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On the Accuracy of Haar-Based Multiresolution
Time-Domain Schemes

S. Grivet-Talocia

Abstract—We discuss in this paper the numerical accuracy of
multiresolution time-domain (MRTD) schemes based on Haar
scaling functions and wavelets. It has been noted that when the
first resolution of wavelets is included in the schemes, the discrete
difference equations arising from the Maxwell’s system do not
couple the scaling and wavelet coefficients except at boundary and
excitation points. This fact is proved to be a serious drawback,
since both a dispersion analysis and numerical tests for terminated
and nonterminated schemes show that the addition of wavelets
does not improve significantly the numerical accuracy of the
underlying coarse-grid FDTD scheme.

I. INTRODUCTION

WAVELET-based discretizations for Maxwell’s equations
have received much attention in the very recent litera-

ture, since they seem very promising for the reduction of the
computational cost of more standard time-domain methods like
FDTD [1]. Examples are provided by the so-called multireso-
lution time-domain (MRTD) schemes based on Battle-Lemarié
[3] and Haar wavelets [4]. The main point lies in the intrinsic
capability of wavelets to add higher spatial frequency contribu-
tions in the representation of the fields. This can be achieved
locally by adding details only where the solution has fast vari-
ations [6]. This procedure leads naturally to multigrid schemes
[7], [8].

This paper focuses on Haar-based MRTD schemes. It is well
known that these reduce to the standard FDTD scheme when
no resolutions of wavelets are used in the representation of
the fields. Conversely, when only one resolution of wavelets
is added, the resulting difference equations do not couple the
scaling and wavelet coefficients except at boundary and excita-
tion points [4]. We show in the following that this decoupling
does not represent an advantage but a serious drawback of the
Haar-MRTD scheme. Both theoretical arguments and numerical
experiments will show that addition of one resolution of wavelets
improves the sampling of the fields but not the accuracy at
which the new samples are computed. In order to achieve higher
accuracy, coupling between different scales is needed. This can
be achieved through addition of higher resolution wavelets (thus
also improving treatment of the boundary conditions [9]). How-
ever, it will be shown that the last resolution of added wavelets
is always wasted since it leads to no accuracy improvement with
respect to the coarser resolutions.
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II. HAAR-BASED MRTD SCHEMES

Let us consider the Maxwell’s equations in a homogeneous
medium

where is the wave impedance andthe propagation ve-
locity. Each field component is expanded into scaling functions

and wavelets ,
where is equal to one within the unit interval and van-
ishing elsewhere, and . Expansion and
testing is performed for each spatial coordinate
with corresponding discretization indices , as
well as for time with rectangular pulses . In compact no-
tations, the x-directed electric field component in the staggered
Yee grid of size is represented as

(1)

where the summation over includes eight terms stemming
from all the permutations of scaling functions and wavelets

(2)
The representation of the other field components is easily de-
rived through permutation of the indices and follows the same
rule as for standard FDTD scheme [2]. Inserting the above ex-
pressions into the first Maxwell’s equation and performing a
Galerkin test procedure leads [4] to the following expressions
for the field coefficients within each cell :

(3)

where denote, respectively,
for each . Similar expressions are

obtained for the other field coefficients. This set of discretized
equations matches the FDTD scheme when only the scaling
coefficients are considered, i.e., . We will refer
to this scheme as coarse-grid FDTD scheme. However, the
same relations are found for any other combination of
involving at least one wavelet in any direction. There is no
coupling between the eight different sets of equations corre-
sponding to the various permutations of (2). This immediately
leads to the conclusion that the stability criterion constrains the
time step to a maximum value that is the same as for the
underlying coarse-grid FDTD scheme, even if the number of
unknowns is eight times larger due to addition of wavelets.
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III. D ISPERSIONANALYSIS

We perform now a dispersion analysis of the Haar-MRTD
scheme with one resolution of wavelets. Each field component

is taken as a plane wave:

where is the numerical wave vector. This expression is pro-
jected onto the discretization scheme through a standard proce-
dure, not reported here. Obviously, since the numerical scheme
(3) is coincident with the coarse-grid FDTD scheme any fixed
choice of , the analysis leads to the well-known FDTD
dispersion relation

(4)

where and . Note that the disper-
sion relation published in [5] is not correct. This explains why
the numerical experiments in [5] did not agree with analytical
results. The above expression controls the accuracy of the nu-
merical scheme. Since all field coefficients, including those re-
lated to wavelet functions, are affected by the same numerical
dispersion that applies to the scaling functions coefficients, and
since the scheme with scaling coefficients only is fully equiv-
alent to the coarse-grid FDTD scheme, no improvement is ob-
tained by adding wavelets. Addition of wavelets corresponds to
a refined sampling of the field quantities by a factor of two in
each direction, but the added samples are affected by the same
numerical errors of the coarse-grid ones.

The above considerations are illustrated through a simple nu-
merical test. We consider a one-dimensional propagation along
the direction of a normalized TEM mode ( , , and

). The Haar-MRTD equations for scaling and wavelet
coefficients are, respectively

(5)

(6)

and

(7)

(8)

To avoid any perturbation due to truncations of the computa-
tional domain we consider periodic boundary conditions. The
initial conditions are set to

with . These conditions correspond to a periodized
Gaussian pulse that splits into two equal waves propagating in
opposite direction. Simulation is performed up to the final time

using , with a stability factor
. The results are shown in Fig. 1, together with the outcome

of the fine-grid FDTD obtained by setting to and
the space and time steps, respectively. The results confirm that
addition of wavelets improves sampling of the fields but not the
accuracy. It is quite evident that this improved sampling could

Fig. 1. Dispersion test for Haar-MRTD with one resolution wavelets.

have been obtained through simple interpolation at the end of the
simulation. In summary, the Haar-MRTD with only one resolu-
tion of wavelets is equivalent to the coarse-grid FDTD scheme
as far as the overall accuracy is concerned, and is not equivalent
to the fine-grid FDTD. The latter has the same number of un-
knowns of Haar-MRTD, requires twice its computing time, but
is far more accurate.

We look now at the behavior of the Haar-MRTD scheme
under another perspective. Without loss of generality we restrict
our attention to the TEM case illustrated above. We take the sum
and difference of (5)–(7), as well as of (6)–(8). It is well known
that taking the sum and the difference of scaling and wavelet co-
efficients leads to the expansion coefficients into the two scaling
functions at the next refinement level, corresponding to a double
sampling rate of the fields. These two scaling functions have
support, respectively, in the left and right half of the consid-
ered cell. We label the corresponding coefficients with the su-
perscripts and , respectively. We get the following decou-
pled equations:

(9)

(10)

and

(11)

(12)

This means that addition of wavelets leads to two equivalent
schemes operating, respectively, on the left half and on the right
half of each cell. As there is no coupling between the left and
right parts, the overall scheme is exactly coincident to two su-
perimposed coarse-grid schemes shifted half cell one from each
other. Obviously, the same considerations hold also in three di-
mensions, in which case there are interleaved schemes,
each equivalent to the coarse-grid FDTD scheme, that operate
independently one from each other.

The same considerations hold when more resolutions of
wavelets are added to the fields representation. We give here a
concise theoretical proof based on abstract formulations. Let us
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consider a coarse grid FDTD with cell size applied to 1–D
problem. The field approximation can be thought to belong to
the space of piecewise constant functions on each cell. If we
add resolutions of Haar wavelets we will get a hierarchical
representation of the space of piecewise constant functions
on intervals of size . The following two representations
hold for this space

where is the space spanned by the Haar wavelets at resolu-
tion . Note that is invariant under translations by ,
while the spatial staggering of the coarse FDTD scheme is based
on a displacement between and samples. This
means that one resolution of wavelets is sufficient to loose the
advantages of a staggered coarse-grid scheme. The last repre-
sentation on the right shows that a Haar-MRTD scheme with
resolutions of wavelets is equivalent to a Haar MRTD scheme
using scaling functions at level (i.e., to a FDTD scheme
with cell size ) plus one resolution of wavelets. There-
fore, based on the considerations in the foregoing paragraphs,
the accuracy will be the same of the FDTD scheme without the
last resolution of wavelets.

IV. I NFLUENCE OFBOUNDARY CONDITIONS

We discuss now the influence of boundary conditions in
case of terminated schemes. A detailed treatment of boundaries
based on Lagrange interpolation has been given in [4], and
will not be repeated here. Instead, we show with a simple
numerical test that the inherent coupling between scaling and
wavelet coefficients occurring at the boundaries may allow
some accuracy improvement with respect to the underlying
coarse-grid FDTD, but only when the number of discretization
points is very small. In such cases, the numerical solution of the
field equations can be obtained very efficiently with standard
algorithms like FDTD, without need of more advanced MRTD
schemes. When the number of discretization points increases,
the influence of the boundary conditions becomes less and less
effective, since the main responsible for accuracy degradation
is the dispersion error at the internal nodes.

The above considerations are best illustrated with a numer-
ical test. Fig. 2 shows the relative error on the first resonant
frequency of a parallel-plate waveguide. The domain is sub-
divided into coarse-grid cells, and a time-domain simula-
tion is performed according to the standard procedure followed
in [4]. A Courant number of 0.8 has been used for three dif-
ferent simulations employing, respectively, coarse-grid FDTD,
fine-grid FDTD, and Haar-based MRTD with one resolution of
wavelets. The number of time steps has been set in all cases
large enough to make negligible the frequency error due to lim-
ited time sampling. As expected, the accuracy of Haar-MRTD
is almost equivalent to that of the coarse-grid FDTD and not to
that of the fine-grid FDTD. It should be noted that these results
confirm those obtained in the original paper [4] for the resonant
frequencies of rectangular cavities.

Fig. 2. Relative error on the first resonant frequency of a parallel-plate
waveguide computed with FDTD and Haar-based MRTD.

V. CONCLUSION

We have given both theoretical and numerical evidence that
addition of one resolution of wavelets within a Haar-based
MRTD framework does not improve significantly the numerical
accuracy of the underlying coarse-grid scheme. This holds for
both terminated and nonterminated schemes. Similar conclu-
sions hold when an arbitrary number of wavelet resolutions are
included. A more effective strategy could be to resort to dif-
ferent (compactly supported) scaling and wavelet systems, such
as biorthogonal B-splines. For instance, the results published in
[6], [10] showed how higher resolution wavelets can be added
to the discretization in order to achieve dynamic adaptivity.
In any case, the efficiency of the resulting schemes should be
carefully assessed in terms of accuracy and computational cost.
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