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Abstract. An eigenvalue problem for elliptic variational inequalities is consid-

ered. The existence of multiple solutions is proved, when the operator is a small

(non-odd) perturbation of an odd operator. To this aim, techniques of nonsmooth

critical point theory are employed.

1. INTRODUCTION

Let us consider a nonlinear eigenvalue problem of the form
(λ, u) ∈ IR× IK∫
Ω
[DuD(v − u) + p(x, u)(v − u)] dx ≥ λ

∫
Ω
u(v − u) dx ∀v ∈ IK∫

Ω
u2 dx = ρ2

, (1.1)

where Ω is a bounded open subset of IRn, IK is a convex subset of H1
0 (Ω) of the form

IK =
{
u ∈ H1

0 (Ω) : ψ1 ≤ u ≤ ψ2

}
,
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p is a given nonlinearity and ρ > 0.

If p(x, ·) is odd, ψ1 = −ψ2 and suitable qualitative conditions are satisfied, it has

been shown that (1.1) admits a sequence (λh, uh) of solutions with λh → +∞ (see [5,

7, 18]).

It is then natural to ask what happens, if (1.1) is perturbed by a “small” non-

symmetric term. For instance, we can consider a perturbed problem of the form

(λ, u) ∈ IR× IK∫
Ω
[DuD(v − u) + (p(x, u) + q(x, u)) (v − u)] dx+

+ < µ, v − u >≥ λ
∫
Ω
u(v − u) dx ∀v ∈ IK∫

Ω
u2 dx = ρ2

, (1.2)

where µ ∈ H−1(Ω) and q is another nonlinearity. Of course we do not assume that

q(x, ·) is odd, while we could impose some smallness condition on µ and q.

Roughly speaking, our main result (Theorem (3.12)) asserts that the number of

solutions of (1.2) goes to infinity, as µ and q become smaller and smaller.

In the case of equations, results of this kind are well-known in the literature (see

[1, 3, 17]). Actually, in that context, also perturbative results have been proved, in

which the perturbed problem has still infinitely many solutions (see [2, 3, 4, 19, 21,

23]).

Here the presence of the constraint IK causes some new difficulties which must be

overcome.

First of all, problems (1.1) and (1.2) have a variational structure, but the associ-

ated functionals are not smooth in a classical sense. In the last years, several authors

have treated variational problems with lack of regularity, providing useful tools to

handle such situations. Here we follow the approach of [8, 10, 12].

Another difficulty is topological in nature. In the study of perturbed problems, a

key role is played by the well-known fact that the manifold

Sρ =

{
u :

∫
Ω

u2 dx = ρ2
}

is contractible in itself. In our context, we prove (Theorem (3.8)) the contractibility

of IK ∩ Sρ.

In the next section we introduce the auxiliary notion of “essential value” and

we prove some related results. In a slightly different form, this notion appears also

in [11]. Roughly speaking, essential values are candidate critical values, which are
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stable under small perturbations. However, the notion of essential value is purely

topological.

In the third section we treat the concrete problem and we prove the main result.

2. ESSENTIAL VALUES OF CONTINUOUS FUNCTIONALS

In the following X will denote a metric space endowed with the metric d and f : X →
IR a continuous function. If b ∈ IR := IR ∪ {−∞,+∞}, let us set

f b = {u ∈ X : f(u) ≤ b} .

For the topological notions mentioned in the paper, the reader is referred to [20] and

[22, Chapter 1, Sections 4 and 8].

(2.1) DEFINITION. Let a, b ∈ IR with a ≤ b. The pair
(
f b, fa

)
is said to be trivial, if

for every neighbourhood [α′, α′′] of a and [β′, β′′] of b (α′, α′′, β′, β′′ ∈ IR) there exist

two closed subsets A and B of X such that fα
′ ⊆ A ⊆ fα

′′
, fβ

′ ⊆ B ⊆ fβ
′′
and such

that A is a strong deformation retract of B.

(2.2) THEOREM. Let a, c, d, b ∈ IR with a < c < d < b. Let us assume that the pairs(
f b, f c

)
and

(
fd, fa

)
are trivial.

Then the pair
(
f b, fa

)
is trivial.

Proof. Let [α′, α′′] be a neighbourhood of a and [β′, β′′] a neighbourhood of b. Without

loss of generality, we can assume α′′ < c and β′ > d. Moreover, let c < γ < d. There

exist two closed subsets A1 and B of X such that fα
′′ ⊆ A1 ⊆ fγ , fβ

′ ⊆ B ⊆ fβ
′′

and there exists a strong deformation retraction H1 : B × [0, 1] → B of B to A1.

Moreover there exist two closed subsets A and B2 of X such that fα
′ ⊆ A ⊆ fα

′′
,

fγ ⊆ B2 ⊆ fβ
′
and there exists a strong deformation retraction H2 : B2× [0, 1] → B2

of B2 to A. If we define H : B × [0, 1] → B by

H(u, t) =

{
H1(u, 2t) 0 ≤ t ≤ 1

2

H2 (H1(u, 1), 2t− 1) 1
2 ≤ t ≤ 1

,

it turns out that H is a strong deformation retraction of B to A, and the thesis

follows.
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(2.3) DEFINITION. A real number c is said to be an essential value of f , if for every

ε > 0 there exist a, b ∈]c−ε, c+ε[ with a < b such that the pair
(
f b, fa

)
is not trivial.

(2.4) Remark. The set of essential values of f is closed in IR.

(2.5) THEOREM. Let a, b ∈ IR with a < b. Let us assume that f has no essential value

in ]a, b[.

Then the pair
(
f b, fa

)
is trivial.

Proof. Let [α′, α′′] be a neighbourhood of a, [β′, β′′] a neighbourhood of b and let

a′ ∈]a, α′′[, b′ ∈]β′, b[. There exist a′ ≤ c1 < · · · < ck ≤ b′ and εi > 0 for i = 1, · · · , k,
such that

[a′, b′] ⊆
k∪

i=1

]ci − εi, ci + εi[

and such that for every a, b ∈]ci − εi, ci + εi[ with a < b the pair
(
f b, fa

)
is trivial.

Arguing by induction on k and taking into account Theorem (2.2), it is easy to see

that the pair
(
f b

′
, fa

′
)
is trivial. Then there exist two closed subsets A and B of X

such that fα
′ ⊆ A ⊆ fα

′′
, fβ

′ ⊆ B ⊆ fβ
′′
and such that A is a strong deformation

retract of B. It follows that the pair
(
f b, fa

)
is trivial.

Now let us show the two main properties of essential values.

(2.6) THEOREM. Let c ∈ IR be an essential value of f. Then for every ε > 0 there

exists δ > 0 such that every continuous function g : X → IR with

sup {|g(u)− f(u)| : u ∈ X} < δ

admits an essential value in ]c− ε, c+ ε[.

Proof. By contradiction, assume there exist ε > 0 and a sequence of continuous

functions gk : X → IR such that

sup {|gk(u)− f(u)| : u ∈ X} < 1

k

and such that gk has no essential value in ]c− ε, c+ ε[.

Let a, b ∈]c− ε, c+ ε[ with a < b. Let us show that the pair
(
f b, fa

)
is trivial. Let

α′ < a < α′′ and β′ < b < β′′. Since the function gk has no essential value in ]a, b[, the

pair
(
gbk, g

a
k

)
is trivial by Theorem (2.5). Moreover, if k is sufficiently large, we have
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α′ + 1/k < a < α′′ − 1/k and β′ + 1/k < b < β′′ − 1/k. Then there exist two closed

subsets Ak and Bk of X such that g
α′+1/k
k ⊆ Ak ⊆ g

α′′−1/k
k , g

β′+1/k
k ⊆ Bk ⊆ g

β′′−1/k
k

and such that Ak is a strong deformation retract of Bk. It follows fα
′ ⊆ Ak ⊆ fα

′′

and fβ
′ ⊆ Bk ⊆ fβ

′′
, so that the pair

(
f b, fa

)
is trivial.

Therefore c is not an essential value of f : a contradiction.

In order to prove the next result, let us recall some notions from [8, 12].

(2.7) DEFINITION. For every u ∈ X let us denote by |df |(u) the supremum of the σ’s

in [0,+∞[ such that there exist δ > 0 and a continuous map H : Bδ(u)× [0, δ] → X

with

d(H(v, t), v) ≤ t ,

f(H(v, t)) ≤ f(v)− σt .

The extended real number |df |(u) is called the weak slope of f at u.

If X is a Finsler manifold of class C1 and f a function of class C1, it turns out

that |df |(u) = ∥df(u)∥ for every u ∈ X.

Let us point out that the above notion has been independently introduced also in

[16], while a similar notion can be found in [15].

(2.8) DEFINITION. An element u ∈ X is said to be a critical point of f , if |df |(u) = 0.

A real number c is said to be a critical value of f , if there exists a critical point u ∈ X

of f such that f(u) = c. Otherwise c is said to be a regular value of f .

(2.9) DEFINITION. Let c be a real number. The function f is said to satisfy the

Palais - Smale condition at level c ((PS)c in short), if every sequence (uh) in X with

|df |(uh) → 0 and f(uh) → c admits a subsequence (uhk
) converging in X.

Now let us prove the second basic property of essential values.

(2.10) THEOREM. Let c ∈ IR be an essential value of f . Let us assume that X is

complete and that (PS)c holds.

Then c is a critical value of f.

Proof. By contradiction, let us assume that c is not a critical value of f . Since the

function |df | is lower semicontinuous (see [12, Proposition 2.6]) and (PS)c holds, there

exists ε > 0 such that

inf {|df |(u) : u ∈ X, c− ε < f(u) < c+ ε} > 0 .
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In particular, f has no critical value in ]c − ε, c + ε[ and (PS)d holds whenever

c − ε < d < c + ε. Let a, b ∈]c − ε, c + ε[ with a < b. By [8, Theorem (2.15)] there

exists η : X × [0, 1] → X continuous such that

η(u, 0) = u ,

f(η(u, t)) ≤ f(u) ,

f(u) ≤ b =⇒ f(η(u, 1)) ≤ a ,

f(u) ≤ a =⇒ η(u, t) = u .

In particular, fa is a strong deformation retract of f b, so that the pair
(
f b, fa

)
is

trivial.

Therefore c is not an essential value of f : a contradiction.

Let us conclude the section by proving two results concerning the existence of

essential values. First of all, let us show that the values, arising from usual min−max

procedures, are all essential.

(2.11) THEOREM. Let Γ be a non-empty family of closed non-empty subsets of X and

let d ∈ IR ∪ {−∞}. Let us assume that for every C ∈ Γ and for every deformation

η : X × [0, 1] → X with η(u, t) = u on fd × [0, 1], we have η(C × {1}) ∈ Γ. Let us set

c = inf
C∈Γ

sup
u∈C

f(u)

and let us suppose that d < c < +∞.

Then c is an essential value of f.

Proof. By contradiction, let us assume that c is not an essential value of f . Let

d < a < c and b > c be such that
(
f b, fa

)
is trivial. Let a < α < c < γ < β < b.

There exist two closed subsets A and B of X such that fd ⊆ A ⊆ fα, fβ ⊆ B

and there exists a strong deformation retraction H : B × [0, 1] → B of B to A. Let

ϑ : X → [0, 1] be a continuous function such that ϑ(u) = 1 for f(u) ≤ γ and ϑ(u) = 0

for f(u) ≥ β. Let us define η : X × [0, 1] → X by

η(u, t) =

{
H(u, ϑ(u)t) if f(u) ≤ β

u if f(u) ≥ β
.
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Let C ∈ Γ be such that C ⊆ fγ . Then we have η(C × {1}) ∈ Γ and η(C × {1}) ⊆ fα.

This is absurd, as α < c.

Finally, let us prove the main abstract result, in view of our applications. Let us

point out that the argument is similar to that of [3, 17, 23].

(2.12) THEOREM. Let E be a normed space, D a symmetric subset of E with respect

to the origin with 0 ̸∈ D and f : D → IR an even continuous function. Let us assume

that D is non-empty and k−connected for every k ≥ 0. For every h ≥ 1 let us set

ch = inf
C∈Γh

sup
u∈C

f(u) ,

where Γh is the family of compact subsets of D of the form φ(Sh−1) with φ : Sh−1 → D

continuous and odd.

Then Γh ̸= ∅ for every h ≥ 1 and we have

sup
h
ch ≤ sup {c ∈ IR : c is an essential value of f}

with the convention sup ∅ = −∞.

Proof. Since D ̸= ∅, we have Γ1 ̸= ∅. On the other hand, if φ : Sh−1 → D is

continuous and odd, φ is homotopic to a constant map. By [17, Lemma VI.4.5] there

exists an odd continuous map ψ : Sh → D. Therefore Γh ̸= ∅ for every h ≥ 1.

Let us set

γ = sup {c ∈ IR : c is an essential value of f} .

It is readily seen that c1 = inf
D
f is an essential value of f or c1 = −∞. Therefore

c1 ≤ γ. By contradiction let us assume that sup
h
ch > γ. Hence there exists h ≥ 1

such that ch ≤ γ < ch+1. Let a, α′, α′′ ∈ IR be such that γ < α′ < a < α′′ < ch+1.

There exists φ : Sh−1 → D continuous and odd with φ(Sh−1) ⊆ fα
′
and there exists

a homotopy H : Sh−1 × [0, 1] → D between φ and a constant map. Since a > γ, f

has no essential value in ]a,+∞[. By Theorem (2.5) the pair (D, fa) is trivial. Let

β = max
{
f(H(x, t)) : x ∈ Sh−1, t ∈ [0, 1]

}
.

Then there exist two closed subsets A and B of D such that fα
′ ⊆ A ⊆ fα

′′
, fβ ⊆ B

and there exists a strong deformation retraction η : B × [0, 1] → B of B to A. Let

us define K : Sh−1 × [0, 1] → fα
′′
by K(x, t) = η(H(x, t), 1). Then K is a homotopy
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between φ : Sh−1 → fα
′′
and a constant map. By [17, Lemma VI.4.5] there exists

ψ : Sh → fα
′′
continuous and odd. This is absurd, as α′′ < ch+1.

3. PERTURBATIONS OF VARIATIONAL INEQUALITIES WITH SYMMETRY

In this section we want to show an application of the previous results to a perturbation

problem for variational inequalities.

Let Ω be a bounded open subset of IRn with n ≥ 3, let p : Ω × IR → IR be a

Carathéodory function such that

p(x,−s) = −p(x, s) ,

s p(x, s) ≥ 0 ,

|p(x, s)| ≤ a1(x) + b|s|r

with a1 ∈ L
2n

n+2 (Ω), b ∈ IR and 0 < r < n+2
n−2 , let ψ : Ω → [0,+∞] be a quasi-lower

semicontinuous function and let ρ > 0 with

ρ2 <

∫
Ω

ψ2 dx .

In the following ∥ · ∥p will denote the norm in Lp(Ω), ∥ · ∥1,p the norm in W 1,p(Ω) and

< ·, · > the pairing between H−1(Ω) and H1
0 (Ω). As usual, L

1
loc(Ω) will be identified

with a subspace of D′(Ω). For notions and results related to capacities, the reader is

referred to [9].

We start from the nonlinear eigenvalue problem
(λ, u) ∈ IR× IK∫
Ω
[DuD(v − u) + p(x, u)(v − u)] dx ≥ λ

∫
Ω
u(v − u) dx ∀v ∈ IK∫

Ω
u2 dx = ρ2

(3.1)

where

IK =
{
u ∈ H1

0 (Ω) : −ψ(x) ≤ ũ(x) ≤ ψ(x) cap. q.e. in Ω
}

and ũ is a quasi-continuous representative of u. It is readily seen that (3.1) possesses

a symmetry. In fact, if (λ, u) is a solution of (3.1), also (λ,−u) is a solution of (3.1).



9

We want to study a perturbation of (3.1) of the form

(λ, u) ∈ IR× IK∫
Ω
[DuD(v − u) + (p(x, u) + q(x, u))(v − u)] dx+

+ < µ, v − u >≥ λ
∫
Ω
u(v − u) dx ∀v ∈ IK∫

Ω
u2 dx = ρ2

(3.2)

where q : Ω× IR → IR is a Carathéodory function and µ ∈ H−1(Ω). We assume that,

for some δ > 0, we have ∥µ∥H−1(Ω) ≤ δ and

|q(x, s)| ≤ a2(x) + δ|s|r

with a2 ∈ L
2n

n+2 (Ω) and ∥a2∥ 2n
n+2

≤ δ.

We want to show that, as δ → 0, the number of solutions of (3.2) becomes greater

and greater.

Problems (3.1) and (3.2) have a variational structure. Let us set

Bρ =

{
u ∈ L2(Ω) :

∫
Ω

u2 dx < ρ2
}
,

Sρ =

{
u ∈ L2(Ω) :

∫
Ω

u2 dx = ρ2
}

and let us define f : IK ∩ Sρ → IR by

f(u) =
1

2

∫
Ω

|Du|2 dx +

∫
Ω

P (x, u) dx ,

where P (x, s) =
∫ s

0
p(x, t) dt. In the following, the set IK ∩ Sρ will be endowed with

the H1
0−metric.

First of all, we want to apply Theorem (2.12) to the functional f . To this aim,

let us recall a definition from [5, 6].

(3.3) DEFINITION. Let C be a convex subset of a Banach space X, let M be a

hypersurface of class C1 in X, let u ∈ C ∩M and let ν(u) ∈ X ′ be a unit normal

vector to M at u. The sets C and M are said to be tangent at u, if we have either

< ν(u), v − u >≤ 0 ∀v ∈ C

or

< ν(u), v − u >≥ 0 ∀v ∈ C ,
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where < ·, · > is the pairing between X ′ and X.

The sets C and M are said to be tangent, if they are tangent at some point of

C ∩M .

(3.4) LEMMA. Let ψ1 : Ω → IR be a quasi-upper semicontinuous function, ψ2 : Ω → IR

a quasi-lower semicontinuous function,

C =
{
u ∈ H1

0 (Ω) : ψ1(x) ≤ ũ(x) ≤ ψ2(x) cap. q.e. in Ω
}
,

u ∈ C and α ∈ L1
loc(Ω) ∩H−1(Ω).

Then the following facts are equivalent:

a) we have

< α, v − u >≤ 0 ∀v ∈ C ;

b) we have {
α(x) ≥ 0 a.e. in {x ∈ Ω : u(x) > ψ1(x)}

α(x) ≤ 0 a.e. in {x ∈ Ω : u(x) < ψ2(x)}
.

Proof. It is easy to see that b) implies a). The converse is also a rather standard fact.

Let us prove it for reader’s convenience. Let (wh) be a sequence in H1
0 (Ω) ∩ L∞(Ω)

of non-negative functions such that

ψ2(x)− ũ(x) =
∞∑
h=0

w̃h(x) cap. q.e. in Ω .

If we set

w =

∞∑
h=0

2−h (1 + ∥wh∥1,2 + ∥wh∥∞)
−1
wh ,

it is readily seen that w ∈ H1
0 (Ω) ∩ L∞(Ω) and cap. q.e. in Ω we have

0 ≤ w̃(x) ≤ ψ2(x)− ũ(x) ,

w̃(x) = 0 =⇒ ũ(x) = ψ2(x) .

Then, for every ϑ ∈ C∞
c (Ω) with 0 ≤ ϑ(x) ≤ 1, we have (u+wϑ) ∈ C, which yields∫

Ω

αwϑdx =< α,wϑ >≤ 0 .
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It follows α(x)w(x) ≤ 0 a.e. in Ω, hence α(x) ≤ 0 a.e. in

{x ∈ Ω : u(x) < ψ2(x)} .

In a similar way, it is possible to show that α(x) ≥ 0 a.e. in

{x ∈ Ω : u(x) > ψ1(x)} .

Now we can characterize the tangency condition between IK and Sρ. If ψ ∈ H1(Ω),

similar characterizations have been proved in [6, 7].

(3.5) THEOREM. The following facts hold:

a) given u ∈ IK ∩ Sρ, the sets IK and Sρ are tangent at u, if and only if

ũ(x) ̸= 0 =⇒ |ũ(x)| = ψ(x) cap. q.e. in Ω ;

b) the sets IK and Sρ are tangent, if and only if there exists a measurable subset E

of Ω such that the function ψχE is quasi-continuous and belongs to H1
0 (Ω) ∩ Sρ.

Proof.

a) If u ∈ IK ∩ Sρ is a function with the above property, it is readily seen that IK

and Sρ are tangent at u.

Conversely, let us assume that IK and Sρ are tangent at u ∈ IK∩Sρ. Since 0 ∈ IK,

we have ∫
Ω

u(v − u) dx =< u, v − u >≤ 0 ∀v ∈ IK .

If we set E = {x ∈ Ω : ũ(x) ̸= 0}, we deduce from the previous lemma that |u(x)| =
ψ(x)χ

E
(x) a.e. in Ω. Since ψχ

E
is quasi-lower semicontinuous, this implies |ũ(x)| ≥

ψ(x)χ
E
(x) cap. q.e. in Ω. On the other hand, the opposite inequality is also true, as

u ∈ IK. We deduce that |ũ(x)| = ψ(x)χ
E
(x) cap. q.e. in Ω, and the thesis follows.

b) It follows from a).

(3.6) THEOREM. The space IK \ {0} is contractible in itself.

Proof. Let V =
∪
t>0

(tIK). Since −IK = IK and IK ̸= {0}, V is an infinite dimensional

linear subspace of H1
0 (Ω). Therefore V \ {0} is contractible in itself by Dugundji’s

theorem [13].
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Let w ∈ H1
0 (Ω) be such that 0 ≤ w̃(x) ≤ ψ(x) and w̃(x) = 0 =⇒ ψ(x) = 0 cap.

q.e. in Ω. Let us define H : (V \ {0})× [0, 1] → V \ {0} by

H(u, t) = (1− t)u+ t[(u ∨ (−w)) ∧ w] .

Then H is a weak deformation retraction of V \{0} to IK\{0} and the thesis follows.

(3.7) LEMMA. Let us assume that IK and Sρ are not tangent. Then for every compact

subset C of IK \ {0} there exist two continuous maps r : C → IK \ Bρ and H :

(C \ Bρ) × [0, 1] → IK \ Bρ such that H(u, 0) = u and H(u, 1) = r(u) for every

u ∈ C \Bρ.

Proof. Let C be a compact subset of IK \ {0}. For every u ∈ IK and φ ∈ H1
0 (Ω),

let us set IK(φ, u) =
{
v ∈ H1

0 (Ω) : |v| ≤ φ ∨ |u| a.e. in Ω
}
. Let us show that there

exists a non-negative function φ in IK such that
∫
Ω
φ2 dx > ρ2 and such that for every

u ∈ C ∩ Sρ the sets IK(φ, u) and Sρ are not tangent at u. By contradiction, let (φh)

be an increasing sequence in IK \Bρ with (φ̃h) convergent to ψ cap. q.e. in Ω and for

every h ∈ IN let uh ∈ C ∩ Sρ be such that∫
Ω

uh(v − uh) dx ≤ 0 ∀v ∈ IK(φh, uh) .

Since IK(φh, uh) contains IKφh
:=

{
u ∈ H1

0 (Ω) : −φh ≤ u ≤ φh a.e. in Ω
}
, we have∫

Ω

uh(v − uh) dx ≤ 0 ∀v ∈ IKφh
.

Under a subsequence, (uh) is convergent to u ∈ C ∩ Sρ, so that∫
Ω

u(v − u) dx ≤ 0 ∀v ∈
∞∪
h=0

IKφh
.

By [9, Lemma 1.6] we have IK =
∞∪
h=0

IKφh
. It follows that IK and Sρ are tangent at u,

which is absurd.

Let us define a continuous map Φ : IK×H1(IRn) → IK by

Φ(u, v) = [v ∨ (−(φ ∨ |u|))] ∧ (φ ∨ |u|) .

Let ϑ ∈ C∞(IR) be such that 0 ≤ ϑ ≤ 1, ϑ(t) = 0 if t ≥ ρ and ϑ(t) > 0 if t < ρ. For

every u ∈ C let us set

T (u) = {σ ∈ [0,+∞[: ∥Φ(u, (1 + σ)U(u, ϑ(∥u∥2)))∥2 > ρ} ,



13

where U : H1(IRn)× [0,+∞[→ H1(IRn) is the semiflow associated with the parabolic

problem {
∂U
∂t (u, t) = ∆U(u, t)

U(u, 0) = u
.

For every t > 0 the function U(u, t) is real analytic on IRn and not identically zero.

Since the gradient of a smooth function vanishes a.e. where the function is zero (see

e.g. [14]), we have U(u, t)(x) ̸= 0 a.e. in IRn. Then it is readily seen that T (u) ̸= ∅
whenever ∥u∥2 < ρ. If ∥u∥2 = ρ, the sets IK(φ, u) and Sρ are not tangent at u, so

that T (u) ̸= ∅ by Theorem (3.5). Finally, it is obvious that T (u) ̸= ∅ for ∥u∥2 > ρ.

Therefore, for every u ∈ C the set T (u) is not empty. Moreover, for every u ∈ C there

exist a neighbourhood U of u and σ ≥ 0 such that [σ,+∞[⊆
∩

v∈U

T (v). Because of the

compactness of C, there exists τ ∈
∩

u∈C

T (u). Let us define K : C × [0, 1] → IK \ {0}

by

K(u, s) = Φ(u, (1 + sτ)U(u, ϑ(∥u∥2))) .

For every u ∈ C we have K(u, 1) ∈ IK \Bρ. Moreover, we have K(u, 0) = u for every

u ∈ C \Bρ and K((C \Bρ)× [0, 1]) ⊆ IK\Bρ. The thesis follows by setting r = K(·, 1)
and H = K|(C\Bρ)×[0,1].

Now we can show the main property of IK ∩ Sρ, in view of the result we want to

prove.

(3.8) THEOREM. Let us assume that IK and Sρ are not tangent. Then IK ∩ Sρ is an

absolute retract. In particular, IK ∩ Sρ is contractible in itself.

Proof. First of all, let us show that every compact subset of IK∩ Sρ is contractible in

IK∩Sρ. Since IK∩Sρ is a strong deformation retract of IK\Bρ, it is sufficient to show

that every compact subset of IK \ Bρ is contractible in IK \ Bρ. Let C be a compact

subset of IK \ Bρ. By Theorem (3.6) there exists a contraction K : C × [0, 1] →
IK \ {0} of C in IK \ {0}. Moreover, by Lemma (3.7) there exist two continuous maps

r : K(C × [0, 1]) → IK \ Bρ and H : [K(C × [0, 1]) \ Bρ] × [0, 1] → IK \ Bρ such that

H(u, 0) = u and H(u, 1) = r(u). Let us define η : C × [0, 1] → IK \Bρ by

η(u) =

{
H(u, 2t) 0 ≤ t ≤ 1

2

r(K(u, 2t− 1)) 1
2 ≤ t ≤ 1

.

Then η is a contraction of C in IK \Bρ.
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It follows that IK∩Sρ is k−connected for every k ≥ 0. On the other hand, IK∩Sρ

is an absolute neighbourhood retract by [5, Theorem 2.5]. The thesis follows by [20,

Corollary to Theorem 15].

(3.9) THEOREM. Let us assume that IK and Sρ are not tangent. Then the functional

f : IK ∩ Sρ → IR admits a sequence (dh) of essential values with dh → +∞.

Proof. Let us consider E = H1
0 (Ω) and D = IK ∩ Sρ. The set D is non-empty,

contractible in itself and symmetric with respect to the origin with 0 ̸∈ D. The

function f : D → IR is continuous, even and bounded from below. By Theorem

(2.12), to conclude the proof, it is sufficient to show that ch → +∞, where ch is

defined as in Theorem (2.12). By [5, Proposition 3.3] the functional f verifies (PS)c

for every c ∈ IR. Moreover, IK∩ Sρ is an absolute neighbourhood retract. Arguing as

in [8, Theorem 3.5] and taking into account [8, Theorems 2.16 and 2.17], it is easy to

see that f b has finite genus for every b ∈ IR. It follows ch → +∞.

Now let us consider problem (3.2). Let ϑR ∈ C∞
c (IR) with 0 ≤ ϑR ≤ 1, suptϑR ⊆

[−R− 1, R+ 1] and ϑR(x) = 1 on [−R,R] and let g : IK ∩ Sρ → IR be the functional

defined by

g(u) =
1

2

∫
Ω

|Du|2 dx +

∫
Ω

P (x, u) dx+

+ ϑR

(
1

2

∫
Ω

|Du|2 dx
)(∫

Ω

Q(x, u) dx+ < µ, u >

)
,

where Q(x, s) =
∫ s

0
q(x, t) dt.

In order to apply Theorem (2.6), we have to consider a “uniformly small” pertur-

bation of f . This is the reason because the cut-off function ϑR has been introduced.

(3.10) THEOREM. Let us assume that IK and Sρ are not tangent. Then for every

R > 0 and for every σ > 0 there exists δ > 0 for which the following facts hold:

a) the functional g is continuous and

sup {|g(u)− f(u)| : u ∈ IK ∩ Sρ} < σ ;

b) for every u ∈ IK ∩ Sρ there exist λ ∈ IR and η ∈ H−1(Ω) such that ∥η∥ = |dg|(u)
and ∫

Ω

[DuD(v − u) + p(x, u)(v − u)] dx+
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+ϑ′R

(
1

2

∫
Ω

|Du|2 dx
)(∫

Ω

Q(x, u) dx+ < µ, u >

)∫
Ω

DuD(v − u) dx+

+ϑR

(
1

2

∫
Ω

|Du|2 dx
)(∫

Ω

q(x, u)(v − u) dx+ < µ, v − u >

)
≥

≥ λ

∫
Ω

u(v − u) dx+ < η, v − u > ∀v ∈ IK ;

c) the function g verifies (PS)c for every c ∈ IR.

Proof. Of course g is continuous. Moreover, we have ∥µ∥H−1 ≤ δ and

|Q(x, s)| ≤ a2(x)|s| +
δ

r + 1
|s|r+1

with ∥a2∥ 2n
n+2

≤ δ. Therefore, if δ is sufficiently small, we have

sup
u∈H1

0

ϑR

(
1

2

∫
Ω

|Du|2 dx
) ∣∣∣∣∫

Ω

Q(x, u) dx+ < µ, u >

∣∣∣∣ < σ ,

sup
u∈H1

0

∣∣∣∣ϑ′R (
1

2

∫
Ω

|Du|2 dx
)∣∣∣∣ ∣∣∣∣∫

Ω

Q(x, u) dx+ < µ, u >

∣∣∣∣ ≤ 1

2
.

In particular, property a) holds.

Property b) follows from the Lagrange’s multiplier theorem proved in [5, Theorem

2.5].

Let us prove property c). Let (uh) be a sequence in IK ∩ Sρ with |dg|(uh) → 0

and g(uh) → c ∈ IR. It is readily seen that (uh) is bounded in H1
0 (Ω). Up to a

subsequence, (uh) is weakly convergent in H1
0 (Ω) to some u ∈ IK∩ Sρ. Again up to a

subsequence, we have that (p(x, uh)), (q(x, uh)) and (uh) are strongly convergent in

H−1(Ω). According to the previous point, we have[
1 + ϑ′R

(
1

2

∫
Ω

|Duh|2 dx
)(∫

Ω

Q(x, uh) dx+ < µ, uh >

)]∫
Ω

DuhD(v − uh) dx+

+

∫
Ω

p(x, uh)(v − uh) dx+

+ϑR

(
1

2

∫
Ω

|Duh|2 dx
)(∫

Ω

q(x, uh)(v − uh) dx+ < µ, v − uh >

)
≥

≥ λh

∫
Ω

uh(v − uh) dx+ < ηh, v − uh > ∀v ∈ IK (3.11)

with λh ∈ IR and ηh → 0 in H−1(Ω).
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Since IK and Sρ are not tangent at u, there exists u+ ∈ IK with∫
Ω

u(u+ − u) dx > 0 .

If we put v = u+ and v = 0 in (3.11), we deduce that (λh) is bounded in IR. Up to a

subsequence, it follows that∫
Ω

DuhD(v − uh) dx ≥< βh, v − uh > ∀v ∈ IK ,

with (βh) strongly convergent in H−1(Ω). Therefore (uh) is strongly convergent to u

in H1
0 (Ω).

Now we can prove our main result.

(3.12) THEOREM. Let us assume that IK and Sρ are not tangent. Then for ev-

ery m ∈ IN there exists δ > 0 for which problem (3.2) has at least m solutions

(λ1, u1), · · · , (λm, um) with u1, · · · , um all distinct.

Proof. By Theorem (3.9) we can find m distinct essential values d1 < · · · < dm of

f . Let ε > 0 be such that 2ε < di − di−1 for every i and let δi > 0 be obtained by

applying Theorem (2.6) to the essential value di. Let R > 0 be such that

∀u ∈ IK ∩ Sρ : f(u) < dm + 2ε =⇒ 1

2

∫
Ω

|Du|2 dx < R .

Now let us apply Theorem (3.10) with σ = min {ε, δ1, · · · , δm} and let δ > 0 be the

value we obtain. Let us show that δ satisfies our claim.

By Theorem (2.6) g has an essential value in every ]di − ε, di + ε[, hence it has at

least m distinct essential values in ]−∞, dm + ε[. By Theorem (2.10) each essential

value of g is a critical value of g. Let u1, · · · , um be distinct critical points of g with

g(ui) < dm + ε. Since f(ui) < dm + 2ε, we have 1
2

∫
Ω
|Du|2 dx < R. By Theorem

(3.10) it follows that for every ui there exists λi ∈ IR such that (λi, ui) is a solution

of (3.2).
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