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Asymptotic defectiveness of manufacturing plants: an estimate based on
process learning curves

F. FRANCESCHINIy* and M. GALETTOy

The paper describes a method for a preliminary estimation of asymptotic defec-
tiveness of a manufacturing plant based on the prediction of its learning curve
estimated during a p-chart setting up. The proposed approach provides process
managers with the possibility of estimating the asymptotic variability of the pro-
cess and the period of revision of p-chart control limits. An application of the
method is also provided.

1. Introduction
A manufacturing process can be described as a framework able to convert input

raw material in ®nished or in partly ®nished products. Mechanisms of transforma-
tion, speci®c of each context, are ruled by a sequence of organized activities that
involve an interaction among operators, machinery and production equipment. The
combined e� ect of these elements together with the inner and outer in¯uence quan-
tities are the causes of variability.

Control charts are a proven technique to provide diagnostic information and to
monitor the variability of a process over time. They are used according to two steps:
control chart setting up and manufacturing process monitoring (Duncan 1986,
Montgomery 1996). The phase of setting up requires the detection of `assignable’
causes, the estimation of the process natural tolerance and the process control limits.

The accepted hypothesis is that without assignable causes, the process maintains
its performances over time. Assignable causes may determine an average shifting or a
change of the process dispersion. They can be divided into two categories: positive
and negative. Positive are those that generate an increase of process variability;
negative the causes that operate on the opposite (`favourable assignable cause’;
Duncan 1974). Wear and tear phenomena are typical examples of positive assignable
causes. Trends or shifts can appear as positive or negative causes.

Each cause has a proper dynamic. However, the process manager observes a
global combined e� ect, having no possibility of discriminating a single contribution.
During the life of a process, we assist to a continuous `overlap’ of the two types of
causes. The prevalence of positive or negative causes is detectable by means of
statistical control charts.

Referring to a generic process, after removing initial out-of-control causes, we
observe a gradual reduction of variability over time due to the `learning’ mechanism.
The `physiological’ variability shown by a process in its early life period is not the
same as that manifested after a learning period on the ®eld: the so called `asymptotic’
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variability. The learning phenomenon occurs since the operators’ knowledge about
the process ¯ow, the production equipment and the materials become more thor-
ough over time, allowing a more e� cient allocation of production factors. In gen-
eral, it is not true that the asymptotic variability or defectiveness of a manufacturing
process is zero. The variability reduction depends upon the adaptability of the entire
organization to changing conditions of the process (Cherrington et al. 1987, Dada
and Marcellus 1994, Franceschini and Rossetto 1995, 1998, Li and Rajagopalan
1998). However, the mechanism has not the same intensity over time. After a pre-
liminary phase characterized by a relative high learning, we assist to a progressive
attenuation. `It is practically certain that, given appropriate training and empower-
ment, quality teams can discover better ways to do things’ (Box and LucenÄ o
1997: 19).

When the process achieves its asymptotic defectiveness it cannot further improve
its performance. It is in the condition of maximum `e� ciency’. Variability reduction
is the main reason that drives a process manager to revise, after a certain period, the
process control limits.

Referring, for example, to a generic manufacturing process, what is the asymp-
totic fraction of non-conforming units (defectiveness) that the process will produce
in the best conditions? The problem is particularly important since the estimation of
asymptotic performances can help to better address process resources. By mean of
these results, for example, we could decide to redesign or strengthen some speci®c
subsystems or parts of a process.

The paper presents a method for a preliminary estimation of asymptotic defec-
tiveness of a manufacturing plant, based on the prediction of its learning curve, and
information collected during a p-chart setting up. Practical results are ®nally shown
on a real example taken from the literature.

2. Method
Usually, the implementation of a control chart follows two steps.

. Phase 1: control chart setting up.

. Phase 2: control limits veri®cation and process monitoring.

The revision of control limits becomes necessary if there are margins to improve
process performances. The period for a revision of process control limits is not a
priori ®xed; it is usually decided upon the trend of the process over time
(Montgomery 1996). The process `photographs’ provided by the two phases of
chart implementation may be used to give a preliminary estimation of the asymptotic
defectiveness of a manufacturing plant.

With reference, for example, to a generic process managed by a p-chart, we
propose a method for estimating the `asymptotic fraction of non-conforming
units’ and the time required to achieve it.

The general assumption is that the learning mechanism, which can determine a
process improvement, follows some evolutionary laws that are not dependent by the
speci®c application context. Learning curves provides a means to observe and track
that improvement (Adler and Klark 1991, Kantor and Zangwill 1991, Mukherjee et
al. 1998).

The concept of learning curve has been extensively used by economists, manage-
ment scientist and engineers in analysing production processes. The main area of
investigation have been the empirical measurement of learning curve, the economic
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implication of this phenomenon and its use in improving managerial decisions. For a
detailed survey, see Venezia (1985) and Muth (1986).

A literature survey shows a wide variety of studies about particular aspects of
learning curves: the e� ect of prior experience (Lippert 1976, Cherrington et al. 1987),
the relearning mechanism (Bailey and McIntyre 1997), the setting of performance
standards for productivity improvements achieved during the learning stage
(Cherrington et al. 1987), etc.

The two most common models of learning curves over time are the following:

Power law model: p ˆ ¬t¡ ‡ ® ‡ " …1†

Exponential model: p ˆ ® ‡ …p0 ¡ G†e¡t=½ ‡ "; …2†

where p is a general average learning metric (e.g. the average fraction of non-con-
forming units in a manufacturing process); ¬ is the defectiveness (fraction of non-
conforming units) for the ®rst learning cycle;  is the rate of learning; ® is the
asymptotic fraction of non-conforming units; p0 is the initial fraction of non-con-
forming units; ½ is the learning curve time constant; and " is the random error term
(" ˆ NID…0; ¼2†).

The choice of a speci®c learning model is carried out on the basis of the applica-
tion context (Muth 1986, Schneiderman 1988).

Zangwill and Kantor (1998) introduced a unifying scheme of the various models.
They presented ®ve postulates that underlie certain types of industrial learning and
give rise to a di� erential equation, which describes that learning. With this interpret-
ation, all learning models become parametric solutions of the Volterra±Lotka di� er-
ential equation.

With the aim of providing a `preliminary estimate’ of the asymptotic defective-
ness of a manufacturing plant, we build a process learning model by means of
information gathered during phase 1 (p-chart setting up) and phase 2 (veri®cation
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Figure 1. Fraction of non-conforming units control chart for samples of n ˆ 50 elements.
Control limits were calculated in the chart setting-up phase (phase 1) and control limits
veri®cation (phase 2) (Montgomery 1996). The third phase concerns the estimation of the
`asymptotic’ control limits determined by the process learning curve.
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of control limits). If (·tt1, ·pp1) and (·tt2, ·pp2) are respectively the coordinates of the
averages of the fraction non-conforming over time related to the two phases, and
·pp ˆ …¬=t† ‡ ® ‡ " a simpli®ed version of the power law model (a), with  ˆ 1, we
may obtain a preliminary estimation of the learning process parameters by the
following relationships:

a ˆ ·pp1 ¡ ·pp2

1=·tt1 ¡ 1=·tt2

…4†

c ˆ ·pp1 ¡ a=·tt1; …5†

where ·pp1 ˆ
Pk

iˆ1 pi=n and ·pp2 ˆ
Pm

iˆ1 pi=m are the averages of fraction non-conform-
ing; ·tt1 and ·tt2 are the average veri®cation times; and k and m are the number of
analysed points for each phase.

It can be shown that a and c are two unbiased estimators of ¬ and ®: E…a† ˆ ¬;
E…c† ˆ ®.

As regards the variance, assuming statistically independent fractions of non-con-
forming units pi, we can show that:

¼2
a ˆ

·tt2 ¢ ·tt1

·tt2 ¡ ·tt1

³ ´2

…¼2
·pp1

‡ ¼2
·pp2

†; ¼2
c ˆ

·tt2

·tt2 ¡ ·tt1

³ ´2

¼2
·pp2

‡
·tt1

·tt2 ¡ ·tt1

³ ´2

¼2
·pp1

: …6†

De®ned a percentage distance h from the asymptotic target, we can determine the
time t* to its achievement. Substituting this value in the learning model, we ®nd:

® ‡ h®

100
ˆ ¬

t*
‡ ® and therefore t* ˆ ¬

h®
¢ 100: …7†

As regards the variance of t*, we have:

¼2
t¤ ˆ 1

h®

³ ´2

¼2
a ‡ ¬

h®2

³ ´2

¼2
c : …8†

It must be observed that an error in the learning curve estimation may have a far
bigger impact in production planning than error in predicting a demand. For that
reason, in order to identify model behavior for small variation of input parameters, it
could be helpful to perform a quick sensitivity analysis.

Di� erentiating the simpli®ed version of the power law model (a), with  ˆ 1, we
obtain:

d ·pp ˆ @·pp

@¬
¢ d¬ ‡ @·pp

@®
¢ d® ˆ d¬

t
‡ d®: …9†

This expression shows that the variation of defectiveness is in¯uenced by a propor-
tional term (related to parameter ¬) and a constant term (related to parameter ®).

Assuming a statistical independence between the two parameters, the range esti-
mation (with 1 ¡ ¬ two-sided con®dence limits) of the predicted defectiveness is:

·pp…est† § z¬=2 ¢

�������������������������������������������������
@·pp

@a

³ ´2

¢ ¼2
a ‡ @·pp

@c

³ ´2

¢ ¼2
c

s

ˆ ·pp…est† § z¬=2 ¢

����������������
¼2

a

t2
‡ ¼2

c

s

; …10†

where

·pp…est† ˆ a

t
‡ c: …11†
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This result leads to the de®nition of a prediction band for the average defective-
ness learning curve. The band amplitude increases with a and c variances and
decreases with time (®gure 2).

3. Example of application
Consider a process of frozen orange juice concentrate packing in 6-oz cardboard

cans. The cans are formed on a machine by spinning them from a cardboard stock
and attaching a metal bottom panel (Montgomery 1996).

By inspection of a can, we can determine whether, when ®lled, it could poss-
ibly leak either on the side seam or around the bottom joint. We wish to set up a
control chart to monitor the process and to improve the fraction of non-
conforming cans.

To establish the control chart (phase 1), 30 samples of n ˆ 50 cans each were
analysed at an hour intervals over a three-shift period in which the machine was in
continuous operation. Table 1 shows the gathered data.

Being ·pp1 ˆ
P30

iˆ1 pi=n ˆ 0:2313, a preliminary estimate of the upper and lower
control limits of the fraction of non-conforming units control chart (p-chart) is the
following:

UCL ˆ ·pp1 ‡ 3
��������������������������
·pp1…1 ¡ ·pp1†=n

p
ˆ 0:2313 ‡ 0:1789 ˆ 0:4102

LCL ˆ ·pp1 ¡ 3
��������������������������
·pp1…1 ¡ ·pp1†=n

p
ˆ 0:2313 ¡ 0:1789 ˆ 0:0524;

where UCL is the upper control limit and LCL the lower control limit.
As Montgomery states two points plot above the upper control limit (samples 15

and 23). The related assignable causes are detected and removed. Eliminating these
points, the new revised control limits become:
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Figure 2. Prediction band (dotted lines) for the fraction of non-conforming units of the
process considered in ®gure 1.
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·pp1 ˆ
X28

iˆ1

pi=n ˆ 2150

UCL ˆ0:3893 and LCL ˆ 0:0407:

Sample 21 exceeds the new upper control limit. However, a further analysis of the
data does not produce any reasonable assignable cause. We may conclude that the
process is in control. The revised control limits may be adopted for monitoring
current production.

We observe that the process fraction of non-conforming units is too high. A
detailed analysis of the process indicates that several adjustments can be made on
the machine. After these interventions an additional 24 samples are collected with
the aim to verify the process improvement (phase 2). Table 2 shows the new gathered
data.

As it appears from ®gure 1, we obtain a considerable reduction of the fraction of
non-conforming units. Speaking with Montgomery’s words (pp. 258±259), `It is not
unusual to ®nd that the process performance improves following the introduction of
formal statistical process-control procedures, often because the operators are more
aware of process quality and because the control chart provides a continuing visual
display of process performance.’

With these new data the process fraction of non-conforming units becomes:

·pp2 ˆ
X54

iˆ31

pi=n ˆ 0:1108:

The di� erence between the two average fraction of non-conforming units can be
tested by means of the following hypothesis testing:

H0 : p1 ˆ p2

H1 : p1 > p2:

542 F. Franceschini and M. Galetto

Number of Number of
Sample non-conforming Sample non-conforming
no. cans pi no. cans pi

1 12 0.24 16 8 0.16
2 15 0.30 17 10 0.20
3 8 0.16 18 5 0.10
4 10 0.20 19 13 0.26
5 4 0.08 20 11 0.22
6 7 0.14 21 20 0.40
7 16 0.32 22 18 0.36
8 9 0.18 23 24 0.48
9 14 0.28 24 15 0.30

10 10 0.20 25 9 0.18
11 5 0.10 26 12 0.24
12 6 0.12 27 7 0.14
13 17 0.34 28 13 0.26
14 12 0.24 29 9 0.18
15 22 0.44 30 6 0.12

Table 1. Fraction of non-conforming units collected in the process for 30 samples of n ˆ 50
cans (Montgomery 1996).
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An approximate test statistic based on the normal approximation to the binomial is:

Z0 ˆ ·pp1 ¡ ·pp2���������������������������������������������
·pp…1 ¡ ·pp†…1=n1 ‡ 1=n2†

p ;

where

·pp ˆ n1·pp1 ‡ n2·pp2

n1 ‡ n2

:

Substituting the obtained values, we ®nd Z0 ˆ 7:10 > Z0:05 ˆ 1:645 Consequently,
the null hypothesis is rejected in favour of the alternative hypothesis (Montgomery
1996).

By re-estimating the control limits for the new fraction of non-conforming units,
one obtains UCL ˆ 0:2440 and LCL ˆ 0 (®gure 1).

Hypothesizing an average learning model ·pp ˆ …¬=t† ‡ ® ‡ ", we can determine
the asymptotic fraction of non-conforming units of the process, and the time to
achieve it.

Applying equations (4) and (5), we have respectively:

a ˆ ·pp1 ¡ ·pp2

1=·tt1 ¡ 1=·tt2
ˆ 0:2150 ¡ 0:1108

1=15 ¡ 1=42
ˆ 2:43

c ˆ·pp1 ¡ a=·tt1 ˆ 0:2150 ¡ 2:43=15 ˆ 0:053:

where ·tt1 and ·tt2 are the average times related to the two phases of p-chart setting up
and control limits veri®cation.

We assume for c and a a normal distribution. The c statistic is the estimation of
the asymptotic fraction of non-conforming units of the process. It represents the
fraction value that can be asymptotically achieved by the process because of the
learning mechanism.

By c, we can determine the `asymptotic control limits’ of the p-chart (®gure 1):
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Number of Number of
Sample non-conforming Sample non-conforming
no. cans pi no. cans pi

31 9 0.18 43 3 0.06
32 6 0.12 44 6 0.12
33 12 0.24 45 5 0.10
34 5 0.10 46 4 0.08
35 6 0.12 47 8 0.16
36 4 0.08 48 5 0.10
37 6 0.12 49 6 0.12
38 3 0.06 50 7 0.14
39 7 0.14 51 5 0.10
40 6 0.12 52 6 0.12
41 2 0.04 53 3 0.06
42 4 0.08 54 5 0.10

Table 2. Fraction of non-conforming data collected for additional 24 samples of n ˆ 50 cans
(phase 2 control limits veri®cation) (Montgomery 1996).
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UCL ˆ c ‡ 3
���������������������
c…1 ¡ c†=n

p
ˆ 0:053 ‡ 0:095 ˆ 0:148

LCL ˆ c ¡ 3
���������������������
c…1 ¡ c†=n

p
ˆ 0:

The uncertainties associated to the estimation of a and c are (equation 6):

sa ˆ

������������������������������������������
·tt2 ¢ ·tt1

·tt2 ¡ ·tt1

³ ´2

…s2
·pp1

‡ s2
·pp2

†

s

ˆ 1:71;

sc ˆ

������������������������������������������������������������
·tt2

·tt2 ¡ ·tt1

³ ´2

s2
·pp2

‡
·tt1

·tt2 ¡ ·tt1

³ ´2

s2
·pp1

s

ˆ 0:076;

where sa and sc are respectively the estimation of the standard deviation of a and c
statistics, and s·pp1

ˆ
��������������������������
·pp1…1 ¡ ·pp1†=n

p
ˆ 0:058, s·pp2

ˆ
��������������������������
·pp2…1 ¡ ·pp2†=n

p
ˆ 0:044 the esti-

mation of the standard deviation of ·pp1 and·pp2.
The 95% two-sided con®dence intervals for the two parameters are:

® ˆc § z0:025 ¢ sc ˆ 0:053 § 2 ¢ 0:076

¬ ˆa § z0:025 ¢ sa ˆ 2:43 § 2 ¢ 1:71:

From equation (9), we may evaluate, for example, the impact (percentage variation)
on ·pp…est† due to a 10% variation of the two parameters, at time t ˆ 200 h:

¢·pp…est†

·pp…est†
¢ 100 ˆ

a ¢ 0:1

200
a

200
‡ c

ˆ 1:87% for a 10% variation of parameter a;

¢·pp…est†

·ppest

¢ 100 ˆ c ¢ 0:1
a

200
‡ c

ˆ 8:13% for a 10% variation of parameter c:

Furthermore, from equation (10), we can evaluate the prediction band limits for the
average fraction of non-conforming units (with 95% two-sided con®dence limits):

·pp…est† § 2 ¢

������������������������������
1:712

t2
‡ 0:0762

s

:

Figure 2 shows the value of ·pp…est† and its prediction band over time (equations (10)
and (11)). We set the lower prediction limit to zero, being it constantly lower than
zero.

As regards the time t* to achieve a pre®xed percentage distance from the asymp-
totic value, e.g. h ˆ 10%, we have:

t* ˆ ¬

h®
¢ 100 ˆ 2:43

10 ¢ 0:053
¢ 100 ˆ 460 h:

This is about 19 days of continuous process operation. The standard deviation of t*
is st¤ ˆ 736 h.

4. Conclusions
The paper presents a method for the estimation of asymptotic defectiveness of a

manufacturing process and the time to achieve it. The method is based on the
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prediction of the process learning curve and the information collected during the
setting up phases of a p-chart.

The main novelties of the method are given below.

. The possibility to estimate the asymptotic defectiveness of a process, having
only a limited set of preliminary information.

. The evaluation of the coherence between the asymptotic process defectiveness
and the related design speci®cations.

. The possibility of choosing among more alternative processes that more `cap-
able’, from the asymptotic defectiveness point of view.

. Providing a simple approach for evaluating the period of revision of process
control limits and their asymptotic values.

Further developments of the method are ®nalized to the de®nition of a procedure
able to automatically adapt a new estimation to continuous information collected by
the process over time.
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