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Analysis of Stability and Bifurcations of
Limit Cycles in Chua’s Circuit Through

the Harmonic-Balance Approach
Fabrizio Bonani,Member, IEEE,and Marco Gilli, Member, IEEE

Abstract—This paper presents a spectral approach, based on
the harmonic-balance technique, for detecting limit-cycle bifurca-
tions in complex nonlinear circuits. The key step of the proposed
approach is a method for a simple and effective computation of
the Floquet multipliers (FM’s) that yield stability and bifurcation
conditions. As a case-study, a quite complex system, Chua’s
circuit, is considered. It is shown that the spectral approach is
able to accurately evaluate the most significant bifurcation curves.

Index Terms—Bifurcation, Chua’s circuit, frequency domain
analysis, nonlinear circuits.

I. INTRODUCTION

H ARMONIC balance (HB) is a classical numerical tech-
nique for studying and designing electronic oscillators

and nonlinear microwave circuits [1], [2]. In most applications,
HB techniques have been used for determining the steady-state
behavior of nonlinear circuits that exhibit one periodic attractor
only. On the other hand, the global dynamics of nonlinear
networks and systems are usually investigated through time-
domain techniques that require the introduction of rather
complex and sophisticated concepts [3].

Recently, some extensions of the HB technique have been
proposed for the study of the global dynamic behavior and of
bifurcation processes in nonlinear circuits that present several
attractors. In [4] and [5] the authors have shown that the
describing function technique (i.e., HB with a single harmonic)
is able to predict the occurrence of chaotic behavior and
several bifurcation phenomena.

The describing function technique presents the advantages
of providing simple analytical results but, in general, it is not
able to accurately predict all the complex dynamic phenomena
occurring in nonlinear circuits, e.g., the various fold, flip, and
homoclinic bifurcations of Chua’s circuit, shown in [6]. To
overcome this limitation, in [7]–[9] a method, based on the
HB technique, for detecting fold and flip bifurcations was
proposed. In [10] and [11] the local stability of limit cycles
is analyzed through the application of Nyquist’s theorem.
In [12] bifurcations are studied through a spectral technique
based on the introduction of measuring probes into the circuit.
In [13] a spectral technique is exploited for studying flip
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bifurcations in time-delayed systems. However, none of the
above approaches provides a method for computing the limit-
cycle Floquet multipliers (FM’s), which are the simplest tool
for establishing the stability of the limit cycle and for detecting
its bifurcations.

In [14, pp. 149–156] it is shown that the FM’s can be deter-
mined to any desired accuracy by computing the eigenvalues
of a finite matrix. This kind of computation is, however, not
particularly suitable for imposing the fold and flip bifurcation
conditions.

In this paper we propose a method for studying limit-
cycle bifurcations in nonlinear feedback systems based on the
following steps.

1) Limit cycles are detected by using the HB technique as
introduced in [15], which is fast and efficient even for
a large number of harmonic.

2) The FM’s are expressed as the roots of an algebraic
equation of degree equal to the order of the system.
Such an equation is derived through the extension to
higher order systems of the technique proposed in [16]
for second-order systems.

3) Stability and bifurcation conditions are easily established
in terms of the coefficients of the above algebraic
equation.

As a case-study we have considered Chua’s circuit [17],
[18], a rather complex dynamical system which exhibits a
rich variety of dynamic behaviors, and we have shown that
our method is able to accurately identify all its significant
bifurcations.

The paper is structured as follows. In Section II the HB
approach according to the formulation in [15] is briefly re-
viewed. In Section III, the technique for evaluating the FM’s is
presented. Finally, Section IV is devoted to the application of
such techniques to the study of bifurcations in Chua’s circuit.

II. THE HARMONIC-BALANCE APPROACH

The harmonic-balance approach for detecting limit cycles
in dynamical autonomous nonlinear systems can be briefly
summarized as follows. Let us assume the nonlinear system
can be expressed as a Lur’e system [4] (see Fig. 1)

where is the time derivative, is a linear
operator, is a nonlinear function, and is a forcing
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Fig. 1. Lur’e system.

term which is zero for autonomous systems. Both the linear
operator and the nonlinear function can depend on several
parameters. According to this assumption, the autonomous
nonlinear system is defined by the dynamic equation

(1)

Since the HB technique assumes a periodic solution takes
place, can be expanded as a superposition of harmonics
(Fourier series)

where

(2)

For computational purposes, the Fourier series has to be
truncated to a suitable degree, high enough to represent
accurately the solution , thereby obtaining

(3)

where the unknown variables to be determined through the
HB technique are the spectral coefficients and

and, at least for the autonomous case, the solution period
. Such independent equations are obtained

[15] by sampling the dynamic equation (1) in time
samples, uniformly spaced within the period-wide range

(4)

and imposing one of the coefficients of the fundamental
harmonic to be zero. Without loss of generality, we shall
assume hereafter . The dynamic equation (1) is
therefore converted in (nonlinear) algebraic equations
involving the aforementioned unknown:

(5)

where .
Such a system can be efficiently assembled as follows.

First, let us define the vectors of time samplesand spectral
amplitudes

By sampling (3) in the time samples (4), the two
vectors are easily shown to be related by

(6)

where matrix

...
...

...
...

...

(7)

does not depend on the unknowns sinceand are given by

Furthermore, the application of the linear operator
to [see (3)] can be described directly in terms of the
harmonic components of as the matrix product

where

...
...

...
...

...
...

...

(8)

and , Im , .
The algebraic system (5) is therefore expressed in the

frequency domain as

(9)

where and denotes the
vector of time samples of the nonlinear function . Due to
the term , (9) is a nonlinear algebraic system in the
unknowns which can be efficiently solved by means of
the Newton–Raphson technique [15] since the system Jacobian
is

(10)

where the chain rule yields

and where is a diagonal matrix whose diagonal ele-
ments are simply the time samples of the derivative of the
nonlinear function .
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III. STABILITY AND BIFURCATIONS OF LIMIT CYCLES

As was pointed out in Section I, several approaches have
been proposed for studying stability and bifurcations of limit
cycles detected through the HB technique [4]–[13]. On the
other hand, most time-domain methods for detecting bifurca-
tions are based on the computation of the FM’s since once the
FM’s are known, the bifurcation conditions are easily derived
and the stability of the limit cycle is readily established as
well. Unfortunately, the approaches proposed in [4]–[13] are
not suitable for evaluating the FM’s.

We shall show that for a Lur’e system, the FM’s can be
computed as the roots of an algebraic equation. Such an
equation is obtained by extending to higher order systems
the technique proposed in [16] for the evaluation of Hill’s
determinant (obtained from a second-order system). Then we
shall point out that the conditions for fold and flip bifurcations
can be expressed as simple constraints among the coefficients
of the above equation.

As a first step, we consider a small perturbation of the
limit cycle which must satisfy the variational equation

(11)

where

(12)

which describes a linear periodic time-varying system whose
solution can be expressed as [19]

(13)

where is the order of the dynamical system, are suitable
constants depending on the initial conditions, are periodic
functions of period , and are constant eigenvalues from
which the FM’s are easily determined as .

In order to determine the eigenvalues, we substitute the
generic eigenfunction into (11)

(14)

Notice that although is represented in (3) by means of a
finite number of harmonics, the periodic function is, in
general, expressed by an infinite number of harmonics, since
it is the derivative of a nonlinear function evaluated in .

Therefore, both the periodic functions of period and
are expanded in a Fourier series as a superposition of

exponential harmonics

(15)

(16)

By substituting (15) and (16) in (14) we have

(17)

Then, equating the harmonic coefficients we obtain a lin-
ear homogeneous system whose unknowns are the harmonic
components . In order to have a nontrivial solution, the
determinant of the infinite matrix [see (18) at the
bottom of this page] must vanish where

. It can be verified that equation has infinitely
many solutions of the type ( and

) where are the eigenvalues defined in
(13).

For the sake of simplicity we restrict our attention to the
case of a linear block with deg
deg , i.e., the case occurring in Chua’s
circuit.

Under this assumption, the term can be written as

(19)

where is a suitable constant and ( , , ), ( , )
are zeros and poles, respectively, of .

According to [16], in order to improve the convergence of
the determinant , it is convenient to introduce a new
matrix diag with

, shown in (20) at the bottom of this page, where
.

(18)

(20)
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Denoting the determinant of as , by definition
of

(21)

The determinant exhibits infinitely many simple
poles located in , , and . More-
over, due to the structure of , this determinant presents the
same property of Hill’s determinant [16], i.e., all poles located
in have the same residue.

Since one of the FM of a limit cycle is one (and, hence, one
of the eigenvalues is zero) the determinant vanishes for

. Therefore, the following Mittag–Leffler’s expansion
holds:

(22)

where the three constants, , and are the residues of
in , , and and can be computed as the

determinant of the matrices ) as shown in (23)
at the bottom of this page, where and

(24)

(25)

(26)

From a computational standpoint, the residueis evaluated
computing the determinant of matrix , truncating the infinite
representation of to a finite number of harmonics which
can be rather small since, owing to the structure ofand to
the definition of given above, the infinite determinant
of (23) is rapidly convergent (see [16, Sec. 2.8]). The spectral
coefficients are determined through the relationship

(27)

where ,
are the time samples of function

(28)

and

...
...

... (29)

(30)

Moreover, since and
, the residues have to satisfy the

following additional constraints:

(31)

Therefore, the three residues can be efficiently determined
by evaluating the determinant of only one of the three matrices

.
Finally, substituting in (22)

(32)

exploiting (31) and taking into account that one of the FM’s is
one [see (22)], the other two FM’s are determined as solutions
of the following second-order algebraic equation:

(33)

where

(34)

(35)

(36)

(37)

(38)

(23)
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Fig. 2. Parameter� versus cycle periodT for both asymmetric and symmetric limit cycles. The HB system was solved withN = 21 harmonics and� = 15.

The conditions for fold and period doubling (flip) bifurca-
tions are obtained by simply imposing that one FM equals
one or 1, respectively, i.e.,

fold bifurcation

flip bifurcation (39)

We will show in the Section IV that by imposing that (9)
and one of the conditions above are simultaneously satisfied,
accurate bifurcation curves in the parameter space can be
obtained.

IV. A PPLICATION

As an example of application, we shall analyze the bifur-
cation phenomena in a well-known dynamical system: the
classical Chua’s circuit [17], [18]. This choice is supported by
the complex dynamic behavior of this system, thereby enabling
a sound test for the HB approach to bifurcation analysis. The
dynamic equations describing Chua’s circuit can be written in
terms of the normalized parametersand as

(40)

We assume that the memoryless nonlinear function can
be approximated as a cubic nonlinearity [4]

(41)

As shown in [4], such a system can be described as a
Lur’e system, provided the following expression for the linear

operator holds:

(42)

Limit-cycle bifurcations of a Chua’s circuit with smooth
nonlinearity have been thoroughly investigated in [6], through
theoretical and time-domain numerical techniques. In order to
validate the HB approach, we shall address the most significant
bifurcations reported in [6] and we shall show they can be
accurately and efficiently detected by spectral techniques. It
is possible to show that Chua’s circuit, as described by the
aforementioned functions exhibits, for , two stable
equilibria symmetric with respect to the origin of the state
space . For , a Hopf bifurcation gives rise to
two asymmetric limit cycles, which in turn are symmetric with
respect to the origin since the nonlinear system (40) is odd. By
further increasing , a fold bifurcation occurs, yielding a pair
of symmetric limit cycles (one stable and one unstable). We
start our investigation for values of and (e.g., and

) for which the two stable asymmetric limit cycles and
the stable symmetric limit cycle coexist (see [6, Sec. 3.2]). By
solving the HB system for and , the asymmetric
and the symmetric limit cycles have been detected. Forheld
fixed, both cycles have then been continued with respect to the
cycle period . Therefore, the nonlinear algebraic system (9)
is solved with and as unknowns. The values ofversus
the cycle period for are shown in Fig. 2, which has
been obtained with harmonics (including dc).

For both symmetric and asymmetric limit cycles and for
each value of and , the two FM’s not identically equal
to one have been evaluated through (33). In both cases, one
FM always has a magnitude less than one. The other FM
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Fig. 3. Principal FM as a function ofT for the symmetric limit cycle and� = 15.

Fig. 4. Principal Floquet multiplier as a function ofT for the asymmetric limit cycle and� = 15.

(hereinafter called the principal FM) is real and is responsible
for all the limit-cycle bifurcations.

The principal FM’s are reported as a function of period
and for in Figs. 3 and 4 for the symmetric and the
asymmetric limit cycles, respectively.

As far as the symmetric limit cycle is concerned (Fig. 3),
the following bifurcations can be detected.

• A fold bifurcation (denoted as ) corresponding to the
period for which the principal FM first takes the value

1. The bifurcation gives rise to a pair of symmetric
limit cycles, one unstable and one stable.

• As period is increased, the unstable symmetric limit
cycle undergoes a sequence of fold bifurcations for those
values of corresponding to a principal FM equal to
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Fig. 5. Principal FM as a function ofT for the symmetric limit cycle and� = 5.

Fig. 6. Principal FM as a function ofT for the asymmetric limit cycle and� = 5.

1. The first four such bifurcations (indicated as
) are shown in Fig. 3.

Notice that: 1) the fold bifurcations arise for
values of corresponding to a vertical tangent of the
curve of the symmetric limit cycle (solid curve of Fig. 2); 2)
the symmetric limit cycle does not present flip bifurcations
because the principal FM is always greater or equal to zero

(and the module of the other FM is always less than one);
and 3) the symmetric limit cycle is stable for values of
occurring before the bifurcation and within bifurcations

(because, as shown in Fig. 3, the principal
FM lies in the interval ).

With respect to the asymmetric limit cycle (Fig. 4), the
following bifurcations are revealed.
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Fig. 7. Principal FM as a function ofT for the symmetric limit cycle and� = 25.

Fig. 8. Principal Floquet multiplier as a function ofT for the asymmetric limit cycle and� = 25.

• The period-doubling bifurcation , giving rise to the
well-known spiral attractor that occurs for a period
corresponding to the first crossing of value1 by the
principal FM.

• A sequence of flip and fold bifurcations. The first six
such bifurcations: are shown
in Fig. 4. Notice that are flip bifurcations

for which the principal FM equals 1. are
fold bifurcations corresponding to a principal FM equal
to 1.

We remark that: 1) the asymmetric limit cycle is stable for
values of such that the principal FM lies in the interval

, i.e., before the bifurcation and within the bifur-
cations , , and 2) the fold bifurcations
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Fig. 9. Periodic orbit obtained from the symmetric limit cycle through the HB system forT = 13:3685, � = 11:5875, � = 15. The cycle is very close
to the homoclinic loop lying around the origin of the state space. The HB system was solved withN = 21 harmonics.

Fig. 10. Bifurcation curves in the parameter space.

occur for values of corresponding to a
vertical tangent of the asymmetric limit cycle curve
(dashed curve in Fig. 2).

The principal FM’s are also shown in Figs. 5–8 for
and , respectively. It is worth noting that the same fold
and flip bifurcations of the case can be observed.

Fig. 2 also yields a strong indication of the existence of a
homoclinic orbit, due to the fact that both curves exhibit a

vertical asymptote. In order to verify this conjecture, we have
plotted the symmetric limit cycle obtained through the HB
system for , , in Fig. 9. The
resulting orbit appears to be very close to the homoclinic loop
arising from the intersection between the stable and unstable
manifolds of the origin of the phase space.

Starting from the bifurcation points detected from Figs. 3
and 4, bifurcation curves have been obtained by continuation
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with respect to . The bifurcations have been evaluated by
solving (9) and condition (39) with , and as unknowns.
We have also detected the fold bifurcation which gives
rise to the period-three orbit window lying within the chaotic
spiral attractor region of the parameter space. Finally, the
homoclinic bifurcation has been evaluated as the vertical
asymptote of the curve for several values of . The
most significant bifurcation curves in the parameter space are
reported in Fig. 10. Since curves ) are
very close to each other, the insets in Fig. 10 permit us to
distinguish between them. It is seen that, for a given value of

, by increasing one encounters the curves corresponding to
the following sequence of bifurcations:

. This is in agreement with
the relative positions of the bifurcation points shown in Fig. 2.

V. CONCLUSION

We have presented a spectral approach, based on the
harmonic-balance technique, for the analysis of stability and
limit-cycle bifurcations in complex nonlinear systems.

The approach is based on the following steps. 1) limit cycles
are detected by using the HB technique proposed in [15],
which allows the use of a large number of harmonics with
a low computational burden; 2) by extending the technique
shown in [16], the FM’s of each limit cycle are computed
as the roots of a low-order algebraic equation; and 3) then
bifurcation conditions are expressed in terms of the coefficients
of this equation.

The method was applied to Chua’s circuit, since this com-
plex dynamical system exhibits a large number of attractors
and bifurcation processes. We have shown that, through the
proposed spectral approach, a detailed analysis of limit-cycle
stability is feasible. Moreover fold, flip, and homoclinic bifur-
cation curves have been accurately evaluated.

We remark that the above spectral technique is also suitable
for studying circuits dispersive in time and distributed systems
that admit of a simple description only in the frequency
domain.
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autonomous microwave circuits using new global-stability analysis
tools,” IEEE Trans. Microwave Theory Tech.,vol. 46, pp. 494–504,
May 1998.

[13] D. W. Berns, J. L. Moiola, and G. Chen, “Predicting period-doubling
bifurcations and multiple oscillations in nonlinear time-delayed feedback
systems,”IEEE Trans. Circuits Syst. I,vol. 45, pp. 759–763, July 1998.

[14] A. I. Mees,Dynamics of Feedback Systems.New York: Wiley, 1981.
[15] K. S. Kundert, A. Sangiovanni-Vincentelli, and J. K. White,Steady-

State Methods for Simulating Analog and Microwave Circuits.Boston,
MA: Kluwer, 1990.

[16] E. T. Whittaker and G. N. Watson,A Course on Modern Analysis,4th
ed. Cambridge, U.K.: Cambridge Univ. Press, 1996, pp. 413–417.

[17] R. N. Madan, Ed., “Special issue on Chua’s circuit: A paradigm for
chaos,”J. Circuits, Syst. Comput.,vol. 3, Mar. 1993.

[18] , “Special issue on Chua’s circuit: A paradigm for chaos,”J.
Circuits, Syst. Comput.,vol. 3, June 1993.

[19] F. M. Callier and C. A. Desoer,Linear System Theory.Heidelberg,
Germany: Springer-Verlag, pp. 51–54, 1991.

Fabrizio Bonani (S’89–M’96) was born in Torino,
Italy, in 1967. He received the Laurea degree,
(cum laude) and the Ph.D. degree in electronic
engineering from the Politecnico di Torino, Torino,
Italy, in 1992 and 1996, respectively.

Since 1995, he has been a Researcher at the
Electronics Department, Politecnico di Torino. His
research interests are mainly in the areas of the
physics-based simulation of semiconductor devices,
with special emphasis on the noise analysis of
microwave field-effect and bipolar transistors, and

the thermal analysis of power microwave circuits. Part of his research concerns
the analysis and simulation of nonlinear dynamical systems. From October
1994 to June 1995, he was with the ULSI Technology Research Department,
Bell Laboratories, Murray Hill, NJ, as a Consultant, working on physics-
based noise modeling of electron devices.

Dr. Bonani is is member of the Associazione Elettrotecnica Italiana (AEI).

Marco Gilli (M’92) received the Dr. Eng. degree
in electronics engineering from the Politecnico di
Torino, Torino, Italy, in 1989.

From November 1991 to November 1998, he was
a Researcher (Assistant Professor) at the Depart-
ment of Electronics, Politecnico di Torino. Since
November 1998 he has been an Associate Professor
of electrical engineering at the Faculty of Engineer-
ing, Politecnico di Torino. His research activity is
mainly in the area of nonlinear circuits and systems
and neural networks and partially in the field of

electromagnetic compatibility.
Dr. Gilli received the Best Paper Award from theInternational Journal of

Circuit Theory and Applicationsin 1994 and in 1998, he was recipient of
the Ravani Award of the Academy of Science of Turin, for his research in
electrical engineering.


