which is chosen to be at and to the left of the
AR-coated facet. F (w) is a noise term that represents the spon-
taneous emission added to the optical field during a round trip
in the diode, and 7 (w) and rf, (w, N, P) are the right and the
left effective reflectivities seen at the reference plane. The left
effective reflectivity, which represents the round-trip of the field
through the gain medium, depends on the carrier density N and
the photon number P in the chip cavity.
The expression for the right reflectivity derives directly from
the scattering matrix for a Fabry—Pérot etalon
ro 4+ r3 (w) e IvT
rr (W) = 14 7ors (w) e 397

3)

where 7 is the round-trip time in the external cavity.
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The expression for the left reflectivity depends on the length
£ of the active laser cavity and on the propagation constant k

rp (w,N,P) = rie” 2 tk(.N.P) 4)
The propagation constant & in the laser cavity is given by the
following expression:

E(0,N,P) = 0 (w,N,P) + 3 g (0, N.P) —ai] )

where n is the modal refractive index, g is the modal gain, and
«; 18 the internal loss coefficient.

Equation (2) gives the following oscillation condition in ab-
sence of noise:

rp(w)ry (w,N,P) =1 (6)
whose solutions, represented by points in the (w, V) plane, are
the steady states or the modes of the external cavity laser. The set
of ECL modes lie on the locus curve(s) that the modes follow in
the (w, V) plane when the length of the external cavity is varied.
It was shown in [4] that the locus curve is an effective tool to get
an overview of the location of the ECL modes for varying laser
parameters.

A. Locus Curve

In this subsection, we show how to derive the locus curve and
discuss a specific example.

By inserting (3) in (6) and rearranging the terms, the oscilla-
tion condition can be written in the form

1—7rL(w,N,P)ry =73 (w) (ry (w, N, P) —r3)e™™7. (7)

The same equation can be obtained more directly by choosing
the reference plane to lie to the right of the AR-coated facet.

The locus curve is obtained by taking the absolute value of
both sides of (7) and, thereby, eliminating the dependence on
the external cavity round-trip time 7

|1 —rp (w,N, P)ry| = |rs (w) (rp (w, N, P) —r3)|. (8)
Since (7) is equivalent to (6), the locus curves lie
between the lower and upper boundaries given by
|7'L| TR max = 1 and |TL | TR min = 1 in the plane

(w,N), where rRumax = (ro+]r3])/ (14 r2|r3]) and
TRmin = (r2 = [r3]) /(1 —ra|rs]).

The left reflectivity 7, is dealt with in the following way. We
choose a reference frequency wg and a reference carrier density
Ny by solving the oscillation condition (6) at the threshold (P =
0) with the assumption that the right facet reflectivity is constant
and equal to the maximum of rr, which we call r,,

Tlrme_Zj[k(woJ\TO) = 1 (9)
with
— w (10)
™14 Tng.

The choice of such a reference frequency is natural because we
are mainly interested in studying the ECL modes that see the
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highest right reflectivity, thus being the most obvious candidates
for lasing. In addition, the search of solutions to (6) in the plane
(w, N) is numerically simplified by the choice of a reference
frequency near the operating point.

Using (4) and (9), the following expression for the left reflec-
tivity is obtained:

o~ 2i¢Ak(w,N,P)

7AL(“‘)HN?-P): (1D

T'm

where

AR (w, N, P)=2L [k (0, N, P)—k (wo, No)]
R . . 0Jg ., 09 |
(12)

In this equation, « is the linewidth enhancement factor, and 73,
is the internal cavity round-trip time given by 7, = 2¢/v,,
where v, is the group velocity. We also introduced the variables
W =w—-wyg, AN = N — Ny and ¢g = Tin(wo —wy). The abso-
lute value of ¢y is in practice unknown, but we know to some ap-
proximation how wy, and hence ¢, tunes with bias current and
temperature. The reflector bandwidth Aw is assumed to be small
compared to the gain bandwidth, so we ignore the frequency de-
pendence of the gain and use g(w, Ny, 0) = g(wq, No,0). To
simplify the following discussion, the normalized carrier den-
sity N = £(8g/ON)AN is introduced.

As an example we consider the configuration of Fig. 1 with
a laser chip of length 500 pm. The length of the external cavity
in air is 11 cm. The spacing of the compound cavity modes
amounts to ~ 1.3 GHz and is similar to that of the device an-
alyzed in [15], while the laser chip is longer in our case. We
choose to simulate an imperfect AR coating whose power re-
flectivity is 73 = 5 - 1073, This is the value that can easily
be obtained over a broad wavelength range (= 200 nm) with
current AR coating technique without using tilted waveguides
or window structures. It can, therefore, be regarded as a worst
case condition for this kind of devices. The external reflector is
a selective grating with maximum power effective reflectivity
rZ = 0.34 and a full width at half maximum (FWHM) of
Aw/m = 20 GHz. We shall first ignore the nonlinear gain, i.e.,
the dependence of the modal gain on the active region photon
number P.

The laser parameters are shown in Table I. With this choice
of parameters, there is a family of locus curves depending on
the parameter ¢, all of which lie between the upper and lower
boundaries given by the dashed curves in Fig. 2. The vertical
axis is the normalized carrier density N, and the frequency axis
is @ /2. The dash-dotted lines are the lines for which the phase
of r7, is mw for integer m, i.e., they are given by

S Tin‘z) - QSO + mm

N = 13)

o
For even/odd m, the lines intersect the locus curve where it
touches the lower/upper boundaries. The lines sweep with
varying ¢y; Fig. 2(a) and (b) show two examples of choice of
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TABLE 1
LASER PARAMETERS
Parameter Value Description
«@ 4 Linewidth enhancement factor
l 500 pm Laser chip length
vg 94-10" m-s~! Group velocity in laser chip
dg/ON 4.3.10717 cm? Differential gain
9g/0P —3.6-107% cm~! | Gain saturation factor
o 9cm~! Internal losses
Ts 0.5 ns Carrier lifetime
Ve 1.44 -10710 ¢m? Volume of the active region
Nsp 2 Population inversion factor
r% 5.1073 AR coating power reflectivity
rg 0.34 Maximum external power reflectivity
r% 0.3 Output facet power reflectivity
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Fig. 2. Example of two different locus curves (solid), depending on the
parameter ¢q, for an ECL with imperfect AR coating. The bulletsArepresent
the ECL modes. The vertical axis is the normalized carrier density NV, and the
frequency axis is &/2x. Both locus curves lie within two boundaries given by
the maximum and the minimum of the right reflectivity r g (dashed). The locus
curves touch the boundaries where they intersect the dash—dotted lines, which
represent a phase condition, (13), for the left reflectivity r. In both figures,
a horizontal line shows the normalized threshold carrier density given by (17)
for 4-mA bias current above the minimum threshold current .

¢o, where the low-threshold ECL modes closely follow the
lower [Fig. 2(a)] and upper [Fig. 2(b)] limits. The modes are
shown as bullets on the locus curve for a specific choice of the
cavity length. They move like pearls on a string toward lower
frequencies when the cavity length is increased.
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Fig. 2 shows the location of the ECL modes at threshold. In
order to describe the steady states above threshold, we need to
introduce the carrier rate equation. In the time domain, it reads

iN I N P
e 2 g(N,P)—
T A LAC R v

(14)

where [ is the injected current, ¢ the elementary charge, V. the
volume of the active region, and 7 the carrier lifetime. The cor-
responding steady-state equation can then be written as

I-1y V.AN
=+

(y+ V.GNAN + GpP)P (15)
q Ts
where the following parameters are introduced:
99 1 g
Y=v49 Gn= VN T Gp = Ve ap (16)

The parameter Iy = ¢qV.Ny/7s is the minimum threshold cur-
rent for any mode. For a given bias current I, (6) and (15) can be
solved to give the stationary states (&, N, P, ). The positions
(&, N, ) may be slightly shifted compared to their threshold po-
sitions due to a nonzero gain compression factor G'p. Further-
more, it is only the solutions with normalized carrier density N,

less than

$ TsTin GN

N, = (I - I) 5 (17)

which have positive P, and hence are above threshold. Equation
(17) is derived from (15) by setting P = 0 and making use of the
definitions (16). Having determined the modes, which are above
threshold, the next problem is to determine their stability prop-
erties. It is often assumed that the laser system can only oscillate
in the mode with lowest threshold carrier density. However, as
we shall see, the mode coupling due to four-wave mixing may
also allow the laser system to operate in other modes.

III. LARGE- AND SMALL-SIGNAL DYNAMICS

A. Time-Domain Analysis

In order to study the dynamics of the ECL system, we need
to add the information about the dynamics of the carrier den-
sity which is lacking in (2). We, therefore, transform the field
equation (2) to the time domain and generalize it to apply for
time-varying carrier density.

We use (11) and (12) to rewrite the laser field equation (2) in
the following form:

piorn _ TR(Wg + @) o001 4ia)(0g/0N)AN+E(0g/0P)P
T'm

xE (wy + &) = F (wy +&) el (18)

The separation between the carrier frequency w, and the de-

tuning frequency w allows us to perform an inverse Fourier
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transform of (18), with w as the frequency variable. The result
is an integral equation for the slowly varying envelope of the
electric field E(t)

B(t) = 6(1/%)];1% [£(14ia)(dg/ON)AN+E(dg/dP)P]dt'

X(rQ®E)|i—r, + F(t). (19)
The symbol “®” denotes time-domain convolution, and the
function r(¢) is the inverse Fourier transform of the ratio
TR (wy + @) exp (jbo)/rm. It represents the impulse response
of the external cavity seen from the reference plane. In the
exponential factor, the gain is averaged over a round-trip 7,
interval in the active cavity, to better express the mean field
nature of E(t).

We normalize the electric field such that |E(t)|? is the right
travelling power at the reference plane. In steady-state opera-
tion, the power is proportional to the photon number, with the
proportionality constant given by (52) in the Appendix. We as-
sume that this proportionality also holds for nonstationary op-
eration. With this assumption, the time-domain field (19) and
the carrier density rate (14) fully determine the dynamics of the
ECL system. The field equation expressed as an integral equa-
tion has the same steady-state solutions, as we obtain from the
oscillation condition (6) and the steady-state carrier rate (15). If
we replace ¢ by t+7i, in (19) and E(¢t+7:, ) by E(t)+7indE/dt,
the field equation becomes a differential-integral equation of a
form that is often used to describe ECL systems. However, the
steady states of that equation will not reproduce the modes of
the oscillation condition.

A similar approach to the dynamical study of an external
cavity laser was employed in [16] and [17].

B. Stability Analysis

For given bias current, the modes (&5, N, s, Ps) with N, < N.
are above threshold but they may not all be stable. In order to
identify the stable modes, we perform a small-signal analysis of
(19) and (14) in the frequency domain [13]. The Fourier trans-
form of E(t) is written as

/ - E(t)e™7'dt = E2n6(0) + 6 E(®) (20)

— 00

where v = @ — Ws = w — w; is the frequency excursion from
the steady-state frequency ws, and F is the steady-state field
amplitude. The Fourier transform of the carrier density can be
expanded in a similar way, and by insertion in the Fourier trans-
formed (19) and (14), the following equation is obtained:

[1—G (&) + B(@)]6E (@) + B (&) §E" (-@) = F (s + @)
(21)
where

(22)
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and
1 — ¢ J%Tin
B@)= ———
(@) 25
(i fop+i@y -t )
X +
o+ T P (23)

We have followed the notation of [18] for the following
variables:

w%:vGNP FN:TS_1—|-G]\7P I'p=—-GpP. (24)
The parameter wr, is the relaxation angular frequency, I" is the
damping rate of the carrier density, and I"p is the damping rate
of the photon density which takes into account the nonlinear
gain compression.

Another equation can be obtained from (21) by replacing @
with —w and taking the complex conjugate
1-G"(-&)+ B* (-

D) 8E* (—0) + B* (—0) 8E (@)

=F"(ws —@). (25)

The system of (21) and (25) can be solved to provide § E as
a function of the noise F'. They can be written in the following
more compact form:

X+B B Ei\ [ F
(3 ) (E)-()
with
X=1-¢(w) X' =1-G"(-w)
B=B(w) B =B*(-o)
E,=6E(®) Ey=0E"(-w)
Fi=F(ws+©) Fo=F"(ws —a). 27)
The solution is
B F(X'+B)- FB
! D
F, (X + B)—- B
p,=E+B - A (28)
D
where D is the system determinant
D(@)=(X+B)(X'+B)-BB. (29)

The first step to determine the stability of the considered
mode (&g, NS, E,) is to find the zeroes of the system determi-
nant in the complex frequency plane w. The zeros correspond
to small-signal oscillations, whose imaginary part gives the
damping. If one of the zeros has a negative imaginary part, the
oscillations are undamped and the mode is unstable; otherwise
the mode is stable. The zeros can be found by an approach
similar to the locus curve method for solving the oscillation con-
dition [19]. D (@) is a second-order polynomial in exp(joT),
and solving D (@) = 0 with respect to exp(jw7) will, there-
fore, result in two solutions of the form exp(jwr) = f;(®),
1 = 1,2. By taking the norm on both sides of the equation we
eliminate the rapidly changing phase factor exp(jRe(w)7).
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The curves exp(—Im(w)7) = |fi(@)| are, therefore, smooth
curves in the complex frequency plane on which the zeros have
to lie. The zeros are easily found by searching along the curves.

It is clear from (26) that B(w) serves as a mode coupling
parameter that couples F; and Fs. The origin of B is the four-
wave mixing due to carrier pulsations and nonlinear gain. It is
zero at threshold but, as we shall see, it plays an important role
above threshold. When B(&) can be ignored, we have D (&) =
X'X and the zeros of D (@) will, therefore, be solutions to X =
0 or X’ = 0. The equation X = 0, i.e., G(¥) = 1, is simply
the oscillation condition for complex frequencies and for fixed
carrier density equal to the steady-state value V. The solutions
to X’ = 0 will be the mirror image of the zeros of X with
respect to the imaginary axis of the w plane.

We shall illustrate the stability analysis for the example of
Fig. 2(a). Here, two modes are highlighted, at opposite sides
with respect to the carrier frequency w,. For a bias current
of 4 mA above threshold, the result of the analysis is shown
in Fig. 3, where in both cases the complex frequency curves
exp(—Im(@)7) = |f;(@)| with mode coupling (solid curves)
are compared to the same curves without mode coupling
(dashed curves), i.e., for B = B’ = 0. The bullets show the
zeros of D (@); the zero at the origin represents the considered
mode and the other zeros represent the side modes of the mode.

Fig. 3(a) shows that mode 1 of Fig. 2(a), whose frequency is
lower than the carrier frequency w,, becomes stable due to the
effect of mode coupling; all side modes move up in the upper
half complex frequency plane as the current increases. On the
other hand, mode 2 of Fig. 2(a), whose frequency is higher than
wg and whose small-signal analysis is shown in Fig. 3(b), be-
comes more unstable when mode coupling increases.

As mentioned above, the condition G (&) = 1, which de-
termines one of the branches for negligible mode coupling, is
identical to the oscillation condition (6) for fixed carrier den-
sity N = Ng and P = 0. This implies that the branch inter-
sects the real axis in the complex w plane at frequencies which
are 1dentlcal to the frequencies (relatlve to w,) where the line
N = N, cuts the locus curve in the (w, N ) plane. Thus, if a hor-
izontal line is drawn through mode 1 in Fig. 2(a), it will intersect
the locus curve again at a frequency which is 6.46 GHz above
mode 1. In Fig. 3(a), we see that this is also the frequency where
the corresponding dashed branch cuts the real axis. The modes
with carrier density below mode 1 correspond to side modes on
the section of the branch below the real axis. For simple locus
curves as those of Fig. 3, this picture holds for all modes and
implies that only the mode with lowest threshold carrier density
can be stable in the limit of no mode coupling. All other modes
will be unstable because their side mode corresponding to the
lowest threshold mode will have negative imaginary part. This
argument does not necessarily hold for locus curves with ver-
tical tangents as shown in [13, Fig. 4]. The figure exemplifies
the mentioned correspondence between modes and side modes.

Generally speaking, the increase of mode coupling creates
an asymmetry of the stable range around w,, which favors the
modes at lower frequencies. This effect is shown in Fig. 4, where
the stable range boundaries are plotted versus injection current.
For the same device parameters as in Fig. 3 (solid lines), we ob-
serve a shift and a strong broadening of the stable range toward
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Fig.3. Complex frequency curves for the highlighted modes of Fig. 2 at 4 mA

current above threshold (solid lines) in comparison to the same curves exactly at
threshold (dashed lines), i.e., without mode coupling due to four-wave mixing
(B = B’ = 0). Bullets along the curves represent the side modes, i.e., the
zeros of the system determinant D of (29). The presence of a side mode with
negative imaginary frequency means that the considered mode is unstable. (a)
corresponds to the case of a mode with lower frequency than that of the peak of
the external reflectivity, where stabilization is due to the effect of mode coupling
and stability increases with bias current. (b) corresponds to a mode on the other
side of the external reflectivity peak. In this case the increase of bias current
leads to reduced stability.

frequencies that are lower than w,, as current increases. To ana-
lyze the effect of gain compression, we performed a calculation
where 0g /0P was set equal to zero. When the stabilizing effect
of gain compression is not present, the broadening of the stable
range is weaker (dashed line).

The circles in Fig. 4 indicate where there are changes of the
slope of the lower boundary of the stable tuning range. The slope
depends on which side mode creates the instability: before the
first circle, the instability is created by the first side mode; but
at about 0.4 mA above threshold; it is the second side mode that
makes the mode unstable, and we observe a change of slope.
From Fig. 3(a), at 4 mA above the threshold, we see that the
fourth side mode is about to cross the real axis and create an
instability: this is reflected in Fig. 4, where three changes of
slope are present before that current level.

The stabilizing effect of mode coupling was first studied by
Bogatov et al. [10], and it has since been analyzed in a number
of articles [3], [8], [11]-[13]. In the recent work by Godard e al.
[8], it was shown that mode coupling gives a tuning range versus
output power similar to Fig. 4, and the results were shown to be
in good agreement with experiments. The discussion in [8] also
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Detuning range [GHz]

0 2 4 6 8 10
Injection current above threshold [mA]

Fig. 4. Stable range around the frequency of the peak of the external
reflectivity for increasing current above threshold. The solid curves represent
the upper and lower boundaries of the stable range when the simulation is
performed with a gain compression term dg/dP different from zero, while
the dashed boundaries were obtained with 9g/9P = 0. Gain compression
contributes to enlarge the stable range for frequencies lower than w,. Three
changes of slope are highlighted in the figure: they correspond to changes of
the side mode which creates the instability for the lasing mode.
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Fig. 5. Relative intensity noise spectrum for the stable mode of Fig. 3(a). The
inlet highlights the double peak in correspondence of the first side mode. The
small-signal analysis (thick regular curve) is in very good agreement with the
time-domain simulation (thin irregular curve), up to very high frequencies (more
than 200 GHz, not shown on the current axis scale).

presents a simple physical explanation of the asymmetric tuning
range imposed by the combined effect of four-wave mixing and
the linewidth enhancement factor.

C. Spectral Behavior

In this subsection, we give examples of the small-signal spec-
tral behavior of our ECL system. The derivation of the analyt-
ical expressions for the relative intensity noise (RIN), frequency
noise and field power spectra are given in the Appendix in (36),
(37), and (49). With the device parameters and the stable mode
of Fig. 3(a), these equations give the spectra shown in Figs. 5-7
as thick solid lines. The lines are superimposed on the time-do-
main spectra (irregular thin lines) obtained by numerical simu-
lation of the time-domain equations. The agreement between the
two methods is excellent in a large frequency range (more than
200 GHz, not shown), which leaves the time-domain model as a
powerful simulation tool for dealing with high-speed communi-
cation applications. In both the small-signal calculations and the
time-domain simulations, we assume the noise spectrum Ssp (w)
of (34) to be white and equal to Sy, (ws). We notice that in our
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Fig. 6. Frequency noise spectrum for the stable mode of Fig. 3(a).
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Fig. 7. Normalized field power spectrum S (@)/S£(0) for the stable mode
of Fig. 3(a). The spectrum is not filtered through an optical spectrum analyzer.
Thus, the side-mode suppression ratio appears higher than it really is, due to the
very narrow linewidth of the lasing mode. In order to calculate the side-mode
suppression ratio, one has to integrate over the main and side modes to get
the powers in the modes. In this case, the side-mode suppression ratio is about
36 dB.

case the frequency noise spectrum increases as @2 beyond the
bandwidth of the carrier dynamics until it is finally cut off by
the finite bandwidth of Ss,(w). A white spontaneous emission
spectrum will, therefore, give a divergent integral in (42), but
we can still apply the white noise assumption if we use the ap-
proximation (43). The calculation of the field power spectrum
Sg(w) requires special care to eliminate divergences of phase
noise terms at w = 0. The details of the calculation are given in
the Appendix.

The peaks in the spectra in Figs. 57 are actually double peaks
as highlighted in the inlets for the first side mode at 1.3 GHz. The
presence of the double peaks can be traced to the two branches
of the solid curve in Fig. 3(a) that both have zeros of the system
determinant with real parts close but not equal to multiples of
the compound cavity round-trip frequency. The double peaks in
the inlets arise from the double zeros representing the first side
mode. They correspond to two close small-signal oscillation fre-
quencies which become evident in the spectra.

It is interesting to show the evolution of the double peaks
of the first side mode as the mode moves in the stable range
from negative to positive detuning frequencies with respect to
the carrier frequency w,. While keeping a current of 4 mA above
threshold, we move a stable mode from the lower boundary of
Fig. 4 to the upper boundary and we examine the behavior of the
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Fig. 8. Evolution of the double-peaked RIN spectrum as the lasing mode is
fine tuned from lower to higher frequencies with respect to the external grating
reflectivity peak. Starting near the lower boundary of the stable range, (a) shows
ahigh noise peak at about 1.3 GHz followed by a smaller one at about 1.34 GHz.
As the lasing mode moves well into the stable range, the first peak drastically
decreases (b-c), but a new high and sharper peak appears at about 1.32 GHz as
we approach the other boundary at higher frequency than the grating peak (d).
The detuning frequencies of the modes which correspond to the curves (a)—(d)
are, respectively, —3.58, —2.3, —1.05, and 0.26 GHz (see Fig. 4).

double peak of the RIN spectrum. Four different RIN curves
along this path are plotted in Fig. 8(a)—(d). When the lasing
mode is near the boundary at negative frequencies (a), a high
noise peak is present at about 1.3 GHz, followed by a lower
peak at about 1.34 GHz. The higher peak is due to the zero
of the system determinant which is nearest to the real axis in
the complex frequency plane, when looking at the couple of
zeros which correspond to the first side mode. As the mode is
tuned to higher frequencies inside the stable range, the first peak
decreases [Fig. 8(b) and (c)], but when the mode approaches
the upper boundary at positive frequencies [Fig. 8(d)], a new
high noise peak appears at about 1.32 GHz. For detuning to
positive frequencies, the double zeros are pushed away from
each other and from the branches for negligible mode coupling
[cf. Fig. 3(b)]. The high noise peak will, therefore, sit on top of
a broad peak due to the zero with the larger imaginary part. The
spectral dip to the left of the high peak is due to a zero in the
numerator of the RIN expression (36) [15].

The double-peak behavior has been studied in a number of pa-
pers [14], [15], [19], [20]. In [19], the zeros on the two branches
in the complex frequency plane were shown to lead to spectral
splitting of one of the side modes for an ECL with weak optical
feedback. Van Exter et al. [15] measured the splitting for nega-
tive detuning and showed good agreement with a simple theoret-
ical model. In [20], Ahmed and Tucker presented measurements
and theory of intensity modulation spectra for an ECL, which
show the same characteristics as our RIN spectra for positive de-
tuning. The splitting of RIN spectra for an ECL were measured
over the full stable tuning range by Bogatov et al. [14] and were
explained as an effect of mode beating. The present study gives
an overview of the side-mode behavior under detuning and in-
crease of bias current in terms of complex frequency diagrams.

IV. LARGE-SIGNAL TIME-DOMAIN SIMULATIONS

So far, we analyzed a case where the grating selectivity was
high enough to keep single-mode operation with well-sup-
pressed side modes. Now, we will move to another example
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Fig. 9. Locus curve (a) and stability analysis (b) for an ECL with large grating
reflectivity bandwidth and high injection current. The frequency axis is & /2 in
(a) and @ /27 in (b). The stability analysis is performed for the mode indicated
by the arrow. The mode is unstable due to a side mode with slightly negative
imaginary frequency.

where a lower selectivity of the external grating allows a range
of different dynamical behaviors, when a mode enters the
instability region, rather than just performing a mode hop to
another stable mode.

Fig. 9 presents the locus curve and the corresponding stability
analysis for one of the modes for a case of low grating selectivity
(full width at half maximum 60 GHz) and high injection current
(80 mA), with perfect AR coating (ro = 0). In comparison to
the previous example, also the mode spacing is higher (about
4.6 GHz), thus providing a larger frequency range of stable op-
eration for a mode near the frequency w,. Due to this fact, we
also expect to have a larger tuning range from the onset of in-
stability to the point where the laser jumps to a stable mode. We
will analyze the evolution of different types of dynamical be-
havior as the mode is detuned through the region of instability.
It is worth to note that Nc is about 1.5 in the scale of Fig. 9(a)
for the current level of 80 mA, so the considered modes are well
above threshold.

The mode to the right of the one indicated by the arrow in
Fig. 9(a) is stable and has the normalized field power spectrum
shown in Fig. 10. The small-signal spectrum derived from (49)
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Fig. 10. Normalized field power spectra for the stable mode to the right
of the mode highlighted in Fig. 9(a). The spectra, which are obtained from
a small-signal analysis and from a time-domain simulation, can hardly be
distinguished on the present scale. The figure demonstrates the ability of the
time-domain approach to reproduce the spectral behavior over a large frequency
range.
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Fig. 11. Limit cycle in the carrier density vs frequency plane for the unstable
mode of Fig. 9. The simulation was performed without spontaneous emission
noise to get a clearer picture of the nonlinear dynamics.
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Fig. 12. Evolution of the unstable mode of Fig. 9 when its frequency is
moved further into the instability region by varying the external cavity length.
The chaotic behavior consists of a sequence of low and high amplitude noise
fluctuations of the carrier density. Like in Fig. 11, the simulation was performed
without spontaneous emission noise.

is again superimposed on the spectrum obtained from time-do-
main simulations. The two spectra show very good agreement
over a large frequency scale.
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Fig. 13.
with different axes limits to highlight the chaotic behavior in both cases.

We then move into the unstable region. The mode indicated
by the arrow in Fig. 9(a) is found to be slightly unstable, having a
side mode with negative imaginary frequency (—2-10~* GHz);
see Fig. 9(b). A time-domain simulation without noise gives
in this case the limit cycle of Fig. 11 where the round-trip
frequency equals the frequency of the undamped side mode
(9.4 GHz).

Figs. 12 and 13 report the evolution of the stable limit cycle
into chaotic behavior when the unstable mode is further tuned to
lower frequencies along the locus curve of Fig. 9(a), by varying
the length of the external cavity. The time evolution of the carrier
density shows a slow periodic switching between low and high
amplitude fluctuations (see Fig. 12), while Fig. 13 highlights the
dynamical behavior in two different low and high noise regions,
to give evidence of the chaos.

Finally, if the unstable mode is moved to even lower frequen-
cies along the locus curve, it simply makes a mode hop to its
neighboring mode [3]. This behavior is shown in Fig. 14, where
the starting point of the time-domain simulation was chosen to
be the mode to the left of the highlighted mode in Fig. 9(a).
The time-domain trajectory (gray line) is plotted along with the
locus curve to show the correspondence between the statically
predicted position of the ECL modes and the actual transient dy-
namics. The time-dependent frequency was determined as the
average (¢(t) — ¢(t — 7)) /277, where ¢(t) is the phase of F(t)
in (30).

In summary, a low selectivity of the external grating can pro-
vide an instability region for a mode on the locus curve, where
no mode hops occur but the dynamical behavior ranges from a
limit cycle to chaos.

V. CONCLUSION

We have illustrated the use of complex frequency diagrams
to analyze the stability of an ECL with frequency-filtered feed-
back to a nonideal AR-coated laser facet. The analysis allows us
to draw maps of stable single-mode operation in the current-de-
tuning plane, similar to those obtained by Godard et al. [8] by an
alternative method and shown to be in good agreement with ex-
periments. The analysis may be used to provide guidelines for
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Fig. 14. Mode hops as time evolves (gray curve) when the ECL simulation
is performed with the starting conditions of a mode deeply located in the
unstable region and without spontaneous emission noise to better understand
the dynamics. The locus curve (thick black curve with bullets as modes)
is plotted over the time-domain trajectory to compare the exact theoretical
position of the modes with the time-domain evolution.

designing new single-mode devices. The latter requires a sys-
tematic parameter analysis, which is outside the scope of this
paper.

We have also introduced a time-domain model for the electric
field, which is a powerful tool to study the dynamics of both
stable and unstable modes over a large range of frequencies.
For stable modes, the time-domain simulations lead to noise
spectra (relative intensity noise, frequency noise and field
power spectra), which are in very good agreement with the
corresponding spectra obtained from a small-signal analysis.
The agreement holds over a frequency range of more than
200 GHz. The derivation of the small-signal field power spec-
trum requires a careful elimination of divergent terms.

Finally, we have exemplified the use of the time-domain
model to study the nonlinear dynamics, which occur outside
the region of stable operation. The examples show nonlinear
phenomena (limit cycle, chaotic behavior, mode-hopping),
which are familiar from other types of feedback systems. The
simplicity of the model should make it attractive for a detailed
mapping of the conditions under which the various types of
nonlinear phenomena occur.
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APPENDIX

In this appendix, we derive the expressions for the
noise spectra when the ECL is operating in a stable mode
(ws, N, Es). We write the solution to (19) in the form

E(t) = Eo(1+ p(t))ed @) (30)
where p(t) and ¢(t) are real. In a small-signal analysis, they
describe the amplitude and phase noise to first order in the
Langevin noise function F'(¢). The small-signal function 6 E ()
in (20) is the Fourier transform of Es(p(t) + j¢(t)), i.e.,

Ey = 6B(3) = By (p(@) + j(@)) G31)

For simplicity, we use the same symbols p and ¢ in the time and
frequency domain and distinguish between the domains by the
argument of the functions. Their relations to £ and F5 of (28)
are

1

p(@) = 5 (Fa(6) + Bo(@)  9(@) = -

06) = 5= (Bs(®) = 1a@).
(32)

The noise spectra are calculated from (28) and the correla-
tion relations for the Langevin noise function F(w) of the field
equation (2). The function describes the amplified spontaneous
emission that is added to the field during one round trip in the
open diode cavity which is confined by the left facet and the ref-

erence plane. It must, therefore, satisfy the correlation relations

(Fw)F*(w")) = Sep(w)2m6 (w — ')
(FW)F W) = (F*(w)F"()) =0 (33)
where “()” denotes ensemble averaging. Ss,(w) is the spectrum
of amplified spontaneous emission from the open cavity with
reflection from the left facet and no reflection from the right
facet. For a uniform modal gain g, the spectrum becomes

Sep(w) = hw?2(G = 1) (1 + 2G)..
gnet

(34)

Here, gnet = g — «; is the net modal gain, i.e., the modal gain g
minus the internal loss «;, ngp, is the population inversion factor,
and G = exp(gnetf) is the total one-way gain. The form (34) is
the familiar expression for the amplified spontaneous emission
spectrum except for the factor (1 + 7{G), which takes into ac-
count that the spontaneous emission moving left is reflected at
the left mirror and is amplified as it moves to the right. From
(33), we find that

) 1 " -
lim_—(F(w)F*()) = Sup(w)

(35)
where the Fourier transform F(w) is taken over a finite time
period 7.

From (28), (32), (33), and (35), we obtain the following ex-
pressions for the relative intensity noise spectrum RIN(@) and
the frequency noise spectrum S (@):

. .1 N2
RIN(@) =4 lim_—(|o(2)[?)
Seplws + DX + Sip(w = D)X

- EDP (36)
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and

. 1 ~ N2\ ~2

Jim (|6(@) e
- &72 (Ssp(ws + @) X"+ 2B'|?
4E,D|2 \7F

+Ssp (ws

Sy(@)

- @)X +2B]*). (37

The derivation of the field power spectrum Sg (@) is more
complicated because we have to cope with the low-frequency
divergence of the phase noise spectrum and the phase-ampli-
tude cross-correlation spectrum caused by phase diffusion. The
spectrum is defined as the Fourier transform

Sp(w) = /_Z

of the autocorrelation function
Ry(7) = (B* (D E(t + 7))o~
~ EX((1+ p(t) + p(t +7) + p(t)p(t + 7)) €27)

Ry(T)e 7*Tdr (38)

(39)
where
A¢ = ¢t +17) — §(t). (40)
We shall approximate R, by
Ry(r) = EZ(1+j(p(t) + p(t + 7)) Ad
+o(D)p(t +7))(e2?). @1

The approximation includes the effect of amplitude-phase cross
correlation and the exponential ensures that the effect of phase
diffusion is included to higher order in the spontaneous emis-
sion rate. However, in order to determine R correctly even to
first order in the spontaneous emission rate, we would have to
calculate p and ¢ to second order in F.

The factor {exp(jA¢)) is given by the familiar expression
(see [18, eq. 6.5.45])

2 o) 02 (wT
(e12%) = exp —T—/ Sé(w)wdw . (42
wh )
Its Fourier transform may be approximated by

* 7 —joT ~ 1 ~ 2
~/—oo<ejA¢>e 9T dr ~ L(w) + o <S¢->(w) — Tcoh> (43)

where 2/7con = S4(0), and L(w) is the Fourier transform of
exp(—|7|/Tcon), i-e., the Lorentzian

27—(:0}1

L(w) - (Tcohaj>2 + 1 '

(44)

Teoh 18 the coherence time, and 1/(m7eon) is the spectral
linewidth.

By (38), (41), and (43), the field power spectrum is given by
the frequency-domain convolution

Sp(@) ~ B2 (m(a)) +8,0(@) + iRIN(&;))
1

® (L(&;) i (sdj(a}) - f})) 45)
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where S, (@) is the amplitude-phase cross correlation

lim 2Im(p(@)¢" (@)).

Spe(@) = Tooo T (46)
The spectrum S, (@) diverges as 1/w as w — 0, i.e.,
a = lim &S, (@) (47)

w—0

is finite. The function S, (@) —a/w is, therefore, finite at w = 0.
The linewidth of the mode is usually much smaller than the
linewidths of the side modes, and L(®) will, therefore, to a
good approximation act as a delta-function when convoluted
with S, (@) — a/@ and RIN(@). The convolution of L(w) with
a/& is the principal value integral

P oo

2r

a(I)TCOhZ

G2 17 (48)

a
L(w—w)—dw =
. (0 —w) _dw
The convolution of S,,(@w) — a/& and RIN(w) with the phase
noise term in (45) is of second order in the spontaneous emis-
sion rate and may be ignored. With these approximations, the
expression for the field power spectrum finally reads

~\ 2 . <|E1|2>
Sp(@) = E; <L(w)-F7k§;'7ng—
2 a
_ _ 49
W2 Teoh G)((&JTcoh)2+l)) “49)
where
(B 1 N o S9@)
 Sup(ws+@)| X'+ B>+ Ssp (ws —@) | BJ?
B |EDJ? '

(50)

The expression (49) is finite at @ = 0, and it has the expected
behavior for large w. If the contribution from nonlinear gain is
ignored, the mode coupling parameter B and the reflectivity r3
go to zero for w larger than the carrier and reflector bandwidths.
Hence

Ssp(ws +@)

Sr() =
p(@) |1 —rorp(ws + @, Ny, Ps)|?

(G

for large w, which is the subthreshold spectral behavior.
For uniform modal gain, the relation between the steady-state
photon number P, and |E,|? is

(G-1)(1+7{G)
Tiwv T3 gnet G2

P, = |E,|? (52)

which implies that

(G-1) (1+77G)
TlgnetGTin

~ Uggnspﬁi (L —rirm)(re +7m) ? (53)
T 4P, 2717 In(r17m) '

Suplws) _ gnapt
AE,2 ~ 4Py,
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In the last step, 17, G =~ 1 was used. The factor v,gng is
the rate of spontaneous emission into the lasing mode, and the
factor with the large parenthesis is the longitudinal Petermann
factor (e.g., see [21, eq. 81]) which gives a noise enhancement
for low Q) cavities.

In the time-domain simulations, we ignore the frequency de-
pendence of the spontaneous emission spectrum, and we use the
ratio (53) in the expressions for the noise spectra.
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