POLITECNICO DI TORINO

Repository ISTITUZIONALE

Infinitely many solutions for one-dimensional eigenvalue problems for variational inequalities

Original
Infinitely many solutions for one-dimensional eigenvalue problems for variational inequalities / Lancelotti, Sergio. - In: ANNALI DELL'UNIVERSITÀ DI FERRARA. SEZIONE 7: SCIENZE MATEMATICHE. - ISSN 0430-3202. - 41:(1995), pp. 33-44. [10.1007/BF02826006]

Availability:

This version is available at: 11583/1401821 since:
Publisher:
Springer Verlag

Published
DOI:10.1007/BF02826006

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright
(Article begins on next page)

InFinitely Many Solutions for One-Dimensional Eigenvalue Problems for Variational Inequalities
 Author's version

Published in: Annali dell'Università di Ferrara Sez. VII 41 (1995), 33-44

Sergio Lancelotti
Dipartimento di Matematica
Università Cattolica del Sacro Cuore
Via Trieste 17, I 25121 Brescia, Italy

Abstract

A non-symmetric perturbation of a symmetric variational inequality is considered. The existence of infinitely many solutions is proved.

1 Introduction

Let $\psi:] 0, \pi[\rightarrow[0,+\infty]$ be a lower semicontinuous function and let

$$
\mathbb{K}=\left\{u \in H_{0}^{1}(0, \pi):|u| \leq \psi\right\}
$$

If $p:] 0, \pi[\times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathéodory function odd in the second variable, $\rho>0$ and suitable qualitative conditions are satisfied, it is known that the problem

$$
\left\{\begin{array}{l}
(\lambda, u) \in \mathbb{R} \times \mathbb{K} \\
\int_{0}^{\pi}[D u D(v-u)+p(x, u)(v-u)] d x \geq \lambda \int_{0}^{\pi} u(v-u) d x \quad \forall v \in \mathbb{K} \\
\int_{0}^{\pi} u^{2} d x=\rho^{2}
\end{array}\right.
$$

admits a sequence $\left(\lambda_{h}, u_{h}\right)$ of solutions with $\lambda_{h} \rightarrow+\infty$. This has been proved, under different assumptions, in [4, 6, 13], even in the multi-dimensional case.

This work was partially supported by a national research grant financed by the Ministero dell'Università e della Ricerca Scientifica e Tecnologica (40\% - 1992).

In $[8,12]$ we have shown that, if we perturb the problem in a quite general nonsymmetric way, then the number of solutions of the perturbed problem goes to infinity, as the perturbation tends to disappear.

Here we want to treat a case in which the perturbed problem has still infinitely many solutions.

In the case of equations, results of this kind have been obtained in $[1,2,3,14,15$, 16]. The technique here is similar, from the topological point of view. To stress this aspect, we will work with the notion of "essential value", which is purely topological. On the contrary, from the differential point of view, the presence of the constraint \mathbb{K} causes an irregularity which will be treated by the use of techniques of nonsmooth analysis. Here we will follow the approach of [7, 9].

We have restricted our attention to the one-dimensional case, because here the critical values of the unperturbed problem have a suitable growth. A similar result, in a more restrictive form, could have been proved also in two dimensions, but our argument does not work if the dimension is at least three.

The author wishes to thank Marco Degiovanni for helpful discussions.

2 Essential values of continuous functionals

In this section we recall from $[8,12]$ some basic facts that will be useful in the following. Let X denote a metric space endowed with the metric d and $f: X \rightarrow \mathbb{R}$ a continuous function. If $b \in \overline{\mathbb{R}}:=\mathbb{R} \cup\{-\infty,+\infty\}$, let us set

$$
f^{b}=\{u \in X: f(u) \leq b\}
$$

(2.1) Definition. Let $a, b \in \overline{\mathbb{R}}$ with $a \leq b$. The pair $\left(f^{b}, f^{a}\right)$ is said to be trivial, if for every neighbourhood $\left[\alpha^{\prime}, \alpha^{\prime \prime}\right]$ of a and $\left[\beta^{\prime}, \beta^{\prime \prime}\right]$ of $b\left(\alpha^{\prime}, \alpha^{\prime \prime}, \beta^{\prime}, \beta^{\prime \prime} \in \overline{\mathbb{R}}, \alpha^{\prime} \leq \beta^{\prime}\right)$ there exists a continuous map $\mathcal{H}: f^{\beta^{\prime}} \times[0,1] \rightarrow f^{\beta^{\prime \prime}}$ such that

$$
\begin{aligned}
& \mathcal{H}(x, 0)=x \quad \forall x \in f^{\beta^{\prime}} \\
& \mathcal{H}\left(f^{\beta^{\prime}} \times\{1\}\right) \subseteq f^{\alpha^{\prime \prime}} \\
& \mathcal{H}\left(f^{\alpha^{\prime}} \times[0,1]\right) \subseteq f^{\alpha^{\prime \prime}}
\end{aligned}
$$

(2.2) Remark. If α is a further number with $\alpha<\alpha^{\prime}$, we can suppose, without loss of generality, that $\mathcal{H}(x, t)=x$ on $f^{\alpha} \times[0,1]$. Actually, it is sufficient to substitute $\mathcal{H}(x, t)$ with $\mathcal{H}(x, t \vartheta(x))$, where $\vartheta: f^{\beta^{\prime}} \rightarrow[0,1]$ is a continuous function with $\vartheta(x)=0$ for $f(x) \leq \alpha$ and $\vartheta(x)=1$ for $f(x) \geq \alpha^{\prime}$.
(2.3) Definition. A real number c is said to be an essential value of f, if for every $\varepsilon>0$ there exist $a, b \in] c-\varepsilon, c+\varepsilon\left[\right.$ with $a<b$ such that the pair $\left(f^{b}, f^{a}\right)$ is not trivial.
(2.4) Theorem. Let $a, b \in \overline{\mathbb{R}}$ with $a<b$. Let us assume that f has no essential value in] $a, b[$.

Then the pair $\left(f^{b}, f^{a}\right)$ is trivial.
Now let us recall a notion from [7, 9].
(2.5) Definition. For every $u \in X$ let us denote by $|d f|(u)$ the supremum of the σ 's in $\left[0,+\infty\left[\right.\right.$ such that there exist $\delta>0$ and a continuous map $\mathcal{H}: B_{\delta}(u) \times[0, \delta] \rightarrow X$ with

$$
\begin{gathered}
d(\mathcal{H}(v, t), v) \leq t \\
f(\mathcal{H}(v, t)) \leq f(v)-\sigma t .
\end{gathered}
$$

The extended real number $|d f|(u)$ is called the weak slope of f at u.
If X is a Finsler manifold of class C^{1} and f a function of class C^{1}, it turns out that $|d f|(u)=\|d f(u)\|$ for every $u \in X$.

Let us point out that the above notion has been independently introduced also in [10].
(2.6) Definition. An element $u \in X$ is said to be a critical point of f, if $|d f|(u)=0$. A real number c is said to be a critical value of f, if there exists a critical point $u \in X$ of f such that $f(u)=c$. Otherwise c is said to be a regular value of f.
(2.7) Definition. Let c be a real number. The function f is said to satisfy the Palais - Smale condition at level $c\left((P S)_{c}\right.$ for short), if every sequence $\left(u_{h}\right)$ in X with $|d f|\left(u_{h}\right) \rightarrow 0$ and $f\left(u_{h}\right) \rightarrow c$ admits a subsequence $\left(u_{h_{k}}\right)$ converging in X.
(2.8) Theorem. Let c be an essential value of f. Let us assume that X is complete and that f satisfies $(P S)_{c}$.

Then c is a critical value of f.

3 Infinitely many solutions for non-symmetric variational inequalities

Let $p:] 0, \pi[\times \mathbb{R} \rightarrow \mathbb{R}$ be a Carathéodory function such that

$$
\begin{gathered}
p(x,-s)=-p(x, s) \\
s p(x, s) \geq 0 \\
\forall t>0: \quad \sup _{|s| \leq t}|p(x, s)| \in L^{1}(0, \pi)
\end{gathered}
$$

let $\psi:] 0, \pi[\rightarrow[0,+\infty]$ be a lower semicontinuous function and let $\rho>0$ with

$$
\rho^{2}<\int_{0}^{\pi} \psi^{2} d x
$$

We start from the nonlinear eigenvalue problem

$$
\left\{\begin{array}{l}
(\lambda, u) \in \mathbb{R} \times \mathbb{K} \tag{3.1}\\
\int_{0}^{\pi}[D u D(v-u)+p(x, u)(v-u)] d x \geq \lambda \int_{0}^{\pi} u(v-u) d x \quad \forall v \in \mathbb{K} \\
\int_{0}^{\pi} u^{2} d x=\rho^{2}
\end{array}\right.
$$

where

$$
\mathbb{K}=\left\{u \in H_{0}^{1}(0, \pi):-\psi(x) \leq \tilde{u}(x) \leq \psi(x) \forall x \in\right] 0, \pi[\}
$$

and \tilde{u} is the continuous representative of u. It is readily seen that (3.1) possesses a symmetry. In fact, if (λ, u) is a solution of (3.1), also $(\lambda,-u)$ is a solution of (3.1).

We want to study a perturbation of (3.1) of the form

$$
\left\{\begin{array}{l}
(\lambda, u) \in \mathbb{R} \times \mathbb{K} \tag{3.2}\\
\int_{0}^{\pi}[D u D(v-u)+(p(x, u)+q(x, u))(v-u)] d x+ \\
+<\mu, v-u>\geq \lambda \int_{0}^{\pi} u(v-u) d x \quad \forall v \in \mathbb{K} \\
\int_{0}^{\pi} u^{2} d x=\rho^{2}
\end{array}\right.
$$

where $q:] 0, \pi\left[\times \mathbb{R} \rightarrow \mathbb{R}\right.$ is a Carathéodory function and $\mu \in H^{-1}(0, \pi)$. We assume that

$$
|q(x, s)| \leq a_{1}(x)+b|s|^{\vartheta}
$$

with $a_{1} \in L^{1}(0, \pi), b \in \mathbb{R}$ and $0<\vartheta<3$.
We want to show that problem (3.2) has infinitely many solutions.
Problems (3.1) and (3.2) have a variational structure. Let us set

$$
S_{\rho}=\left\{u \in L^{2}(0, \pi): \int_{\Omega} u^{2} d x=\rho^{2}\right\}
$$

and let us define $f, g: \mathbb{K} \cap S_{\rho} \rightarrow \mathbb{R}$ by

$$
\begin{gathered}
f(u)=\frac{1}{2} \int_{0}^{\pi}|D u|^{2} d x+\int_{0}^{\pi} P(x, u) d x \\
g(u)=\frac{1}{2} \int_{0}^{\pi}|D u|^{2} d x+\int_{0}^{\pi} P(x, u) d x+\int_{0}^{\pi} Q(x, u) d x+<\mu, u>,
\end{gathered}
$$

where $P(x, s)=\int_{0}^{s} p(x, t) d t, Q(x, s)=\int_{0}^{s} q(x, t) d t$. In the following, the set $\mathbb{K} \cap S_{\rho}$ will be endowed with the H_{0}^{1}-metric. We will denote by $\|\cdot\|_{r}$ the norm of $L^{r}(0, \pi)$ and by $\|\cdot\|_{-1,2}$ the norm of $H^{-1}(0, \pi)$.

Let us recall a definition from [5].
(3.3) Definition. Let C be a convex subset of a Banach space X, let M be a hypersurface in X of class C^{1}, let $u \in C \cap M$ and let $\nu(u) \in X^{\prime}$ be a unit normal vector to M at u. The sets C and M are said to be tangent at u, if we have either

$$
<\nu(u), v-u>\leq 0 \quad \forall v \in C
$$

or

$$
<\nu(u), v-u>\geq 0 \quad \forall v \in C
$$

where $<\cdot, \cdot>$ is the pairing between X^{\prime} and X.
The sets C and M are said to be tangent, if they are tangent at some point of $C \cap M$.

Let us recall a particular case of a characterization given in [8].
(3.4) Theorem. The following facts hold:
a) given $u \in \mathbb{K} \cap S_{\rho}$, the sets \mathbb{K} and S_{ρ} are tangent at u, if and only if

$$
\forall x \in] 0, \pi[: \quad \tilde{u}(x) \neq 0 \Longrightarrow|\tilde{u}(x)|=\psi(x) ;
$$

b) the sets \mathbb{K} and S_{ρ} are tangent, if and only if there exists an open subset E of $] 0, \pi[$ such that the function $\psi \chi_{E}$ is continuous and belongs to $H_{0}^{1}(0, \pi) \cap S_{\rho}$.
(3.5) Theorem. Let us assume that \mathbb{K} and S_{ρ} are not tangent. For every $h \geq 1$ let us set

$$
c_{h}=\inf _{C \in \Gamma_{h}} \max _{u \in C} f(u),
$$

where Γ_{h} is the family of compact subsets of $\mathbb{K} \cap S_{\rho}$ of the form $\varphi\left(S^{h-1}\right)$ with φ : $S^{h-1} \rightarrow \mathbb{K} \cap S_{\rho}$ continuous and odd.

Then the following facts hold:
a) $\mathbb{K} \cap S_{\rho}$ is contractible in itself;
b) for every $h \geq 1$ we have $\Gamma_{h} \neq \emptyset$ and $c_{h} \geq \frac{1}{2} \rho^{2} h^{2}$.

Proof. Property a) is proved in [8]. By means of [11, Lemma VI.4.5] it is then standard to deduce that $\Gamma_{h} \neq \emptyset$ for every $h \geq 1$. Finally, let $f_{0}: H_{0}^{1}(0, \pi) \cap S_{\rho} \rightarrow \mathbb{R}$ be defined by

$$
f_{0}(u)=\frac{1}{2} \int_{0}^{\pi}|D u|^{2} d x
$$

If c_{h}^{\prime} is defined as c_{h}, with $\mathbb{K} \cap S_{\rho}$ substituted by $H_{0}^{1}(0, \pi) \cap S_{\rho}$ and f substituted by f_{0}, it is well known (see [11]) that $c_{h}^{\prime}=\frac{1}{2} \rho^{2} h^{2}$. Since $\mathbb{K} \cap S_{\rho} \subseteq H_{0}^{1}(0, \pi) \cap S_{\rho}$ and $f(u) \geq f_{0}(u)$, it follows that $c_{h} \geq c_{h}^{\prime}$, whence the assertion.
(3.6) Lemma. Let $\left(d_{h}\right)$ be a sequence of positive numbers and let $\left.\gamma \in\right] 0,1[$. Let us assume that there exist $h_{0} \in \mathbb{N}$ and $c>0$ such that

$$
\forall h \geq h_{0}: \quad 0 \leq d_{h+1}-d_{h} \leq c d_{h}^{\gamma}
$$

Then there exists $h_{1} \in \mathbb{N}$ such that

$$
\forall h \geq h_{1}: \quad d_{h} \leq(3 c)^{\frac{1}{1-\gamma}} h^{\frac{1}{1-\gamma}} .
$$

Proof. Let us set $\delta_{h}=h^{-\frac{1}{1-\gamma}} d_{h}$. In [2, Lemma (5.3)] it is shown that the sequence $\left(\delta_{h}\right)$ is bounded. Let us consider two cases. If for every $h \geq h_{0}$ we have

$$
\delta_{h+1}-\delta_{h}<-c \delta_{h}^{\gamma} h^{-1}
$$

then $\left(\delta_{h}\right)$ goes to 0 and the assertion follows. Otherwise there exists $h_{1} \geq h_{0}$ such that

$$
\delta_{h_{1}+1}-\delta_{h_{1}} \geq-c \delta_{h_{1}}^{\gamma} h_{1}^{-1}
$$

Arguing as in the proof of [2, Lemma (5.3)], we deduce that

$$
\delta_{h_{1}} \leq(3 c)^{\frac{1}{1-\gamma}}
$$

Hence, from [2, Lemma (5.3)] it follows that for every $h \geq h_{1}$

$$
\delta_{h} \leq \max \left\{\delta_{h_{1}},[c(1-\gamma)]^{\frac{1}{1-\gamma}}\right\} \leq(3 c)^{\frac{1}{1-\gamma}}
$$

and the assertion follows.
(3.7) Lemma. For every $\sigma>0$ there exists $C(\sigma)>0$ such that

$$
\left|\int_{0}^{\pi} Q(x, u) d x+<\mu, u>\right| \leq \sigma\|D u\|_{2}+C(\sigma)
$$

whenever $u \in H_{0}^{1}(0, \pi) \cap S_{\rho}$.
Proof. Let $a_{1}=a_{1,1}+a_{1,2}$ and $\mu=\mu_{1}+\mu_{2}$ with $a_{1,1} \in L^{1}(0, \pi),\left\|a_{1,1}\right\|_{1} \leq \varepsilon$, $a_{1,2} \in L^{2}(0, \pi), \mu_{1} \in H^{-1}(0, \pi),\left\|\mu_{1}\right\|_{-1,2} \leq \varepsilon, \mu_{2} \in L^{2}(0, \pi)$.

Then we have

$$
\begin{gathered}
\left|\int_{0}^{\pi} Q(x, u) d x+<\mu, u>\right| \leq \\
\leq\left\|a_{1,1}\right\|_{1}\|u\|_{\infty}+\left\|a_{1,2}\right\|_{2}\|u\|_{2}+\frac{b}{\vartheta+1}\|u\|_{\vartheta+1}^{\vartheta+1}+C_{1}\left\|\mu_{1}\right\|_{-1,2}\|D u\|_{2}+\left\|\mu_{2}\right\|_{2}\|u\|_{2} \leq \\
\leq C_{2} \varepsilon\|D u\|_{2}+\left(\left\|a_{1,2}\right\|_{2}+\left\|\mu_{2}\right\|_{2}\right) \rho+C_{3}\|u\|_{2}^{\frac{\vartheta+3}{2}}\|D u\|_{2}^{\frac{\vartheta-1}{2}} \leq C_{4} \varepsilon\|D u\|_{2}+C_{5}(\varepsilon) .
\end{gathered}
$$

A suitable choise of ε then gives the assertion.
(3.8) Theorem. Let us assume that \mathbb{K} and S_{ρ} are not tangent.

Then the functional g admits a sequence $\left(d_{h}\right)$ of essential values with $d_{h} \rightarrow+\infty$.

Proof. First of all, let us show that for every $\sigma>0$ there exists $C(\sigma)>0$ such that for every $u \in \mathbb{K} \cap S_{\rho}$ we have

$$
\begin{align*}
& f(u) \leq b \Longrightarrow g(u) \leq b+\sigma \sqrt{b}+C(\sigma), \tag{3.9}\\
& g(u) \leq b \Longrightarrow f(u) \leq b+\sigma \sqrt{b}+C(\sigma) \tag{3.10}
\end{align*}
$$

According to the previous Lemma, there exists $C_{1}(\sigma)>0$ such that

$$
\forall u \in H_{0}^{1}(0, \pi) \cap S_{\rho}: \quad\left|\int_{0}^{\pi} Q(x, u) d x+<\mu, u>\right| \leq \frac{\sigma}{2}\|D u\|_{2}+C_{1}(\sigma)
$$

If $f(u) \leq b$, it follows $\|D u\|_{2} \leq \sqrt{2 b}$, hence

$$
g(u) \leq b+\frac{\sqrt{2}}{2} \sigma \sqrt{b}+C_{1}(\sigma) \leq b+\sigma \sqrt{b}+C_{1}(\sigma)
$$

On the other hand, if $g(u) \leq b$, we have

$$
b \geq \frac{1}{2}\|D u\|_{2}^{2}-\frac{\sigma}{2}\|D u\|_{2}-C_{1}(\sigma) \geq \frac{1}{4}\|D u\|_{2}^{2}-C_{2}(\sigma),
$$

hence

$$
\|D u\|_{2} \leq 2 \sqrt{b+C_{2}(\sigma)} \leq 2 \sqrt{b}+2 \sqrt{C_{2}(\sigma)} .
$$

It follows

$$
f(u) \leq b+\sigma \sqrt{b}+\sigma \sqrt{C_{2}(\sigma)}+C_{1}(\sigma)=b+\sigma \sqrt{b}+C_{3}(\sigma) .
$$

Therefore (3.9) and (3.10) are proved.
Let $\sigma>0$ be such that $162 \sigma^{2}<\rho^{2}$ and let $c_{h} \in \mathbb{R}$ be defined as in Theorem (3.5). We claim that there exists a sequence $h_{k} \rightarrow+\infty$ such that

$$
\begin{equation*}
\forall k \in \mathbb{N}: \quad c_{h_{k}}+\sigma \sqrt{c_{h_{k}}}+C(\sigma)+\sigma \sqrt{c_{h_{k}}+\sigma \sqrt{c_{h_{k}}}+C(\sigma)}+C(\sigma)<c_{h_{k}+1} \tag{3.11}
\end{equation*}
$$

Let us argue by contradiction. Then, since $c_{h} \rightarrow+\infty$, there exists $h_{0} \in \mathbb{N}$ such that

$$
\forall h \geq h_{0}: \quad c_{h+1}-c_{h} \leq 3 \sigma \sqrt{c_{h}} .
$$

By Lemma (3.6) there exists $h_{1} \in \mathbb{N}$ such that for every $h \geq h_{1}$ we have $c_{h} \leq 81 \sigma^{2} h^{2}<\frac{1}{2} \rho^{2} h^{2}$. This inequality contradicts Theorem (3.5), so that (3.11) is proved.

By Theorem (2.4), it is sufficient to show that for every $M>0$ there exists $a \geq M$ such that the pair $\left(\mathbb{K} \cap S_{\rho}, g^{a}\right)$ is not trivial. By contradiction, assume that there exists $M>0$ such that for every $a \geq M$ the pair $\left(\mathbb{K} \cap S_{\rho}, g^{a}\right)$ is trivial. Let $h \in \mathbb{N}$ be such that

$$
c_{h} \geq M, \quad c_{h}+\sigma \sqrt{c_{h}}+C(\sigma)+\sigma \sqrt{c_{h}+\sigma \sqrt{c_{h}}+C(\sigma)}+C(\sigma)<c_{h+1}
$$

and let $a \in \mathbb{R}$ be such that

$$
c_{h}+\sigma \sqrt{c_{h}}+C(\sigma)<a, \quad a+\sigma \sqrt{a}+C(\sigma)<c_{h+1}
$$

Let $d^{\prime}, \alpha, \alpha^{\prime}, \alpha^{\prime \prime}, d^{\prime \prime} \in \mathbb{R}$ be such that $c_{h}<d^{\prime}<\alpha<\alpha^{\prime}<a<\alpha^{\prime \prime}<d^{\prime \prime}<c_{h+1}$ with

$$
d^{\prime}+\sigma \sqrt{d^{\prime}}+C(\sigma) \leq \alpha, \quad \alpha^{\prime \prime}+\sigma \sqrt{\alpha^{\prime \prime}}+C(\sigma) \leq d^{\prime \prime}
$$

It follows that $f^{d^{\prime}} \subseteq g^{\alpha}$ and $g^{\alpha^{\prime \prime}} \subseteq f^{d^{\prime \prime}}$. Since $c_{h}<d^{\prime}$, there exists $\varphi: S^{h-1} \rightarrow$ $\mathbb{K} \cap S_{\rho}$ continuous and odd with $\varphi\left(S^{h-1}\right) \subseteq f^{d^{\prime}}$ and there exists a homotopy \mathcal{H} : $S^{h-1} \times[0,1] \rightarrow \mathbb{K} \cap S_{\rho}$ between φ and a constant map. Let $\beta^{\prime} \in\left[\alpha^{\prime},+\infty[\right.$ be such that $\beta^{\prime} \geq \max \left\{g(\mathcal{H}(x, t)): x \in S^{h-1}, t \in[0,1]\right\}$. Since the pair $\left(\mathbb{K} \cap S_{\rho}, g^{a}\right)$ is trivial, there exists a continuous map $\eta: g^{\beta^{\prime}} \times[0,1] \rightarrow \mathbb{K} \cap S_{\rho}$ such that

$$
\begin{aligned}
& \eta(x, 0)=x \quad \forall x \in g^{\beta^{\prime}} \\
& \eta\left(g^{\beta^{\prime}} \times\{1\}\right) \subseteq g^{\alpha^{\prime \prime}} \\
& \eta\left(g^{\alpha^{\prime}} \times[0,1]\right) \subseteq g^{\alpha^{\prime \prime}}
\end{aligned}
$$

and

$$
\eta(x, t)=x \text { on } g^{\alpha} \times[0,1]
$$

Let us define $\mathcal{K}: S^{h-1} \times[0,1] \rightarrow f^{d^{\prime \prime}}$ by $\mathcal{K}(x, t)=\eta(\mathcal{H}(x, t), 1)$. Then \mathcal{K} is a homotopy between $\varphi: S^{h-1} \rightarrow f^{d^{\prime \prime}}$ and a constant map. By [11, Lemma VI.4.5] there exists $\psi: S^{h} \rightarrow f^{d^{\prime \prime}}$ continuous and odd. This is absurd, as $d^{\prime \prime}<c_{h+1}$.
(3.12) Theorem. Let us assume that \mathbb{K} and S_{ρ} are not tangent. Then the following facts hold:
a) the functional g is continuous;
b) for every $u \in \mathbb{K} \cap S_{\rho}$ there exist $\lambda \in \mathbb{R}$ and $\eta \in H^{-1}(0, \pi)$ such that $\|\eta\|_{-1,2}=$ $|d g|(u)$ and

$$
\begin{gathered}
\int_{0}^{\pi}[D u D(v-u)+p(x, u)(v-u)+q(x, u)(v-u)] d x+<\mu, v-u>\geq \\
\geq \lambda \int_{0}^{\pi} u(v-u) d x+<\eta, v-u>\quad \forall v \in \mathbb{K} ;
\end{gathered}
$$

c) the functional g satisfies $(P S)_{c}$ for every $c \in \mathbb{R}$.

Proof. Up to minor modifications, the proof is the same of [8].
Now we can prove our main result.
(3.13) Theorem. Let us assume that \mathbb{K} and S_{ρ} are not tangent.

Then problem (3.2) admits a sequence of solutions $\left(\lambda_{h}, u_{h}\right)$ with $\lambda_{h} \rightarrow+\infty$.
Proof. By Theorem (3.8) the functional g admits a sequence $\left(d_{h}\right)$ of essential values with $d_{h} \rightarrow+\infty$. By Theorem (3.12) the functional g satisfies the $(P S)_{c}$ condition for every $c \in \mathbb{R}$. Therefore by Theorem (2.8) each essential value d_{h} is a critical value of g. Hence there exists a sequence $\left(u_{h}\right)$ of critical points of g with $g\left(u_{h}\right) \rightarrow+\infty$ and by Theorem (3.12) there exists a sequence $\left(\lambda_{h}\right)$ such that $\left(\lambda_{h}, u_{h}\right)$ is a solution of (3.2). We have

$$
\lim _{h} \int_{0}^{\pi}\left|D u_{h}\right|^{2} d x=+\infty
$$

and, choosing $v=0$ in (3.2),

$$
\lambda_{h} \rho^{2} \geq \int_{0}^{\pi}\left[\left|D u_{h}\right|^{2}+u_{h} p\left(x, u_{h}\right)\right] d x+\int_{0}^{\pi} u_{h} q\left(x, u_{h}\right) d x+<\mu, u_{h}>
$$

Since $s p(x, s) \geq 0$ and

$$
\begin{aligned}
& \left|\int_{0}^{\pi} u_{h} q\left(x, u_{h}\right) d x\right| \leq\left\|a_{1}\right\|_{1}\left\|u_{h}\right\|_{\infty}+b\left\|u_{h}\right\|_{\vartheta+1}^{\vartheta+1} \leq \\
& \quad \leq\left\|a_{1}\right\|_{1}\left\|u_{h}\right\|_{\infty}+C\left\|u_{h}\right\|_{2}^{\frac{\vartheta+3}{2}}\left\|D u_{h}\right\|_{2}^{\frac{\vartheta-1}{2}}
\end{aligned}
$$

it follows that $\lambda_{h} \rightarrow+\infty$.

References

[1] A. Bahri, Topological results on a certain class of functionals and application, J. Funct. Anal. 41 (1981), 397-427.
[2] A. Bahri and H. Berestycki, A perturbation method in critical point theory and applications, Trans. Amer. Math. Soc. 267 (1981), 1-32.
[3] A. Bahri and P. L. Lions, Morse index of some min - max critical points. I. Application to multiplicity results, Comm. Pure Appl. Math. 41 (1988), 10271037.
[4] A. Canino and U. Perri, Constrained problems in Banach spaces with an application to variational inequalities, Nonlinear Anal. 24 (1995), 839-856.
[5] G. Čobanov, A. Marino and D. Scolozzi, Evolution equation for the eigenvalue problem for the Laplace operator with respect to an obstacle, Rend. Accad. Naz. Sci. XL Mem. Mat. 14 (1990), 139-162.
[6] G. Čobanov, A. Marino and D. Scolozzi, Multiplicity of eigenvalues for the Laplace operator with respect to an obstacle, and nontangency condition, Nonlinear Anal. 15 (1990), 199-215.
[7] J. N. Corvellec, M. Degiovanni and M. Marzocchi, Deformation properties for continuous functionals and critical point theory, Topol. Methods Nonlinear Anal. 1 (1993), 151-171.
[8] M. Degiovanni and S. Lancelotti, Perturbations of even nonsmooth functionals, Differential Integral Equations (8) 5 (1995), 981-992.
[9] M. Degiovanni and M. Marzocchi, A critical point theory for nonsmooth functionals, Ann. Mat. Pura Appl. (4) 167 (1994), 73-100.
[10] G. Katriel, Mountain pass theorems and global homeomorphism theorems, Ann. Inst. H. Poincaré Anal. Non Linéaire 11 (1994), 189-209.
[11] M. A. Krasnoselskir, Topological methods in the theory of nonlinear integral equations, Gosudarstv. Izdat. Tehn. - Teor. Lit., Moscow, 1956. The Macmillan Co., New York, 1964.
[12] S. Lancelotti, Perturbations of symmetric constraints in eigenvalue problems for variational inequalities, Nonlinear Anal. 27 (1996), 633-644.
[13] A. Leaci and D. Scolozzi, Esistenza e molteplicità per gli autovalori non lineari dell'operatore $-\Delta-g$ rispetto a due ostacoli, Ann. Univ. Ferrara Sez. VII (N.S.) 35 (1989), 71-98.
[14] A. Marino and G. Prodi, Metodi perturbativi nella teoria di Morse, Boll. Un. Mat. Ital. (4) 11 (1975), no. 3, suppl., 1-32.
[15] P. H. Rabinowitz, Multiple critical points of perturbed symmetric functionals, Trans. Amer. Math. Soc. 272 (1982), 753-769.
[16] M. Struwe, Infinitely many critical points for functionals which are not even and applications to superlinear boundary value problems, Manuscripta Math. 32 (1980), 335-364.

