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1 IntroductionThe ubiquity of processes with 1=f� spectrum is well established. When looked at in the timedomain, these signals are very irregular and present details in a wide range of time scales. Thisis the main reason that the interest in their fractal characterization has been growing during thelast years. The fractal geometry is indeed a natural framework for the description of jagged andcrinkled curves, as pointed out by Mandelbrot [1].The main observable which can be associated with a fractal object (hereafter we will indicatewith fractal object a curve lying in the plane) is the fractal dimension D [2], a quantitative measureof its space-�lling properties. The fractal dimension is usually de�ned [3] as the scaling exponentof the number of �-balls needed to cover the set with their radius. If the curve is the graph of afunction, as in the case of a time series, another parameter can be used to describe its structure,the exponent H , which is associated with the scaling of the structure functions of the time-delayedsignal (see Section 2). It can easily be shown [4] that this exponent is related to the fractaldimension through D = 2 � H , and to the spectral logarithmic slope through � = 1 + 2H . Thelatter expression has been widely used in modelling the fractional Brownian motion since the workof Mandelbrot [5].Thereafter, the fractal dimension has been proposed as an alternative tool for the descriptionof 1=f� signals [6]. The main problem arising from this approach is that numerical estimations offractal dimension are generally biased, even if many algorithms have been proposed and used sofar [7, 8, 9].A recent paper by Theiler [10] has addressed the problem of the evaluation of the correlationdimension for 1=f� processes, introducing low and high frequency cuto�s to ensure that the totalpower does not diverge to in�nity. Moreover they are intrinsic in every �nite-length and sampledtime series. As an intermediate result, Theiler evaluated the theoretical exponent H in threedi�erent scaling regimes induced by the limited band of the signal.In this work we will consider the same process with a band-limited 1=f� power spectrum,and will further investigate its fractal properties. We will show that the exponent H(T ), whichdescribes the scaling of the signal in a restricted time scales range, is not constant with T , becauseof corrective terms due to the frequency cuto�s. The zeroth order approximation coincides with thevalues obtained by Theiler. Higher order asymptotic expansions of H(T ) will be found for valuesof � 2 (0; 4), and will be compared to numerical estimates. Our results explain the discrepanciesbetween theoretical models and numerical results found by Fox [7] and Higuchi [8], and can be usedto correct the raw biased estimates of the scaling exponents.2



2 Evaluation of the scaling exponents2.1 Power Spectrum and H(T )We consider a continuous process xt, characterized by a power spectrum P (f). The exponent H isde�ned (see Ref. [11], or Ref. [2] with other notations) as�2T = hjxt � xt�T j2i � T 2H ; (1)and describes quantitatively the degree of irregularity of the curve (t; xt). The quantity �2T is called(second order) structure function [12]. Even if many models have been proposed for generating anddescribing multi-a�ne curves (see Refs. [13, 14] and Ref. [12] for applications to geophysical data),we will concentrate on mono-a�ne fractals (i.e. fractional Brownian motion traces), for which theqth order structure function has a linear scaling exponent with respect to q: hjxt� xt�T jqi � T qH .This allows us to link the spectral slope (related to the second order structure function) and thegraph dimension (related to the �rst order one) to the only parameter H .The allowed values for the exponent are 0 � H � 1. If H ! 0 the �T statistic does not dependon T and the process is delta-correlated. If H ! 1 the process is smooth, while in the case H = 1=2we have a mono-dimensional random walk. Mandelbrot and Van Ness [5] introduced this exponentto characterize fractional Brownian motion, and showed that the corresponding power spectrumscales with frequency according to 1=f�. The relation between � and H is well known:� = 1 + 2H: (2)As noted by Theiler [10] a pure 1=f� spectrum is physically impossible, because the total powerof the process would be in�nite. Therefore it is necessary to introduce a low frequency cuto� f0and a high frequency cuto� f1 in order to describe real signals (we will assume f0 � f1 to insurea su�ciently long scaling range). These two cuto� frequencies can be introduced explicitly withbandpass �ltering, but every real time series has implicit frequency cuto�s, due to �nite length andsampling. This case will be discussed in section 3.We will consider hereafter a signal characterized by a power spectrum given by:P (f) = f��0 ; f � f0;= f��; f0 < f < f1;= 0; f � f1: (3)This insures that the variance is �nite and well de�ned:hx2t i = Z 10 P (f)df <1: (4)Given the power spectrum (3), it is straightforward to write an expression for the variance �2T ofthe delayed signal. We have: 3



�2T = h(xt � xt�T )2i = 2hx2t i � 2hxtxt�T i = 2hx2t i[1� A(T )]; (5)where A(T ) is the autocorrelation function of the process, and can be expressed as the inverseFourier transform of the power spectrum. The expression for �2T is then:�2T = 4 Z 10 P (f) sin2(�fT )df = 2f1��0 �1� sin(2�f0T )2�f0T �+ 4 Z f1f0 f�� sin2(�fT )df: (6)The asymptotic behavior of �T has been evaluated by Theiler [10], using the same model of thespectrum. He showed that �T � T; T � 1=f1;� T ��12 ; 1=f1 � T � 1=f0;� const; T � 1=f0; (7)from which the correct fractal scaling can be noted in the intermediate time range. From theseexpressions we can see that the exponent H is dependent on the time T , and cannot be considereda global measure over all time scales. Moreover, from (6) we know that, for �xed �, the relationH� = H�(T ) is smooth. In the following we will further investigate this relation, showing that thetransition between di�erent scaling regimes a�ects the evaluation of the exponent H . To emphasizethe time-scale dependence, we de�ne the function H(T ) as the logarithmic derivative of �T :H(T ) = T2�2T � ddT �2T : (8)This can be interpreted as the local slope of �T when plotted in a double logarithmic plot (a similarde�nition was introduced by Higuchi [8]). The scale dependence of the fractal dimension can beeasily obtained through D(T ) = 2�H(T ), so we will restrict our attention to the exponent H(T ).In the following we will evaluate the function H(T ) in the three di�erent regimes investigated byTheiler (T � 1=f1, 1=f1 � T � 1=f0, T � 1=f0), and we will show how the two cuto� frequenciesintroduce corrective terms to the theoretical valuesH = 0; 0 < � � 1;= 12(�� 1); 1 < � < 3;= 1; 3 � � < 4: (9)2.2 Short time scales: T � 1=f1The argument of the sine functions in (6) is small, being � = �fT � 1; 8f 2 [f0; f1]. Consequentlywe can approximate the integral using the expansion sin2 � � �2 � �4=3, and the other term using(1� sin �=�) � �2=6� �4=120. From (6) we obtain, if � 6= 3,4



�2T � f1��13� � (2�f1T )2 � �f1��03(3� �)(2�f0T )2 � f1��112(5� �)(2�f1T )4 + �f1��060(5� �)(2�f0T )4: (10)Taking the logarithmic derivative as indicated in (8) we haveH(T ) � �f1��13�� (2�f1T )2 � �f1��03(3��)(2�f0T )2 � f1��16(5��)(2�f1T )4 + �f1��030(5��)(2�f0T )4�� �f1��13�� (2�f1T )2 � �f1��03(3��)(2�f0T )2 � f1��112(5��)(2�f1T )4 + �f1��060(5��)(2�f0T )4��1 : (11)This expression can be simpli�ed extracting the theoretical value H = 1, and considering thatf0 � f1. The exponent H(T ) then readsH(T ) � 1� 3� �12(5� �) � 11� �3 �f0f1�3�� � (2�f1T )2: (12)The expression for H(T ) in the case � = 3 can be easily obtained from (12) taking the limit for�! 3, H�!3(T ) � 1� (2�f1T )224 h13 + log(f1=f0)i : (13)2.3 Intermediate time scales: 1=f1 � T � 1=f0This is the proper fractal scaling regime. The graph (t; xt) is fractal only if 1 < � < 3. If � > 3 thehigh frequency contribution is too small to crinkle the curve, while if � < 1 the theoretical value ofH saturates at 0. However, we will investigate values of � ranging from 0 to 4, analyzing the threedi�erent cases separately.� Case 1 < � < 3For these values of the parameters the integral in (6) exists even when the integration intervaltends to (0;1). The low and high frequency cuto� contribution can easily be evaluated splittingthe integral into �2T = 2f1��0 �1� sin(2�f0T )2�f0T �+ 4T��1I0[�]� I1 � I2; (14)where 5



I0[�] = Z 10 u�� sin2(�u)du (15)I1 = 4T��1 Z f0T0 u�� sin2(�u)du (16)I2 = 4T��1 Z 1f1T u�� sin2(�u)du: (17)The �rst integral is not dependent on T , and can be expressed in closed form [15] with the �function I0[�] = ��(1� �) cos((1� �)�2 )22���1�� : (18)This is also the term associated to the proper fractal scaling, while the other terms are correctionsdepending on T .The integral I1 can be approximated expanding the sine function for small values of the argumentI1 � 4T��1 Z f0T0 [�2u2�� � �43 u4��]du = f1��03� � (2�f0T )2 � f1��012(5� �)(2�f0T )4: (19)The integral I2 can be approximated using the identity sin2 � = [1� cos(2�)]=2 and integrating byparts. The most signi�cant terms areI2 � 2f1��1 � 1�� 1 + sin(2�f1T )2�f1T � �cos(2�f1T )(2�f1T )2 � (20)Substituting (19) and (20) in equation (14) and expanding the �rst term for small arguments, we�nd the approximate expression for the variance of the delayed signal,�2T � 4T��1I0[�]� �f1��03(3� �)(2�f0T )2 + �f1��060(5� �)(2�f0T )4 ++2f1��11� � � 2f1��1 sin(2�f1T )2�f1T : (21)Taking the logarithmic derivative as indicated in (8) and extracting the theoretical value (�� 1)=2we obtain the scaling exponentH(T ) � � � 12 + �(f0=f1)��1(1� cos(2�f1T ))� 16�(2�f0T )2 + 1120�(2�f0T )4�6



� " 21� � �f0f1���1 � 2�(1� �) sin(��=2)(2�f0T )��1 � �3(3� �)(2�f0T )2+ �60(5� �)(2�f0T )4��1 (22)This is valid if 1 < � < 3; � 6= 2. If � ! 2 the � function has a singularity, cancelled by the zeroof the sine function. In this case we haveH�!2(T ) � 12 + (f0=f1)(1� cos(2�f1T ))� 13(2�f0T )2 + 160(2�f0T )4�2f0=f1 + �(2�f0T )� 23(2�f0T )2 + 190(2�f0T )4 : (23)� Case 3 � � < 4In this case the expression (6) does not converge if the integration interval goes to (0;1) becauseof the singularity in the origin. The convergence for f !1 is instead rather fast, so the terms dueto high frequency cuto� can be neglected, and therefore we will set f1 =1. The equation (6) canbe rewritten as �2T = 2f1��0 �1� sin(2�f0T )2�f0T �+ 2f1��0� � 1 � 2f1��0 I3; (24)where I3 = Z 11 u�� cos(2�f0Tu)du: (25)Integrating by parts the preceding expression twice we get:I3 = cos(2�f0T )� � 1 + 2�f0T sin(2�f0T )(�� 1)(�� 2) � (2�f0T )2(�� 1)(�� 2) Z 11 u2�� cos(2�f0Tu)du: (26)This operation has decreased by 2 the order of the singularity in the origin. The last integral canbe rewritten asZ 11 u2�� cos(2�f0Tu)du = 1� � 3 � 2 Z 11 u2�� sin2(�f0Tu)du = 1� � 3 � 2I4: (27)It is now possible to extract the low frequency contribution splitting the integral and using Eq. (15)I4 = Z 10 u2�� sin2(�f0Tu)du� Z 10 u2�� sin2(�f0Tu)du == I0[�� 2](f0T )��3 � I5: (28)7



Finally the integral I5 can be approximated expanding the sine function for small arguments (the�rst order is su�cient), obtaining I5 � (�f0T )25� � : (29)Substituting (29), (27) and (25) in equation (24) we �nd�2T � 2f1��0�� 1 (1� cos(2�f0T ) + 1� � 22�f0T sin(2�f0T ) + (2�f0T )2(�� 2)(�� 3)+� 8�2I0[�� 2]�� 2 (f0T )��1 + (2�f0T )42(�� 2)(5� �)) + (30)+2f1��0 �1� sin(2�f0T )2�f0T � :The argument of the trigonometric functions in (30) is small, so they can be replaced by theirfourth order McLaurin polynomials. The �nal approximated expression for �2T is�2T � �f1��03(�� 3)(2�f0T )2 + �f1��060(5� �)(2�f0T )4 � 16I0[�� 2]�2f1��0(�� 1)(�� 2) (f0T )��1: (31)Taking the logarithmic derivative (8) and substituting expression (18) for I0[�� 2] we getH(T ) � 1 + (3� �)�(1� �) sin(��=2)(2�f0T )��3 + [�=60(5� �)](2�f0T )2[�=3(�� 3)]� 2�(1� �) sin(��=2)(2�f0T )��3 + [�=60(5� �)](2�f0T )2 : (32)Let us consider now the case �! 3+. The �rst two terms in the denominator have simple poleswith the same residues. The singularity can then be eliminated expanding these terms for � � 3.The �nal result is H�!3(T ) � 1 + �12 + 140(2�f0T )2116 +	(1)� log(2�f0T ) + 140(2�f0T )2 ; (33)where 	 represents the logarithmic derivative of the � function, 	(z) = d ln �(z)=dz, and evaluatedin z = 1 gives 	(1) = � ' �0:577215. Note that the same result can be obtained taking the limitfor �! 3� in Eq. (22). 8



� Case 0 < � � 1In this case the contribution of the low frequency cuto� is small and can be easily evaluatedbecause of the convergence of (6) for f ! 0. Expanding to the �rst order the sine function forsmall arguments we obtain�2T � 2f1��11� � � 2 Z f10 f�� cos(2�fT )df � �f1��03(3� �)(2�f0T )2: (34)Using [16] Z 10 f�� cos(2�fT )df = �(1� �) sin(��2 )(2�T )1�� ; (35)we can write�2T � 2f1��11� � � 2�(1� �) sin(��2 )(2�T )1�� + 2 Z 1f1 f�� cos(2�fT )df � �f1��03(3� �)(2�f0T )2: (36)From this expression, integrating by parts, we �nd the approximate expression for �2T ,�2T � 2f1��11� � � 2f1��1 �(1� �) sin(��2 )(2�f1T )��1 � 2f1��1 sin(2�f1T )(2�f1T ) � �f1��03(3� �)(2�f0T )2: (37)We can now evaluate the exponent H(T ),H(T ) � �(1� �)�(1� �) sin(��=2)(2�f1T )��1 � cos(2�f1T )� �3(3��) �f0f1�1�� (2�f0T )2�� � 21�� � 2�(1� �) sin(��=2)(2�f1T )��1 � �3(3��) �f0f1�1�� (2�f0T )2 � 2 sin(2�f1T )(2�f1T ) ��1 :(38)Let us consider the case �! 1�. Expanding the di�erent terms in expression (38) like for thecase �! 3+ and eliminating the singular terms, we obtainH�!1(T ) � 1� cos(2�f1T )� 16(2�f0T )2�2	(1) + 2 log(2�f1T )� 16(2�f0T )2 � 2 sin(2�f1T )=(2�f1T ) ; (39)which can be found using the same procedure (�! 1+) from Eq. (22).9



2.4 Long time scales: T � 1=f0Equation (6) can be modi�ed, if � 6= 1, as�2T = 2f1��0 �1� sin(2�f0T )2�f0T �+ 2f1��1 � f1��01� � � 2 Z f1f0 f�� cos(2�fT )df: (40)Integrating by parts we can extract the signi�cant terms,�2T � 2f1��11� � � 2�f1��01� � � 2f1��1 sin(2�f1T )2�f1T � 2�f1��0 cos(2�f0T )(2�f0T )2 : (41)The expression for H(T ) is easily found taking the logarithmic derivative of (41),H(T ) � �� 12 � �f1��0 sin(2�f0T )=(2�f0T )� f1��1 cos(2�f1T )�f1��0 � f1��1 : (42)Expression (42)is valid only if � 6= 1. The exact expression in the case � = 1 can be derivedchanging the middle term of (40) into 2 log(f1=f0), or taking the limit for �! 1 in (42). The resultis H�!1(T ) � sin(2�f0T )=(2�f0T )� cos(2�f1T )2 �1 + log f1f0� : (43)3 Analysis of �nite-length sampled signalsAs noted above, any real time series has implicit frequency cuto�s. The high frequency cuto� is dueto sampling, and is equal to the Nyquist frequency f1 = 1=2Tc, where Tc is the sampling time. Thelow frequency cuto� is due to the �nite length Tmax of the time series, and is equal to f0 = 1=Tmax.In this section we will derive the scale-dependent exponent H(T ) for a signal where the time indexT is discrete and can only assume values multiple of the sampling time, T = nTc. We will alsoassume that the series is composed by N samples, i.e. Tmax = NTc. The scaling of the variance inthis case can be expressed as �nTc � (nTc)H : (44)Taking the logarithm we get log(�nTc) � H log(nTc) (45)The scaling exponent cannot be derived as in the previous section with a derivative, but has to bede�ned as an incremental ratio, 10



Hn = log(�(n+1)Tc)� log(�nTc)log((n+ 1)Tc)� log(nTc) = 1log(1 + 1n) log ��(n+1)Tc�nTc � : (46)Moreover, in this case we can only evaluate Hn in the intermediate fractal scaling regime 1� n�N . Let us �rst consider the case 1 < � < 3. The expression for the variance of the delayed seriescan be derived from Eq. (21) substituting T = nTc,�2n � 4(nTc)��1I0[�]� �f1��03(3� �) �2�nN �2 + �f1��060(5� �) �2�nN �4 + 2f1��11� � : (47)Combining (47) and (46) we obtainHn � 1=2log(1 + 1=n)� log("4((n+ 1)Tc)��1I0[�]� �f1��03(3� �) �2�(n+ 1)N �2 + �f1��060(5� �) �2�(n+ 1)N �4 + 2f1��11� � #� "4(nTc)��1I0[�]� �f1��03(3� �) �2�nN �2 + �f1��060(5� �) �2�nN �4 + 2f1��11� � #�19=; : (48)In this scaling regime we can write (n+ 1)� � n� + �n��1 for � > 1, so thatHn � 1=2log(1 + 1=n)� log(1 + "4(Tc)��1I0[�](�� 1)n��2 � �f1��03(3� �) �2�N �2 2n+ �f1��060(5� �) �2�N �4 4n3#� "4(nTc)��1I0[�]� �f1��03(3� �) �2�nN �2 + �f1��060(5� �) �2�nN �4 + 2f1��11� � #�19=; : (49)The big fraction in the logarithm function is O(1=n), so we can expand the two logarithms recallingthat log(1 + 1=n) � 1=n. The �nal expression for Hn isHn � � � 12 + "� 2N���1 � �6 �2�nN �2 + �120 �2�nN �4#11



"� 2�� 1 � 2N ���1 � 2�(1� �) sin(��=2)�2�nN ���1 � �3(3� �) �2�nN �2+ �60(5� �) �2�nN �4#�1 : (50)This expression is the discrete equivalent of (22). Note that if we substitute T = nTc directly in (22)we obtain one more term coming from cos(2�f1T ). This term is present only in the continuouscase because it is a direct consequence of taking the derivative (8). It is then straightforward toderive Hn for the other values of �, eliminating this term and passing to discrete values of time.For �! 2 we get, from (23),Hn;�!2 � 12 + " 2N � 13 �2�nN �2 + 160 �2�nN �4# "� 4N + ��2�nN �� 23 �2�nN �2 + 190 �2�nN �4#�1 :(51)The case � � 3 is not modi�ed, because we neglected the high frequency contributions since thebeginning. From (32) we obtainHn � 1 + "�(4� �) sin(��=2)(�� 1)(�� 2) �2�nN ���3 + �60(5� �) �2�nN �2#� " �3(�� 3) � 2�(3� �) sin(��=2)(�� 1)(�� 2) �2�nN ���3 + �60(5� �) �2�nN �2#�1 : (52)If �! 3 we have, from (33),Hn;�!3 � 1 + �12 + 140(2�n=N)2116 + 	(1)� log(2�n=N) + 140(2�n=N)2 : (53)If � < 1 we have, from (38),Hn � (1� �)�(1� �) sin(��=2)(�n)��1� [�=3(3� �)](2=N)1��(2�n=N)22=(1� �)� 2�(1� �) sin(��=2)(�n)��1� [�=3(3� �)](2=N)1��(2�n=N)2 ; (54)while if �! 1 we get from (39)Hn;�!1 � 1� 16(2�n=N)2�2	(1) + 2 log(�n)� 16(2�n=N)2 : (55)12



4 Numerical resultsWe considered a sampled process with power-law spectrum (3). There are no explicit low and highcuto� frequencies, so the band is determined, like in the previous section, by sampling and �nitelength. The time axis is normalized to [0; 1], while each time series has N = 4096 samples. Thesechoices lead to a Nyquist frequency equal to f1 = 2048, while the lowest frequency is f0 = 1. Foreach value of � we calculated M = 20 di�erent realizations of the process applying inverse FFTto the spectrum. The phases were considered random variables uniformly distributed in [0; 2�].Each time series thus obtained has been processed to evaluate the function �T = h(xt � xt�T )2i1=2in the range 10�3 < T < 0:2. This is the proper fractal scaling regime. The scale-dependentexponent H(T ) has been obtained with a local linear regression over 3 points of flogT; log(�T )g.Then the mean value and the 95% con�dence intervals of H(T ) have been evaluated averaging overthe M realizations. The results show that the asymptotic expansions (Fig. 1) match very well thenumerical estimations of hH(T )i (Fig. 2). Fig. 3 shows, for di�erent values of �, the theoreticalvalues of H , the asymptotic expansions and the statistics of the numerical estimates.The very good agreement between asymptotic expansions and numerical estimates of H(T )suggests that these expansions can be used to correct the numerical estimates, in order to cancel thetime-scale dependent bias due to �nite length and sampling. Fig. 4 shows the corrected estimates,compared to the theoretical values, for di�erent values of �. These plots have been obtained, for�xed T , searching for the value of � such that the asymptotic expansion H�(T ) is equal to thenumerical estimate Ĥ(T ). As the expressions for H�(T ) are not invertible in �, the corrected valuesof H(T ) have been found numerically through an iterative zero-�nding procedure [17]. Note thatthe asymptotic expansions viewed as functions of �, for T �xed, are smooth and non-decreasing.This insures the existence and unicity of the solution for the inversion procedure.We recall that the (global) fractal dimension D can be shown [4] to be equal to D = 2 � H .In a recently published work [6] Labate et al. evaluated the fractal dimension D of signals with1=f� spectrum using the Variation algorithm [9]. They found that the relation D = D(�) does notfollow exactly the rule D = (5��)=2 but there are deviations for values of � far from 2. The sameproblems were encountered by Fox [7] and Higuchi [8] using di�erent algorithms. We tried to explainthis fact with our expansions, de�ning a scale-dependent fractal dimension D�(T ) = 2�H�(T ) andplotting it versus � for �xed values of the parameter T . We obtained the plot in Fig. 5, which is verysimilar to the results in Refs. [6, 7, 8]. We suggest then that the deviations of numerical estimatesfrom the theoretical values of the exponent H or fractal dimension D are a direct consequence ofimplicit frequency cuto�s due to the �nite length and sampling.13



5 ConclusionsWe presented an analytical approach for the evaluation of the time-scale dependence of the fractaldimension for signals with 1=f� spectrum. In order to consider signals with �nite total power weconstrained the spectrum to zero in high frequencies range and to a constant for low frequencies.These cuto� frequencies can be explicitly introduced with bandpass �ltering, but are implicit inevery �nite-length and sampled signal. We showed that these cuto�s introduce corrections tothe fractal scaling properties of the curve, and that these deviations are time-scale dependent.Moreover, we used the asymptotic expansions to correct the numerical estimates, showing that thetime-scale dependent bias due to �nite length and sampling can be easily cancelled.The corrective terms can also explain why numerical estimates of global fractal scaling exponents,like the fractal dimension or the exponent H , are generally biased. The standard procedure forthese estimations is the linear regression in a double logarithmic plot of some measure, varying withthe chosen algorithm. The scaling exponent is then the slope of the line providing the best �t to thepoints. This �tting is generally performed globally over many time scales, loosing any informationrelative to the time dependence of the scaling exponent. We performed a local regression in orderto investigate this time-scale dependence, and we found that the numerically evaluated scalingexponent H(T ) matches very well the asymptotic expansions derived in this work. This suggeststhat some of the numerical problems commonly found in estimating the fractal dimension of timeseries can be explained with the presence of frequency cuto�s due to the �nite length and samplingof the signal.AcknowledgementsThis work was supported by NASA contract No. NAS5-30950. We are grateful to F. Einaudi andF. Canavero for useful comments and for carefully reading the manuscript. Many thanks also toL. Roberti for fruitful discussions.
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Figure 1: Asymptotic expansions of the scaling exponent. Shown are the H�(T ) curves for di�erentvalues of �.Figure 2: Numerical evaluations of the scaling exponent. Shown are the hH�(T )i curves for di�erentvalues of �.Figure 3: Scaling exponent H�(T ): comparison between numerical estimates (circles) and asymp-totic expansions (continuous curves). The dotted lines indicate the 95% con�dence intervals ofnumerical estimations. The dashed lines are the theoretical values H(T ) = (�� 1)=2 for 1 � � � 3,H(T ) = 0 for � < 1 and H(T ) = 1 for � > 3.Figure 4: Corrected values of H�(T ) (continuous curves) and theoretical values (dashed curves),for di�erent values of �.Figure 5: Scale-dependent fractal dimension D�(T ) = 2 � H�(T ) obtained from the asymptoticexpansions, plotted as a function of spectral slope � for di�erent time scales T = nTc, where Tcis the sampling time. The total number of samples is N = 4096. The thick curve represents thetheoretical values of (global) fractal dimension: D = (5� �)=2 for 1 � � � 3, D = 1 for � > 3 andD = 2 for � < 1.
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