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Wavelet Analysis of a Microbarograph Network

Stefano Grivet-Talocia and Franco Einaudi

Abstract—This paper presents a wavelet-based algorithm for with the layers above, including the ionosphere. Some of these
the detection, identification, and extraction of gravity waves from  disturbances are essentially confined to the lower few kilome-
atmospheric pressure traces. The main data processing 100l iS o1 of the atmosphere, typically with horizontal wavelengths
a nonlinear adaptive filter based on the selective reconstruction f a few kil hori | f th f
of a waveform from its wavelet coefficients. The time-frequency ©' @ erl ilometers and horizontal speeds of the order o
localization of the wavelet transform provides an ideal framework 10 ms™*, while others involve the entire depth of the tro-
for the decomposition of long-period gravity waves posphere. The latter are characterized by a broad range of
g%%c?";(;a:c)i’ f(\;\IhI(?Scﬁlrzt'grl;]agag[(i‘e:z?'ﬂebgroi e%e'::r?‘s”Yte'?;‘i?i horizontal scales and include fronts (500 km), squall lines

u w oscillati ycles. ure is i v .y . . .
and allows the exhaustive processing of all the events present in(100 km), jet-associated vertical wind shears (_50 km), and
a fixed time period. convective cells (5.km). They represent the link between_

The waveform of each disturbance is reconstructed with high synoptic scale motions and small-scale phenomena. Their

accuracy. This minimizes the influence of the data-processing speed of propagation ranges from 10 to 100 thsand their

technique on the estimate of horizontal speed and direction of amplitude can reach several millibars [3], [28], [40], [49], [51]
propagation, obtained by maximization of the cross-correlation 52] ' ' ' ' '

functions between the reconstructed waveforms at the different . . . )
stations. The introduction of coherency criteria through the The few climatological studies on gravity waves come from

network of seven stations allows us to separate the events intonetworks of pressure sensors (see [13] and [27] and references
two classes. The first includes the events that propagate with very therein). The pressure at the ground varies in response to

small distortion throggh_the network,_whlle the second includes changes in the mass of the overlying atmosphere and to vertical
less coherent but still highly energetic events.

The size of the network and the algorithm developed for the @ccelerations and is, thus, a good ilndicator of gravity waves. .In
analysis is well suited for the identification and the extraction fact, pressure records are less noisy than temperature or wind

of those mesoscale disturbances that have a particularly strong or humidity records because they stem from volume integrals.
influence on the weather as well as on the forecast. A network of at least three barographs allows the identification
Index Terms— Adaptive filters, adaptive signal processing, of a disturbance horizontal velocity of propagation. We will
data processing, nonlinear filters, pressure measurement, yse in this paper a network of seven barometers, which are
time-frequency analysis, wavelet transforms. located in the vicinity of Flatland, IL.
Each of the atmospheric processes that generate coherent
I. INTRODUCTION disturbances has its own footprint in the surface pressure.
gccasionally, the pressure record is nearly monochromatic,
s in the event analyzed in [12], which lasted several periods.

data from a network of barographs. Second, to provide pr he decompolsmon. through fast Fourier transform (FFT) into
lementary sinusoids allows a very good analysis of such

liminary climatological results for the fourth quarter of 199F

on the frequency of occurrence and characteristics of gravﬂ};turbanges. _Mo_re often, the signal is quite _complex and is
waves detected by such a network. also localized in time: short wave packets, solitary waves, and

The motivation for the study stems from the recognitioﬁ“dde” pressure changes are such examples. The broad na_ture
of the important role that gravity waves play in atmospheri@c thg spectrum for these .events makes the data proces;mg
dynamics. They redistribute energy and momentum over |a§§§hr_1|qu_es based on FFT inappropriate, due to the poor time
distances both horizontally and vertically; they can generdf@lization of its basic functions. , o
and interact with wind shears and turbulence; they can influ-1he wavelet transform method described in this paper
ence phase changes and thus trigger and generally influencefgfcomes some of these limitations and allows a good

evolution of convection; and they can couple the troposphép@ntifi.cation 'of the events in general and of the mesoscale
ones in particular. As for the standard FFT, the wavelet
transform also allows the decomposition of a signal into a
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barograph network was supported in part by the Aeronomy Laboratory al St of basis functions, but these are localized both in time and

by NASA Headquarters. Research at the Aeronomy Laboratory was supporiegquency. This permits a much more efficient detection and

in part by the Division of Atmospheric Sciences of the National Scienggconstruction of an event and minimizes the introduction of
Foundation by Grant ATM-9419638. . .

S. Grivet-Talocia is with Science Systems and Applications, Inc. (SSAI?,meOus correlations. . . .
Lanham, MD 20706 USA, and the Dipartimento di Elettronica, Politecnico di The wavelet transform is quite new and has been studied

HIS PAPER has a twofold objective. First, to present
wavelet transform algorithm for the analysis of pressu

Torino, 10129 Torino, Italy (e-mail: grivet@polito.it). and used extensively only in recent years. Many excellent
F. Einaudi is with the Laboratory for Atmospheres, NASA/Goddard Space

Flight Center, Greenbelt, MD 20771 USA. mtrqductory books and papgrs.[4], [7], [23], [42], [45] are
Publisher Item Identifier S 0196-2892(98)00539-7. available. The range of applications is extremely broad, cov-

0196-2892/98$10.001 1998 IEEE



GRIVET-TALOCIA AND EINAUDI: WAVELET ANALYSIS OF A MICROBAROGRAPH NETWORK 419

ering signal and image processing, data compression, operators
theory, information theory, detection, and estimation (see, [6],
[39], and [41]). In particular, the detection and extraction of 10
special features of signals, like modulation laws [9], [10], [30] ISW
and waves [45], are greatly improved by the wavelet transform. FLA ¢
A number of recent publications show a growing interest ALP .
in the wavelet transform technique among the geophysical *
community. Some introductory and review papers have already -10
been published [16], [35], [36]. The wavelet transform has
been applied to the study and decomposition of turbulence -20
[1], [5], [26], [29], [31], [32], orthogonal decompositions
of spatial rainfall fields [33], [34] and Liquid Water Path _30 °
(LWP) measurements [22], compression of SAR data [54], -30 20 -10 0 10 20 30
disparity analysis [11], quantifications of nonstationarity and Km East
intermittency of LWP [8], detection of localized periodicitiesig. 1. Geometry of the Flatland barometer network. The coordinate system

and C|imato|ogica| fluctuations in Northern hemisphere Surfaé‘ecentered in the reference station located in Flatland (FLA), IL. The other
d £ t t SST ds 136]. [38]. [44 tions are Allerton Park (ALP), lllinois State Water Survey (ISW), Mansfield
and sea surlace temperature ( ) records [ ] [ ] [ ]? 'AN), Sidney (SID), Tuscola (TUS), and Urbana (URB), all located in

radiance [53], and length of the day (LOD) parameters [20], agois.

well as detection and identification of waves, fronts, and other

coherent structures [18], [19], [21], [37], [43], [45], [48]. This

paper should be placed in this last category. few kilometers) to several hours (hundreds of kilometers).
An algorithm based on the wavelet transform is presenterhe present work concentrates on pressure fluctuations with

It consists of an iterative procedure that identifies the graVi%aracteristiC periods below 6 h. Therefore, a preprocessing

wave events larger than a scale-dependent threshold, extragdfipass filter was implemented to remove longer period

their waveforms through a nonlinear adaptive filter, determing@gctuations. The highpass-filtered signals constitute the input

relative arrival times at the different stations by maximizingaw data set for the main algorithm and will be indicated with

cross-correlation functions, and estimates horizontal speg@ symbolsf;(t) throughout the paper, where the subscript

and direction of propagation with an equivalent plane waverefers to a specific station. We will denote the reference
fit. This data-processing technique is ideally suited for thgation (FLA) with the subscript.

climatological analysis of the data as well as the detailed study
of individual events.
Section Il provides a brief description of the data and the ll. DATA PROCESSING

experimental setup. Section Ill describes the data processinghis section is dedicated to a detailed description of the
in detail. The application of this wavelet transform methogata-processing technique and to the introduction of the algo-
to the fourth quarter of 1991 is discussed in Section IV. fithm used to extract and study the coherent pressure distur-
more detailed analysis for a 45-month period in the 1991-1988nces propagating through the Flatland barometer network.
interval is in preparation. The filtering procedure is quite complex and is strongly
tailored to the application under development. This is due to
the extreme variability of the data and especially of the events
to be detected. As a matter of fact, every adaptive filtering
This section is devoted to the description of the experimenttheme must be parameterized according to the data being
setup and the data available for the current analysis. Figpocessed. For the sake of clarity, we decided to split the
shows the network of seven stations located in the vicinity pfesentation into four sections, each one focusing on a specific
the Flatland Observatory near Urbana-Champaign, IL. Eaahpect of the filter. Section IlI-A presents a quick overview
station is equipped with a barograph that measures the surfanethe Continuous Wavelet Transform and introduces the
atmospheric pressure continuously in time with a samplingnlinear adaptive filter that allows the selective extraction of
rate of 7. = 120 s and a resolution of the A/D converter ofjravity wave events from the raw pressure traces. Section llI-
10 pbars. The time period that was chosen for this analydsis devoted to the derivation of a scale-dependent threshold
is the fourth quarter of 1991, corresponding to a set of sevrat provides the main time-frequency localization tool for the
contemporary time series of 66 240 samples each. Each stafitiar and to the derivation of the reconstruction regf@nn
has a data gap of about three days, due to malfunctioningtbé wavelet plane for the whole set of stations. Section IlI-C
the recording system. In addition, the barometer located ithtistrates the fitting procedure with an equivalent plane wave
ISW became operative only on day 336 of 1991. Therefor detect the most likely speed and direction of propagation
only six stations are available for part of the analysis. associated with the event. The elements discussed in these
The geometry of the network, which is characterized by difaree sections provide the main building blocks of the iterative
tances between stations ranging 12—-45 km, allows a statistieatraction algorithm, which is discussed in Section IlI-D,
and climatological study of disturbances with characteristtogether with additional consistency tests and classification
temporal (spatial) scales ranging from several minutes i&sues.

20
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Fig. 2. Basic wavelet: (a) the continuous line represébs(¢)}/[+(0)], the dotted line3{+()}/|¢(0)|, and the dashed ling>(t)|/|¥(0)| and (b) the
Fourier spectrumy(w)/v¥(wo) is plotted, wherevq is the centerband angular frequency corresponding to the maximum.

A. Wavelet Transform and Adaptive Filtering The first is the so-callegorogressivity The basic wavelet
This section contains a short description for the maifi 'S Sa'g to be progressive when it belongs to the Hardy
properties of the wavelet transform and the conventions ape2ce “(R), i-e., when its Fourier transform is identically
symbols used throughout this work. A more complete theg€"© for negative frequencies. Such signals, sometimes called
retical background can be found in [4], [7], and [42]. Th@nalyt_mal are complex valued, and their imaginary part is
wavelet transform of a finite energy signaland its inverse the Hilbert transform of the real part [46]. In addition, the

oo pdoo da.db Indeed, the wavelet transform maps a signal into a two-
fty=c;t / / (W )(b, a)py o(t) ——  dimensional (2-D) functioiV (b, a), where the coordinaté
—oo J—o0 lal corresponds to time and the scalés inversely proportional
@) to frequency. When equivalent bandwidth and duration of the
mother wavelet are finite, the wavelet transform localizes in the

are defined as magnitude can be regarded as the envelope of the real and
imaginary part. When a progressive wavelet is used, the
(W), a) =(f, s,a) reconstruction formula in (2) can be simplified by integrating
1 e Lft=b only the real part over positive scales.
:m /_Oo f@y < a )dt (1) The second issue is a good time-frequency localization.

where
4o 177 12 space(h, ) the energy of the signal. The bandwidth-duration
Cp = / |1/)|(;d|)| dw < 0. 3) Elr]oduct has a lower limit dictated by the uncertainty principle
The signalf is decomposed into a set of (honorthogonal) basis AA, > 1/2 )
functions v, ,, derived from a single mother wavelét by toe = '
means of translations and dilations The lower limit is only reached by a Gaussian, which is not
1 t—1b 4 admissible as mother wavelet. Several functignaith good
b,alt) = m ¥ A (4) time-frequency localization properties have been proposed in

) o the literature [24], [45]. The basic wavelet employed in this
This normalization preserves tiig norm when the parameter ok is the analytical signal whose real part is the fourth

a, usually calledscale,is changed. This normalization hasjerivative of a Gaussian with variance equal to one. The
been employed in other works [1], [8], [25], [26] and iSsqyrier transform ofy is then identically zero fow < 0,

preferred here because it allows a simple link between thgiie for positive frequencies we have the expression
wavelet transform mod and the amplitude of fluctuations in

the signalf. More precisely, when analyzing different wave Z/}(w) = 2\/%@5*@_‘“‘2/2, w > 0. (6)

packets with the same amplitude but with different frequency,

the wavelet transform mod maxima will be the same. This Iscan be shown that(¢) is proportional toe=t"/4 D_5(—jt),

not true when the more usuBf normalization is used becausewhere D is one of the parabolic cylinder functions [15]. The

the wavelet mod maxima would depend also on the frequencgal and imaginary parts as well as the mod/¢f) are plotted

This property will be used in Section IlI-B. in Fig. 2(a) and its Fourier spectrum in Fig. 2(b). The mod
Several choices for the mother wavelgthave been pro- decays in time at|~>. The relative band ig\,, /wo ~ 0.24

posed in the literature. The only constraint is the admiand the bandwidth-duration product 4s;A., ~ 0.51. These

sibility condition in (3). However, two other requirementgproperties insure a good time-frequency localization. The

are convenient for the analysis and will be imposed henmgormalization constant for the inversion formulais = 24x.
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Fig. 3. Event extraction. (a) Original pressure series, (b) extracted event, and (c) remaining waveform after the extraction.

3065

It should be noted that the time localization of this wavelet iato two components

more strict than the frequency localization. This property is da db
essential for an efficient filtering of waveforms, like solitary p(t) =20, // R{(fs Po,a)0,a} (7)
waves, bumps, or sudden jumps, that are intrinsically of broad- () “

band nature and very localized in time. The employment gf(t) — p(t) :207;1 // RS, Vo, a) b, 0} da db_ (8)
other wavelets, like the Morlet wavelet, with better frequency =-Q(f) @

resolution would not lead to satisfactory results, especially in The actual filter for the extraction of gravity wave events op-
the separation of close disturbances (see Section IlI-B). Asyates on multivariate signals to process the pressure traces in
choice of wavelet that is admissible, progressive, and has thafiehe stations at the same time. Therefore, the determination
time-frequency localization properties could be used here. of 2 is based on the combined extraction of the event from
Due to the exact reconstruction formulas, the operations @if stations and will be discussed in Section IlI-B. We will
taking the wavelet transform and its successive inversion capw illustrate the effectiveness of the filter in (7) on a single
be interpreted as the application of the identity operator gressure signal. A two-day data segment centered in day 305
the space of real signals with finite energy. This is achievedlyear 1991 is shown in Fig. 3(a). This is the original pressure
when the integration is performed in (2) over the wholgack recorded at the reference station (Flatland) after the
plane (or halfplane):. It is possible to define a class ofpreprocessing highpass filtering that eliminates the long-period
bounded operators by restricting the integration domain toflactuations. The signal includes then all the fluctuations in the
smaller regiorf2 C . These operators have many interestingange of periods between four minutes (corresponding to the
properties [7]. When{2 is determineda priori and does Nyquist frequency) and six hours. A well-defined disturbance
not depend on the signal itself, the resulting operator is evident from the plot.
linear. Nonetheless, very powerful filters can be constructedThe mod of the wavelet transfortW f)(b, a)| is reported
by adapting the reconstruction region to the signal being Fig. 4(a). The horizontal axis corresponds to tion@nd the
processed, settin® =Q(f). The resulting operator will then vertical axis, which is logarithmically spaced, to frequency
be nonlinear. The raw signglcan thus be adaptively separated,/27a. An analysis of this plot allows a qualitative identifi-
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Fig. 4. Wavelet transform (magnitude) shown as a contour plot for (a) raw sigri&lig. 3(a)], (b) raw signalf; at a different station (URB), (c) extracted
eventp, [Fig. 3(b)], and (d) remaining signgl- — p,- [Fig. 3(c)]. The intensity of the gray shades is proportional to the magnitude of the wavelet transform.

cation of a subset of points in the time-scale plane with large The threshold that will be used in the following is the time-
wavelet amplitude (darker region). Taking this regiortdg) averaged wavelet amplitude, which provides a scale-dependent
and applying (7), we obtain the signal plotted in Fig. 3(bamplitude spectrum for the overall time series. It is defined as
Its wavelet transform is given in Fig. 4(c) and illustrates the 9

set of retained time-frequency components in the filtered signal Ala) = — (J((W (D, a)|)s 9)

p(t). Also, the remaining parf(t)—p(t) is plotted in Fig. 3(c) o

and its wavelet transform in Fig. 4(d). It is clear from thesgere the normalization constaﬁ@ _ z/;(wo) insures that the

plots that the filter is capable of extracting the wave from themplitude A(a) is equal to the amplitude of a monochromatic
background fluctuations with very high selectivity. wave at the frequency corresponding to the seag5]. The

function A(a) has been evaluated over the available data set

B. Definition of the Reconstruction Regién (three months), averaging over all the stations of the network,

) ) and is plotted in Fig. 5 (continuous line), where the horizontal
In Section Ill-A, we showed that there is a one-t0-0ngcaje axis is labeled with periods = 2ma/w.

correspondence between what we define an event and gpe |ocation of an event is determined by maximizing the
region in the time-scale plane with significantly high ang;nction

localized wavelet amplitude. It is crucial to define an algorithm (W F)(b, )|
that automatically finds an event and determines the optimal max ~—2 22
reconstruction regiors . ba A(a)

Let us consider first a single pressure trace. Once an evejice this “center’(b,, a.) has been found, the set of points

has been identified in the plan@, a), the reconstruction ¢ with wavelet amplitude above the threshold is defined by
region could be found by retaining only those points with

wavelet coefficients larger than a fixed threshold. However, (be, ac) € & (11)
power spectra of various geophysical quantities, including the (b, a) € ¥ & |[(W£)(b, a)| > Ala) (12)
pressure [2], have been shown to have a characteristic power-
law decay in frequency. This means that the amplitude of a
disturbance could be considered insignificant at long period$ie reconstruction regiofl is obtained by extending’ along
but quite significant at short periods. It seems thus appropridgte « andb directions until the first minimum o W )(b, a)|

to use a scale-dependent threshold. is found. This correction is needed to improve the waveform

(10)

(Y is connected. (13)
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08 - , - ‘ : ; — above average fluctuations. The upper bound must insure both
o a sufficiently small threshold, with respect to the magnitude
If 2/(‘3(;) of the event, and the inclusion of most of its energy. This
06t 7 requirement can be accomplished by setting
7 -~ . W £)(be, a
g 0.4 ///’ max = min {aM, %} a7
The procedure for the determination of the optimal value of
02 o will be described in Section I11-D.
Let us turn now to the whole set of statios;, i =
0o . , ‘ , ‘ 1,---, Ng}, with §; = S, denoting the reference station.
00 10 20 30 40 50 60 Suppose that a well-defined event has been identified and
T [hours] reconstructed ab,. by using the procedure described above.

Fig. 5. Scale-dependent thresholds. The time-averaged wavelet amplitJdé€ Next step is th? identification and e)_(traCtiQn of the
A(a) is plotted versus periods (continuous line). The quartity«) is also  waveform corresponding to the same event in stations

drawn (dashed line). S;, i > 1. This operation is generally not simple for two
main reasons. First, it is not known when the event occurs in
reconstruction because, although the wavelet transform time. The relative time difference between the arrival times
Q- is below the threshold, its contribution to the energy ddt stationsS; and S, depends on speed and direction, which
the event can be substantial, sifeéecan be much larger thanare the parameters to be estimated by the whole procedure.
. The localization, though, is not affected by this proceskhere are physical lower and upper bounds for the propagation
because only the time-scale components pertaining to the evepged, which can be easily translated into bounds for the
under investigation are included in its reconstruction regiodelay times, because the distance between the stations is
This algorithm was used in the example of Section Ill-Anown. However, there is a need for an automatic search

(Fig. 4). of the arrival time in each statioff;. Even more important,
It should be noted that an event can be extracted only ifthere must be no ambiguity. When two different events are
very close in time, the algorithm must insure the detection
(W £)(be, ac)| = Alae) (14) VoY J

of the same event in all stations. Second, the waveform of
otherwise, the reconstruction regifhwould be an empty set. the event is generally not invariant during its propagation.
A faithful and stable reconstruction, however, requires a mofe number of reasons, including instability effects and local
stringent condition. Indeed, whe@V f)(b., a.)| is larger but fluctuations, contribute to modifying the pressure disturbance
almost equal to4(«.), there are few and possibly only onen time and space. This means that the reconstruction region
point of the discrete grid in the auxiliary s@f and the final changes shape at the different stations. On the other hand, the
reconstruction regiori2 will be correspondingly small. This waveform distortions for a well-defined event must be small,
means that the reconstructed signal will be a superpositiotherwise the hypothesis of the existence of a propagating
of too few basis functions, its waveforg, will have little disturbance ceases to be valid. Likewise, the change3;in
resemblance with the corresponding disturbance in the réiwm station to station must be small. As an example, the
signal f;, and the event should be disregarded. This situatigravelet transform of the raw pressure track at another station
can be avoided by requiring (URB) corresponding to the event examined in Section IlI-
A is plotted in Fig. 4(b). Note the global similarity and the
(W) (bes ac)l 2 carAlac) (15) differences in the details with Fig. 4(a). In this particular

wherea,, is a multiplicative factor sufficiently larger than onecase, the event was propagating quite coherently through the
and yet not too big to avoid missing a significant event. Aftaretwork (see below), and therefore, the differences in the
extensive testing, we chosey; = 2. This more restrictive reconstruction regions at the different stations were small.
threshold is plotted in Fig. 5 (dashed line). However, the question of whether the event is coherent (i.e.,

It proved also useful to introduce an additional paramettite distortions are small and the propagation speed is well
« to control the selectivity of the reconstruction. The newlefined) can only be answered on a statistical basis. The
threshold «A(a) was considered and substituted into (12;omplete set of criteria employed by the extraction algorithm
obtaining will be itemized in Section IlI-D.
Let 2, be the reconstruction region in the reference station.

/
>
(b, a) € Xy & [(W)(b, a)] 2 ad(a). (16) We introduce a time-shifted set in the time-scale plane
The set{Y, is now dependent om. As « increases, the
localization is more strict andY’,, is smaller. Wheno de- Qs(s) ={(b+s,a)| (b, a) € A} (18)

creases, more points are included and the localization is less

selective. This selectivity parameter can be varied in a rangéich is an exact copy of?, translated in time by. If the
[Cmin, Omax]- The lower bound is taken as.;, = 1 to distortions between the stations are not too large, the true
insure that the time-frequency components of the event aeeonstruction regiofl; in S; will not be very different from
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Q5(s), Wheres,; is the propagation delay time betweerfor the same event studied in the previous section are plotted
the stations. Moreover, if the raw signals corresponding to tie Fig. 6.
events are similar, so will be their wavelet transforms. The It has already been mentioned that particular care must be
optimal delay times,; can then be found maximizing a crosstaken in the extraction of a single event from a network since
correlation function between the two wavelet transforms at thecal and propagation effects can create anomalies in some of
two stations. This function is defined as the stations. Examples of such anomalies follow.
dadb . Wh_en two or more separ_ate disturbances are clc_)ge in time,
Gi(s) = // R{W £)(b, a)}R{W f)(b+ 5, a)} ) their reconstruction regions may overlap. Intuitively, if
Qr @ we regard the wavelet magnitude as a three-dimensional
(19) (3-D) surface, the events are like “mountains” separated
by “valleys”. When a valley is completely below the

The optimal delay time,.; is such that?;(s,;) > Gi(s) Vs #

s,;. Onces,; has been found, a first estimate of the reconstruc-

tion region for stationsS; is given by$,.;(s,;). However, this

first estimate must be refined. This refinement is performed

by finding the centerb.;, a.;) that maximizes the wavelet
amplitude in the sef2,.;(s,;) and then by applying again the
algorithm described above.

Repeating the above steps for= 2, ---, N5, we obtain

a set of reconstructed waveforms for a specific event for

all the stations. These signals, hereafter denoted wyith)

are identically zero everywhere except in the support of the

threshold A(a), the events have distinct reconstruction
regions and can be separated easily. On the other hand,
when two events are very close and propagate with
significantly different velocities, their time separation
varies from station to station. This means that the distance
between the peaks of the two mountains in the wavelet
plane changes and the separating minima can be above
the threshold for some stations and below for others.
This leads to the two events being identified as separate
at some stations and as single at others. The question
regarding whether the two events have to be separated

disturbance. The resulting waveforms at the available stations can only be answered on a statistical basis.
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Fig. 7. Example of an event that was improved by the corrections described in Section IlI-B. The reconstruction was consistent in all statioos except f
SID and TUS. The right column shows the reconstructed waveforms after the corrections. The pressure units are [mbars].

e Local phenomena, like a thunderstorm occurring in the detected similarly by analyzing the distribution of #hg's.
vicinity of one station, can interact with a well-definedlhis leads, when necessary, to the correction of the defective
event that propagates through the network and modify &%'s. For each fixed scale we redefine the boundary points of
waveform. The time-frequency signature of the event the reconstruction region as
then distorted.

+ A well-defined event may be characterized by a spatial bi(a) = N 1_ I Z Vi(a) = sm (20)
domain that does not include all the stations of the s i
network. In this case, the pressure signal in some of P | "
the stations does not allow the identification of any bi(a) TN, -1 Z Vi(a) + sm (21)

reconstruction region for the event. et

A set of statistical tests has been designed to determinberes,, is the maximum propagation delay evaluated among
if the reconstruction regions$?; are consistent throughoutthe valid stations
the network in either shape or position. The shape can be
analyzed by restricting the reconstruction regions to constant- Sm = mZ?lX{|3ri|}- (22)
a lines (usually calledvoiceg, therefore obtaining intervals
[Vi(a), b(a)]. The shapes are consistent throughout the ndthese equations place the reconstruction region as close as
work when the widthss;(a) = 0/ (a) — b(a) follow a narrow Possible to where the event is expected on the basis of the data
distribution around a certain mean value for each voice. Wh&@m the other valid stations. Moreover, its shape is dependent
one considers the same set minus one Station’ the distribut%hthegils in the gOOd stations. It should be noted that the tests
will not be very different. On the other hand, when there is ongentioned above will also work when the bad stations are two,
station with significantly different reconstruction region an#! Which case we have similar expressions. The need for the
consequently significantly differefif(a), this distribution will above corrections is exemplified in Fig. 7. Two close events

change dramatically when this station is subtracted from tRECUTTINg in days 291 and 292 were incorrectly merged into
set. In particular, the variance will be large when considerirf§€ Same waveform in stations SID and TUS and successtully

all the stations and will drop when neglecting the “ba corrected. These tests cannot be used to detect more than two
station. Note that this is true when the bad station hggd stations because they would lose statistical significance.

either larger or smaller reconstruction region. When one of

the “good” stations is neglected, however, the variance wffi- Speed and Direction Estimation

remain large. The presence of a station with a significantly This section will describe the procedure adopted for the
different ©; can be determined through the application adstimation of propagation speed and direction, once the wave-
the standard F-test [47] to the distribution of thga)'s. forms of a given event in all the stations have been extracted.
The case when the centéb.;, a.;) has been misidentified The first step is the determination of the arrival titnet each
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1.0 . : is the inverse of the phase speggl = 1/v. The convention
T for the propagation directions assumes angles measured east
- MAN of north. The calculation of the theoretical arrival times of the
08 ¢ A model in the stationi is straightforward and leads to
c —-— URB
2 06 - AL = sy1icos(P; — 0y,) (27)
[0
S whered; is the angular coordinate of the station. The best-
u"", 04| i fitting slowness vector is found by a standafdminimization
[o]
G e
o2 \ | X2 (Sw, V) = ™ > o(Af - A)? (28)
, . Y ¢ =2
0.0 I 0 \\ } where the normalization constant is the sampling time and
-150 -100 -50 0 50 100 150 makes thex? statistic nondimensional. Note that the discrep-

Time shifts [min] ancies between the measured and theoretical delay times are
Fig. 8. Cross-correlation functions between the reconstructed waveformdaHe to_many factors and, in general, C"?mnOt be assumed to be
the stationsS; and S, for the event reported in Fig. 6. Gaussian. Therefore, the standapdstatistic [47] cannot be
used for producing a level of significance of the fitting. The

. ) . . . uantity that will be used is
stationS; relative to the arrival time,. at the reference statlonq y

1
2
N _1X (29)

These delays can be _ea3|ly c_alculated by maximizing ey ingicates the rms deviation of the measured delay times
standard cross-correlation functions from the model delay times normalized with the sampling time.

1 . . . e
Ci(r) = T /p,,(t)pi(tJrT)dt. (24) It will be denoted in the following with fitting error.

Atz =t — trv 7 = 27 e NS_ (23) 6trms =

Note that these cross-correlation coefficients are evaluaféd Global lterative Events Extraction

on the cleaned waveforms; of the events and not on the A climatological study on pressure disturbances requires the
raw time seriesf;. This is one of the main advantages ofystematic identification of all significant events from the data
the wavelet-filtering procedure because fluctuations that ateeam. The algorithm introduced in the preceding sections can
extraneous to the event have minimal influence on the delag applied iteratively on the highpass-filtered pressure time
times. This fact insures very high cross-correlation coefficienteries to extract the events one by one. This procedure is
An additional advantage of this filtering technique is that thesaimmarized as follows.

is no ambiguity in the determination of the integration domain ]_) Evaluate the wavelet transform of the pressure 5igna|s
in (24) because the extracted waveforms are localized in time. for all the stations in the whole time period under
The cross-correlation functions for the event reported in Fig. 6  analysis.

are plotted for all stations in Fig. 8. The relative delay times 2) Find the event with the largest amplitude.

At; are such that 3) Extract the event, find the delay times between the
Ci(At) > Cil(), V7 £ Aty (25) rsrﬁz(;]s, and fit the equivalent plane-wave propagating

Let us consider now the estimation of speed and direction4) Evaluate the remaining signals after the extraction at all
from the set of delay times. The basic hypothesis underlying  stations and recompute their wavelet transform.
the analysis is that each event is characterized by well-defined) Repeat Steps 2)-4) until a loop-breaking condition is
propagation speed and direction, which are constant through reached.
the network. In other terms, each event can be representedSsyps 1) and 4) are direct numerical implementations of (1)
an equivalent plane wave. If this hypothesis is not satisfieshd (8) and do not need additional explanations. Steps 2)
as in the case of two or more propagating wave packets wihd 5) have already been discussed in Section lI-B and are
different velocities, the algorithm will evaluate a mean speeskpressed, respectively, by (10) and (15). Step 3) combines
and direction and is likely to reject the event on the basis of thige procedure described in the preceding sections with a clas-
tests described in Section IlI-D. The model for the disturbanetfication algorithm. This classification is important because it
is must allow the detection of truly coherent events from other
phenomena. There are basically three classes of events that

pit) =p(t = sw - 15) (26)  can be encountered.
where s, is the slowness vector [14] ang] is the relative 1) Events with high cross-correlation coefficients and good
position of the statiord;, with respect to the reference station. fitting. These events correspond to well-identified local-

It should be noted that the slowness vector points toward the ized disturbances that propagate through the network,
direction of propagation of the evert,, and its magnitude and their speed and direction can be evaluated with a
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good confidence level. These will be labeled as “classe The fitting error ét,,,; must be small, with respect to

1 events”. the propagation time through the network, otherwise the
2) Events with sufficiently large amplitude and good uncertainty on the fitted speed and direction would be

wavelet reconstruction, but either with low cross- too large. A test that was found by trial and error to be

correlation coefficients or bad fitting. These disturbances appropriate is given by

correspond to localized perturbations not coherent

through the stations, or with a dominant frequency

(wavelength) not suitable to the geometry of the \yhere At,,.. indicates the rms propagation delay time

network. They will be named “class 2 events” in the  ,rough the network normalized with the sampling time
following and will be further discussed in Section IV-C.

3) Events with small amplitude, poor correlation coeffi- 1 1 X
cients, and bad fitting. These are disregarded in the Atbyys = TA N -1 Z(At?‘)? (34)
statistics, but must be subtracted from the pressure traces ¢ s
so that the algorithm can proceed to the next iteration. The speed must be confined within physical bounds.
The classification algorithm is embedded in the decision \yhen At,,,. is too small, the estimated speed would be
procedure that selects the optimal value of the selectivity {50 |arge and would not have any physical meaning. This

6t1‘1]ls S 0-4Atrms (33)

=2

parameterc and determines the reconstruction regidnss is the typical situation of some small high-frequency fluc-
and the extracted waveforms(¢). The first attempt of a tuations belonging to the waveform of an event already
reconstruction is made for the upper bounek an.x. Events extracted that were left over in its reconstruction. The

that are well defined and stable throughout the network have jmplemented test was

a strong signature in the time-scale plane at all stations and

are immediately reconstructed with high accuracy. When the Atyms > 2 (35)
reconstruction is detected as bad, even after the corrections
described in Section IlI-B¢ is lowered and another attempt

is made. This procedure is repeated until;, = 1 is .
reached or the event is identified in the class 1. Lower values
of o allow a more flexible reconstruction in the different
stations for events characterized by more distorted waveforms.
Before being placed in class 1, each event must also satisfy
additional stringent conditions on the correlation coefficients

K; = C;(At;) and on the fitting error. These conditions are
itemized below. IV. NUMERICAL RESULTS

which means that the rms propagation time must be at
least twice the sampling timé...

Only events characterized by a ratio between the second
and the first positive maximum of the cross-correlation
functions less than 0.8 were accepted. This latter test
allows to reject high-frequency events suffering from
spatial aliasing.

« The correlation coefficients must be sufficiently high and )
the fitting error sufficiently small. We found that all the” COomPplete Events Extraction from Pressure Records
events with a strong signature always satisfy the conditionThe iterative algorithm described in Section Ill was applied
to the pressure data from the Flatland barometer network. Only
Kmin > 2/3 and 6ty <2 (30) a three-month period corresponding to the fourth quarter of
1991 is processed in this paper to illustrate the data-processing
where K, is the minimum cross-correlation coefficientiechnique. A longer pressure record will be analyzed in a
When these conditions are not satisfied, a further Fgrthcoming paper.
test on the set of cross-correlation coefficieffs;} is  The remaining signals after the extraction of all the events
attempted to detect whether one or two stations hayees
poor correlations with respect to the others. Eventual N,
co_rrectlons_ are applied to the bac_i_statlons. If (30) is ei(t) = fi(b) _Z pgk)(t) (36)
still not satisfied, some looser conditions are then tested, :
allowing either worse correlations or a larger fitting error
where N, is the total number of iterations ar)nik) is the
0.75 and 6tyms < 0.5 (31) extracted waveform of the evehtin stationS;. The signals
0.8 andét,,s <3 (32) fande, atthe reference station and the time supports of class
1 and 2 events are plotted in Fig. 9(a)—(d) for three weeks in
where K is the mean cross-correlation coefficient. Whethe period under investigation. The comparisonfoft) and
both of these conditions are still not satisfied, a last.(¢t) clearly illustrates the power of the described method in
attempt is made on a restricted set of stations, neglectitige selective extraction of events.
the one with the lowest correlation coefficient. If this The total number of identified events wa§ = 138, of
attempt succeeds, the event is placed in the class 1 avitich only N, = 56 were placed in class 1. The remaining
is interpreted as a localized disturbance that does nd§t = 82 (class 2) events had significant amplitude, with re-
propagate coherently throughout the whole network, bspect to the scale-dependent threshd{d), but no fitting was
only on a subset of stations. possible. A further discussion of these events will be given in

=1

K>
K>
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Fig. 9. (a) Raw highpass-filtered signgls and (b) remaining signals, after the extraction of all events at the reference station for three weeks in the
fourth quarter of 1991. The supports of class 1 and 2 events are shown, respectively, in (c) and (d). The pressure fluctuations units are [mbars].

Section IV-C. In addition, otheiNg = 428 small fluctuations of the total events reaches 65%. The energy decay in the
were extracted, but with amplitude smaller than the threshofitst 20 iterations is particularly fast. This is because the first
These were mainly due to noncomplete reconstructions @fents to be identified happen to have large amplitude and
previous events or to high-frequency glitches in the pressuegv frequency.
record. They had to be extracted to clean the original waveformSimnany to E(k), the frequency of occurrencgk), defined
and allow the algorithm to jump to the next iteration, but wergs the percentage of time when events are present with respect
not considered in any of the statistics illustrated in this papgp the total time, was evaluated and plotted in Fig. 10(b) as a
In conclusion, a total ofV; = N, + Ny = 566 iterations were fynction of k. The two different cumulative time percentages
necessary before reaching the loop-breaking condition in (1pdfer to all events together (dashed line) and to class 1 events
As already discussed in Section Ill, the algorithm extraclg,y (continuous line). Only the asymptotic values of these
the pressure disturbances one by one. It is possible thenyigis are of physical significance. However, from the steep
evaluate the amount of extracted energy for each |terat|on.4|%pe of these curves in the extraction of the first events,

particular, the following quantity was evaluated: we can conclude that the most energetic events, which are

N 2 immediately extracted by the algorithm, are also characterized
E®) = 14172 - Zp(jj) 37) by a long duration. After the algorithm stops and all events
= ! are extracted, the class 1 events cover approximately 18% of

the total time, while all events together cover 31%.
which is the normalized energy in the signal after the first After each event is extracted, it can be further processed
k iterations. This quantity is plotted in Fig. 10(a), where tht9 estimate its equivalent frequency band, defined as the
sum includes allN, events (dashed line) and only class frequency interval including most of its energy. Fig. 11 reports
events (continuous line). Note that about 46% of the initi@ histogram of the number of class 1 and 2 events in different
energy belongs to class 1 events, while the extracted enepgyiods bins. The thick line represents class 1 events, and the
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Fig. 10. (a) EnergyE(k) of the signal remaining after the firét iterations, normalized with the total initial energy of the raw highpass-filtered signal,
as indicated in (37). The continuous line takes into account only the extracted class 1 events, and the dashed line includes all events. (b) fFrequency o
occurrence((k) for class 1 events (continuous line) and class 2 events (dashed line).

50 ———r — where the delay time in the reference station is assumed
At,. = 0. A plot of the averaged waveforms for all the class 1
o 40 F I events occurring in the three weeks shown in Fig. 9 is given
g - - in Fig. 12.
3 30 | [ I =1 Th | - The basic parameters evaluated for each event, speed
“é — | Ik and direction,,, are plotted in Fig. 13. The error bars
S o0t ! } _] have been produced by fitting the equivalent plane wave
E L model to subsets of three stations, including Flatlands and
Z 10 - 1 - defining nonoverlapping regions, and taking the minimum
| ‘ :i and maximum fitted parameters. All the speeds are in the
0 — 1 range 9-47 ms!, with the largest contributions between
10 T [min] 100 20 and 40 msS'. The directions of propagation have a

positive component pointing toward east, and most of them

Fig. 11. Distribution of class 1 (thick line) and all (thin line) events inare concentrated in the sector between NE and SE.
periods bins. Both histograms start from zero, and the difference corresponds
to class 2 events. The plot refers to the fourth quarter of 1991.

C. Class 2 Events

thin line all events. It should be noted that the consideration of The set of class 2 events is composed of sufficiently large
all events leads to an almost uniform distribution of period@Mmplitude disturbances for which no fitting was possible.
while the class 1 events are concentrated in the longer periddtse events are considered to be present, but their propaga-
range. The cutoff period can be estimated from the plot to jen speed and direction cannot be found. There are different
7 = 20 — 30 min. Speed and direction for higher frequencyeasons for the failure of the fitting procedure, resulting in a
events cannot be estimated uniquely by this network and wiirther classification. There are mainly three categories.
require a set of stations with smaller separations. i) Some pressure fluctuations are not coherent at all stations
and suffer from local variations. The resulting cross-
correlation coefficients are then quite small and the
estimates of the arrival times cannot be trusted. An
example is shown in Fig. 14 for the available stations (six
in this case). It should be noted that the waveform is well
defined in all stations, but the distortions are too large
for a good estimate of the delay times using the cross-
correlation functions. A possible reason is the presence of
two interacting wave packets with a different propagation
speed and direction, which cannot be separated because
their time-frequency components are overlapping in the
wavelet plane and interfering with each other.

B. Class 1 Events

This section presents the results relative to the class 1
events characterized by high cross-correlation coefficients be-
tween the stations, low error in the fitting with an equivalent
plane wave, and significant amplitude [compared to the scale-
dependent threshold(a) introduced in Section I11-B]. Typical
amplitude values range from 0.2 mbars at 10 min to several
millibars at 2 h. The delay timeat; in the different stations
are known, so the mean waveform for evg¢man be found by
averaging the time-shifted waveforms in the different stations

i)
(38)

Some events are resulting from a nonperfect recon-
struction of other larger events already processed by
the algorithm. Even when small, with respect to the
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Fig. 12. Averaged waveforms of the class 1 events occurring in the periods shown in Fig. 9. The events are plotted in chronological order from left
to right and from top to bottom. The pressure fluctuation units are [mbars], and the time units are days [UTC]. Note that the scales for the time and
pressure axes are not the same in the different panels.
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Fig. 13. Speed (top) and direction (bottom) of class 1 events for the fouftig- 14. Example of a bad event belonging to class 2i. The waveforms
quarter of 1991. The horizontal axis corresponds to an indexmbering the are significantly different in the various stations, and the cross-correlation

class 1 events in order of extraction.

amplitude of the event they really belong to, these
fluctuations can result in false events with amplitude
larger than the scale-dependent threshdi:). The
fitting generally fails for these events because they are
very different from one station to the other and the
correlation coefficients are very poor.

iii) A third set of events is characterized by propagating
wave packets with many cycles, short periods, and

coefficients are low.

small spatial wavelengths, like the one in Fig. 15. The
centerband period of this wave 5 = 8 min, and

the number of oscillations is very large. This event,

extremely significant, having a peak-to-peak value of
almost 1 mbar, could not be fitted by a propagating

plane wave because the presence of multiple maxima in
the cross-correlation functions does not allow a unique
determination of speed and direction. Moreover, the



GRIVET-TALOCIA AND EINAUDI: WAVELET ANALYSIS OF A MICROBAROGRAPH NETWORK 431

FLA ALP the requirements. Typical amplitude values range from 0.2
10 ' ' o mbars at 10 min to several millibars at 2 h. The class 2 events
o 9T | have amplitudes above the chosen threshold and sometimes
g o0 JWWMWWWMWW ‘/M/V\W - as large as for the class 1 events, but do not have high
05 17 B cross-correlation functions because they are either not uniform
-10 - VAN * ‘ oo R throughout the network or their characteristic horizontal scale
10 ; ; ; ; is small compared with the size of the network.
. 05 The method has a number of limitations.
é 0.0 WWWUWWMW JVN\WMWWWW 1) As expected, it does not work well when the signal
-05 | is nearly monochromatic and lasts several periods of

10 e — ' the disturbance. In these cases, the FFT method can

e be more efficient. However, the use of cross-correlation

05 coefficients for the determination of speed and direction
00 | —n MM | Ly | " should be avoided when the spatial scale of the events

s | i ] is too small compared to the dimensions of the network.
to bl N 2) ltidentifies as separate those events that in fact may have
3554 355-5D 3556 3857 355»5D 356 38T been generated by a single phenomenon: in parts (c) and
e e (d) of Fig. 9, we see that numerous events have supports

Fig. 15. Example of a well-defined event with a dominant frequency too  that overlap in time. This is the inevitable consequence
large, with respect to the geometry of the barometer network, to be fitted with of the fact that the method is automatic. and phenomena
a propagating equivalent plane wave. T o
such as a thunderstorm, go through various dynamical

stages with distinct signatures in the pressure field and
may generate disturbances with different characteristics.

The frequency of occurrence of course would not be
affected. Detailed studies on a case-by-case basis may

different from station to station, lead to completely ~ Make it possible to sort out the various components

wrong results. Events of this kind can sometimes be  9enerated by a common source.
analyzed by using additional information coming from The analysis applied to the last quarter of 1991 shows that
other measurementS, combined with ana'ytica' too‘ge class 1 events are pl’esent 18% of the time and, when class

like the impedance relation, or by using a smaller-sizé events are added, the frequency of occurrence reaches 31%.
measurement network. The estimated speed for class 1 events is well within typical

It should be noted that the design of an automatic procedf@ues of the jet streams, while the cone of dominant directions
for the discrimination of the three subclasses of events listéQincides with the general direction of the jet streams and jet
above is not a trivial task because the reasons for the faild¥Eeaks. These data confirm that the jet streams may be a source
of the fitting cannot be easily recognized. of grawty waves by shear instability [40] and can be a gu_|d|ng

mechanism for mesoscale waves as well, as discussed in [17],
[50], and [52].

In general, the results of the climatology for the last quar-

We have described in detail an automatic algorithm t@r of 1991 presented in this paper indicate that mesoscale
analyze the pressure records from a network of barogragjiavity waves are a common occurrence in the atmosphere.
located around Flatland, IL, and we have presented prelimin@jnce several case studies (see [17] and [49] and references
results for the last quarter of 1991 on the nature and frequeng¥rein) have demonstrated the ability of mesoscale waves
of occurrence of coherent disturbances detected by the netwgskhave a significant influence on the weather, this analysis
in the range from 30 min-6 h. confirms the need to gain a better understanding about their

A powerful and selective adaptive-filtering procedure, basegligin, the synoptic setting that favors their generation and
on the wavelet transform, localizes in time the events apgopagation and about our ability to forecast them. The method
provides a good reconstruction of their waveform at eagesented in this paper appears to identify and extract them
station. Thus, the cross-correlations reach generally hlgh Vm-a clear and effective way. To this end, the present Study
ues as a result of having minimized both the ambiguity i being extended to an almost four-year period to obtain a
the determination of the integration domain and the effefiore complete and accurate climatology and to investigate
of fluctuations that are extraneous to each event. A seriest seasonal dependence for speed, direction, amplitude, and
tests is discussed on the reconstruction of the signal at eagpecially frequency of occurrence of these disturbances.
station and on the allowed variability of the cross-correlation
functions from station to station. As a result, class 1 events,
satisfying all the requirements, including rather uniform speed
and direction of propagation throughout the network and highThe authors are grateful to W. Clark, R. Dennett, and T.
cross-correlation coefficients (typically larger than 2/3), haweanZandt of the NOAA Aeronomy Laboratory for providing
been separated from the class 2 events, which fail sometloé barograph data and for many discussions and suggestions

1.0 . 1o

mbars

— N, . !

use of the cross-correlation functions for the determi-
nation of the delay times for these events should be
avoided because low-frequency fluctuations, generally
not coherent with the phase speed of the wave and

V. CONCLUSIONS
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