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Analysis of Stability and Bifurcations of
Limit Cycles in Chua’s Circuit Through
the Harmonic-Balance Approach

Fabrizio Bonani,Member, IEEE,and Marco Gilli, Member, IEEE

Abstract—This paper presents a spectral approach, based on bifurcations in time-delayed systems. However, none of the
the harmonic-balance technique, for detecting limit-cycle bifurca- above approaches provides a method for computing the limit-
tions in complex nonlinear circuits. The key step of the proposed cycle Flogquet multipliers (FMs), which are the simplest tool

approach is a method for a simple and effective computation of S - L .
the Floquet multipliers (FM's) that yield stability and bifurcation for establishing the stability of the limit cycle and for detecting

conditions. As a case-study, a quite complex system, Chua'sits bifurcations.
circuit, is considered. It is shown that the spectral approach is  In [14, pp. 149-156] it is shown that the FM’s can be deter-

able to accurately evaluate the most significant bifurcation curves. mined to any desired accuracy by computing the eigenvalues
Index Terms—Bifurcation, Chua’s circuit, frequency domain  Of a finite matrix. This kind of computation is, however, not
analysis, nonlinear circuits. particularly suitable for imposing the fold and flip bifurcation
conditions.
In this paper we propose a method for studying limit-

cycle bifurcations in nonlinear feedback systems based on the
ARMONIC balance (HB) is a classical numerical techfollowing steps.

nique for studying and designing electronic oscillators 1y | jmit cycles are detected by using the HB technique as
and nonlinear microwave circuits [1], [2]. In most applications, introduced in [15], which is fast and efficient even for
HB techniques have been used for determining the steady-state 5 large number of harmonic.

behavior of nonlinear circuits that exhibit one periodic attractor 5y The EM's are expressed as the roots of an algebraic
only. On the other hand, the gIong dyqamics of nonlin_ear equation of degree equal to the order of the system.
networks and systems are usually investigated through time-  g,,ch an equation is derived through the extension to

domain techniques that require the introduction of rather higher order systems of the technique proposed in [16]
complex and sophisticated concepts [3]. for second-order systems.

Recently, some extensions of the HB technique have beery) giapility and bifurcation conditions are easily established
proposed for the study of the global dynamic behavior and of * i tarms of the coefficients of the above algebraic
bifurcation processes in nonlinear circuits that present several equation
attractors. In [4] and [5] the authors have shown that theAS a case-study we have considered Chua’s circuit [17]
describing function technique (i.e., HB with a single harmonii ; . o '

8], a rather complex dynamical system which exhibits a

is able to predict the occurrence of chaotic behavior ar|ch variety of dynamic behaviors, and we have shown that

several bifurcation phenomena. . . . . o
. . . our method is able to accurately identify all its significant
The describing function technique presents the advanta%?ﬁjrcations

of providing simple analytical results but, in general, it is no The paper is structured as follows. In Section Il the HB

able tq acgurately predlgt aI.I the complex dynam|c phe.nomeggproach according to the formulation in [15] is briefly re-
occurring in nonlinear circuits, e.g., the various fold, flip, angd:

homoclinic bifurcations of Chua's circuit, shown in [6]. Towewed. In Section lll, the technique for evaluating the FM’s is

overcome this limitation, in [7]-{9] a method, based on thBresented. Finally, Section IV is devoted to the application of

HB technique, for detecting fold and flip bifurcations Wassuch techniques to the study of bifurcations in Chua’s circuit.

proposed. In [10] and [11] the local stability of limit cycles

is analyzed through the application of Nyquist's theorem.

In [12] bifurcations are studied through a spectral techniqueThe harmonic-balance approach for detecting limit cycles

based on the introduction of measuring probes into the circuit. dynamical autonomous nonlinear systems can be briefly

In [13] a spectral technique is exploited for studying flisummarized as follows. Let us assume the nonlinear system
can be expressed as a Lur'e system [4] (see Fig. 1)

Manuscript received September 29, 1998; revised April 20, 1999. This paper _
was recommended by Associate Editor H. Kawakami. L(D)a(t) + nlz(t)] = s(t)

I. INTRODUCTION

Il. THE HARMONIC-BALANCE APPROACH
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where matrix'~*

o ) LY(D) >
s(1) x(f) !
1 % "1 M N YN
n .
¢) _ 1 75,1 75,1 ’7(2:,N VS,N
Fig. 1. Lur'e system. . : : :
1 7(2:N+1,1 ’Y§N+1,1 ’Y§N+1,N ’Y§N+1,N

term which is zero for autonomous systems. Both the linear (7)
operator and the nonlinear function can depend on seve(gl%les not depend on the unknowns sineand~* are given b
parameters. According to this assumption, the autonomous P n e 9 y
2
Vp,q = COs(qut,) = cos < Child )

nonlinear system is defined by the dynamic equation

L(D)z(t) + n[z(t)] = 0. Q) 2N +1
. . L . 2
Since the HB technique assumes a periodic solution takes Yp,q = sin(qwty) = sin <2?\7T1>'

place,z(t) can be expanded as a superposition of harmonics

(Fourier series) Furthermore, the application of the linear operalg))

i to z(t) [see (3)] can be described directly in terms of the
- Z a(t) harmonic components of(D)xz(t) as the matrix product
k=0 Q(w)X where
where
(#) = Ao . rL(0) 0 0 0 0 0 07
x(t) = Ay cos(kwt) + By, sin(kwt). 0 R’ L 0 0 0 0
0 - R 0 0 0 0
For computational purposes, the Fourier series has to be 0 0 0 Ry L 0 0
truncated to a suitable degre¥, high enough to representQ(w) = | ¢ 0 0

accurately the solutior(t), thereby obtaining

N 0 0 0 0 0 --- Ry Iy
r(H) =3 wnlt) © 0 0 0 0 0 - Iy Bx
k=0 (8)
where the unknown variables to be determined through the
HB technique are th@N + 1 spectral coefficientsd; and and Ry = Re{L(jkw)}, I = Im{L(jkw)}, k=1, ---, N.
By, and, at least for the autonomous case, the solution periodrhe algebraic system (5) is therefore expressed in the
T = 27 /w. Such2N + 2 independent equations are obtaineftequency domain as
[15] by sampling the dynamic equation (1) 21V + 1 time

samples, uniformly spaced within the period-wide rajtgel’] {Q(w) X+ ﬂ(£—11) =0 ©)
o=tk k=1 ..., 2N 41 4 Br=0
k= N +1 ) — 4 T + ( )

d f th ffi f the fund where N(I ' X) = ['n(l'X) and (L' 'X) denotes the
and imposing one of the coefficients of the fundament lactor of time samples of the nonlinear functie(). Due to
harmonic to be zero. Without loss of generality, we sh

e termX, (9) is a nonlinear algebraic system in th& + 2
assume hereafteB; = 0. The dynamic equation (1) is ©) v y +

theref tod IBV 42 | b i unknowns( X, w) which can be efficiently solved by means of
theretore converte ' .+ (nonlinear) algebraic equa 10NSthe Newton—Raphson technique [15] since the system Jacobian
involving the aforementioned unknown:

is
L(D)x(t)[t=t, + n[x(®)]lt=t, =0 5) ON 09
Bl =0 Q(w) + = = &
I=|=Y7Tx ow (10)
wherek =1, ---, 2N 4+ 1.. o 001, ---, 0] 0

Such a system can be efficiently assembled as follows.
First, let us define the vectors of time sampleand spectral where the chain rule yields
amplitudes X

N o/ R
z = [z(t1) - 2(tant1)]”, X =[A40 A1 By -+ Axn By]". oxX E@L

By sampling (3) in the2N + 1 time samples (4), the two

vectors are easily shown to be related by and wheredn/9z is a diagonal matrix whose diagonal ele-

ments are simply the time samples of the derivative of the
z=I"'X<=X=Iz (6) nonlinear functionn(-).
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lll. STABILITY AND BIFURCATIONS OF LIMIT CYCLES Therefore, both the periodic functions of peri@dg(¢) and

As was pointed out in Section I, several approaches hatd) are expanded in a Fourier series as a superposition of
been proposed for studying stability and bifurcations of lim@XPonential harmonics
cycles detected through the HB technique [4]-[13]. On the oo
other hand, most time-domain methods for detecting bifurca- gty = > Gy exp(jhwt) (15)
tions are based on the computation of the FM'’s since once the

k=—oco
FM’s are known, the bifurcation conditions are easily derived o0
and the stability of the limit cycle is readily established as v(t) = Z Vi exp(jkwt). (16)
well. Unfortunately, the approaches proposed in [4]-[13] are k=—o0

not suitable for evaluating the FM’s. o _
We shall show that for a Lure system, the FM’s can be By substituting (15) and (16) in (14) we have
computed as the roots of an algebraic equation. Such an_

equation is obtained by extending to higher order system O+ jhw)Va kwt v
the technique proposed in [16] for the evaluation of Hlllssz Fjkw)Vic exp(jkwt) exp(A)

determinant (obtained from a second-order system). Then we oo oo

shall point out that the conditions for fold and flip bifurcations — _ Z Gy, exp(jhwt) Z Vi exp(jkwt) exp(\t).
can be expressed as simple constraints among the coefficients 2" ke oo

of the above equation. (17)

As a first step, we consider a small perturbatigs) of the
limit cycle = (¢) which must satisfy the variational equation Then, equating the harmonic coefficients we obtain a lin-

~ Sy ear homogeneous system whose unknowns are the harmonic
LDyz() + g(0)F() =0 (1) componentsV,. In order to have a nontrivial solution, the
where determinantD(A) of the infinite matrix3{ [see (18) at the
dn(Q) bottom of this page] must vanish whetg, = L(\ + jkw) +
g(t) = iC ‘ (12)  @,. It can be verified that equatioP()) = 0 has infinitely
==(t) many solutions of the type; + jkw (¢ = 1, ---, M and
which describes a linear periodic time-varying system whoge= —oc, ---, o) where ); are the eigenvalues defined in
solution can be expressed as [19] (13).
For the sake of simplicity we restrict our attention to the
Z Hivi(t) exp(\it) (13) case of a linear blocl.(s) = P(s)/Q(s) with deq P(s)) =

ded@Q(s))+1 = M = 3, i.e,, the case occurring in Chua’s

, _ circuit.
wherelM is the order of the dynamical systetd; are suitable  jnqer this assumption, the tetif\) +Gy can be written as
constants depending on the initial conditiongt) are periodic

functions of period?’, and \; are constant eigenvalues from A= 20X = Xa2)(X = Ay3)

which the FM’s are easily determined asp(\; 7). L) +Go=mn =)A= As) (19)
In order to determine the eigenvaluks we substitute the ° *

generic eigenfunctiom(t) exp(At) into (11) wheren is a suitable constant and(, As2, Ass), (Asar Ass)

. are zeros and poles, respectively,Iaf\) + Gy.

L(D)u(#) exp(M) + g(t)u(?) exp(At) = 0. (14) According to [16], in order to imﬁm)/e the convergence of
Notice that althoughz(t) is represented in (3) by means of dhe determinantD()), it is convenient to introduce a new
finite number of harmonics, the periodic functigit) is, in matrix M; = diag{ fr(A\)}M with fi.(A) = [L(A + jhw) +
general, expressed by an infinite number of harmonics, sin@e] ', “shown in (20) at the bottom of this page, where
it is the derivative of a nonlinear function evaluatedzift). G(P)( A) = (NG,

Gy -~ G Gy G.i - Gy

M=\ - Gy - @& Go G-y -+ G-y o oo (18)
cee e oo Gy - G G Gy e Gy -
B T O R SO I O B
Mi=| - GNP 1 6B o dQy (20)

€ 2CY N e 0) S B G {0 BT e v 0
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Denoting the determinant a4, as D;(A), by definition whereG = [G_n, G_(n_1), -+, Go, - -+, GN_1, anlt, g
of M, are the time samples of functigy(¢)

D(A) =0+ Di(A) =0. (21) g=1lg(tr) -+ gltan41)]" = g(L*X) (28)

The determinantD,; () exhibits infinitely many simple 5.4
poles located in\,; &+ jkw, Ao £ jhkw, and A3 £ jkw. More-

over, due to the structure @f/, this determinant presents the ’Ye—'N, -~ " YN ’Y(G'_N, N)
same property of Hill's determinant [16], i.e., all poles located r— : : : (29)
in \,; = jkw ¢ = 1, 2, 3 have the same residue. . . o

Since one of the FM of a limit cycle is one (and, hence, one IN-N T ONe T TN

of the eigenvalues is zero) the determin&nt \) vanishes for

A = 0. Therefore, the following Mittag—Leffler's expansion . ) jq2np
holds: Vg = expligutp) = exp | 5o ) (30)
- 1 1 : .
Di(N)=¢ { — + , } Moreover, since limgez—+00 D1(A) = 1 and
k:z—:oo A= QA+ ko) (a1 + jhw) limRepy—+o0 cOt(jA) = Fj, the residues have to satisfy the
o 1 1 following additional constraints:
+ ¢ Z [)\ h T + h T }
k=—oo _( 52+J w) ( 52+J w) Cl+02+03:0
°° I As I As I As
+c3 Z 1 + 1 c1 cot <ﬂ> + ¢ cot <M> + c3 cot <‘ﬂ>
A= Ass+ikw) Az + jhw) v v w
T . -« (31)
— 7 |:Cl cot <M) + ¢ cot <‘M) Jn
W W W
. B Therefore, the three residues can be efficiently determined
J()‘ - )\52) JAs2T . . .
+ ¢o cot 5 + ¢o cot " by evaluating the determinant of only one of the three matrices
R;.
+ ¢35 cot <M) 1 ¢3 cot <M)} ~ Finally, substituting in (22)
w w

(22) i = exp(AT) = exp (2?) (32)

where the three constants, ¢z, andcs are the residues of
Di()\) in Ay, A2, and \,3 and can be computed as theexploiting (31) and taking into account that one of the FM's is
determinant of the matriceR; (i = 1, 2, 3) as shown in (23) one [see (22)], the other two FM’s are determined as solutions

at the bottom of this page, whet@, = fiG, and of the following second-order algebraic equation:
p— 2 _—
= (As1 )\g4)()\e1 )\90) (24) ptap+b=0 (33)
( s1 — )( s1 — )
> _ Qa2 = A)(A2 = M) where
fo=-—"7+ (25) .
0 ( 52_ )( 52_ ) a:—al\ (34)
= e e Ty ax = espan (102 = 1)ty = Dtz + 1)
] s1 — 1 83 1 s s
From a computational standpoint, the residyes evaluated + eattaa(ist ss Yot + piss)
computing the determinant of matri;, truncating the infinite +eaprsa(prsr = 1)(pts2 = D(psr + ps2) - (35)
representation af(t) to a finite number of harmonia¥ which ap = ps1pis2biszc1iist (ts2 — 1)(pss — 1)
::r;';m (l;ef_ra_\;t_her s?faél)\iinge, owil?g to 'Etrrl]e §trft_10_iure(ijig1fand_to t + copraa(ftar — 1) (a3 — 1)
e definition of f;,(\) given above, the infinite determinan _ _
of (23) is rapidly convergent (see [16, Sec. 2.8]). The spectral 1 + capisa(iisn ) (pts2 ] (36)
coefficientsGy, are determined through the relationship b=—— (37)
Hs1fbs2fs3
G= LGQ (27) Msi = eXp(—Q)\Sﬂr/CU), t=1,2,3 (38)
G0 o 0w 1 Y0 - a0
: (23)

Il

[l
@

>
_—
o
R

>
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4595t et - 6.8 ‘
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344 al e
6 34 1375 1385 1395 [ 14.05 2
b et
e
34— .
4+ 12.1345 121355 12.1365 121375 12.1385 T . 7
d =
a
L 1 ]
21
symmetric cycle
0 1 1 1 1 1 L 1
7 8 9 10 11 12 13 14 15

o

Fig. 2. Parameter versus cycle period” for both asymmetric and symmetric limit cycles. The HB system was solvedWith 21 harmonics ands = 15.

The conditions for fold and period doubling (flip) bifurca-operator L holds:
tions are obtained by simply imposing that one FM equals 3 2
one or—1, respectively, i.e., L(D) = D+ (1&_)3)_51)1/;1; +aff
(8%

Limit-cycle bifurcations of a Chua’s circuit with smooth
nonlinearity have been thoroughly investigated in [6], through
We will show in the Section IV that by imposing that (9)theoretical and time-domain numerical techniques. In order to
and one of the conditions above are simultaneously satisfigglidate the HB approach, we shall address the most significant
accurate bifurcation curves in the parameter space can lircations reported in [6] and we shall show they can be
obtained. accurately and efficiently detected by spectral techniques. It
is possible to show that Chua’s circuit, as described by the
IV. APPLICATION aforementioned functions exhibits, far < 7, two stable
As an example of application, we shall analyze the bifu?—qu'“b”a symmetric with respect to the origin of the state

) . . space 2). For « = 7, a Hopf bifurcation gives rise to
cation phenomena in a well-known dynamical system: tt}g (@, , 2) N P g

: L : L Wo asymmetric limit cycles, which in turn are symmetric with
;l]zssc')crﬁllpEZ%?;;;%E&;&&?}; tI]ihs:Sssggr;e ;i:rlé%@o;e;bﬁ%spect to the origin since the nonlinear system (40) is odd. By
a sound test for the HB approach to bifurcation analysis. Th ther increasingy, a fold bifurcation occurs, yielding a pair

) . L T : 8f symmetric limit cycles (one stable and one unstable). We
dynamic equations describing Chua’s circuit can be written | y y ( )

terms of the normalized parametersand 3 as art our investigation for values of and 5 (e.g.,« = 8 and
P £ = 15) for which the two stable asymmetric limit cycles and

(42)
fold bifurcation<=1+a+b=10
flip bifurcation<—=1—-a+b=0. (39)

dx —ay — an(z) — ax the stable symmetric limit cycle coexist (see [6, Sec. 3.2]). By
dt solving the HB system fory = 8 and /3 = 15, the asymmetric

dy —r—ytz and the symmetric limit cycles have been detected./Foeld

dt fixed, both cycles have then been continued with respect to the
% =—fy. (40) cycle periodT". Therefore, the nonlinear algebraic system (9)

is solved withX and«a as unknowns. The values aof versus
We assume that the memoryless nonlinear functioin can the cycle period” for 3 = 15 are shown in Fig. 2, which has
be approximated as a cubic nonlinearity [4] been obtained withV = 21 harmonics (including dc).
_ _8 4 .3 For both symmetric and asymmetric limit cycles and for
ne)=—Frdg 41 gach value ofx and T, the two FM’s not identically equal
As shown in [4], such a system can be described ast@one have been evaluated through (33). In both cases, one
Lur'e system, provided the following expression for the linedfM always has a magnitude less than one. The other FM
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Floquet multiplier
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Fig. 3. Principal FM as a function dof" for the symmetric limit cycle and3 = 15.

1500 T T T T

1000

wn

(o=}

S
T

Floquet multiplier
M

-500 |

B=15

-1000 + .
Asymmetric cycle

-1500 * ' : .

Fig. 4. Principal Floguet multiplier as a function @f for the asymmetric limit cycle andd = 15.

(hereinafter called the principal FM) is real and is responsible «
for all the limit-cycle bifurcations.

The principal FM’s are reported as a function of peribd
and for3 = 15 in Figs. 3 and 4 for the symmetric and the
asymmetric limit cycles, respectively. .

As far as the symmetric limit cycle is concerned (Fig. 3),
the following bifurcations can be detected.

A fold bifurcation (denoted ag?l) corresponding to the
period T for which the principal FM first takes the value
+1. The bifurcationf? gives rise to a pair of symmetric
limit cycles, one unstable and one stable.

As period T is increased, the unstable symmetric limit
cycle undergoes a sequence of fold bifurcations for those
values of 7" corresponding to a principal FM equal to
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45 T T T T T T T T
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Floquet multiplier

T

80 T T T T T T T T

N
=]
T

4 455 556 657 15

el
<
T

T

Floquet multiplier

B=5

Asymmetric cycle

4 5 6 7 8 9 10 11 12 13

Fig. 6. Principal FM as a function dof" for the asymmetric limit cycle andt = 5.

+1. The first four such bifurcations (indicated £ < = (and the module of the other FM is always less than one);
2,3, 4, 5) are shown in Fig. 3. and 3) the symmetric limit cycle is stable for values Bf
Notice that: 1) the fold bifurcationg’, « = 1, 2, 5 arise for occurring before the bifurcatiorf} and within bifurcations
values of corresponding to a vertical tangent of tlé«) fZ — f2, fi — /2 (because, as shown in Fig. 3, the principal
curve of the symmetric limit cycle (solid curve of Fig. 2); 2)FM lies in the intervall0, 1[).
the symmetric limit cycle does not present flip bifurcations With respect to the asymmetric limit cycle (Fig. 4), the
because the principal FM is always greater or equal to zefalowing bifurcations are revealed.
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25 T T T T

20 - B=25
Symmetric cycle

—
w
T

Floquet multiplier

Fig. 7. Principal FM as a function of" for the symmetric limit cycle and3 = 25.

1000 T T T T T
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0 F— .
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=
= 2000 ]
N
2
op
= 3000 .
o~ e 18 2 22 24
=25
-4000 | B 7
Asymmetric cycle
-5000 . ! : ! :
1.5 2 2.5 3 35 4 45
T
Fig. 8. Principal Floquet multiplier as a function @ for the asymmetric limit cycle andd = 25.

e The period-doubling bifurcationl,, giving rise to the for which the principal FM equals 1. f (i = 1, 2, 3) are
well-known spiral attractor that occurs for a peridd fold bifurcations corresponding to a principal FM equal
corresponding to the first crossing of valuel by the to +1.
principal FM.

We remark that: 1) the asymmetric limit cycle is stable for
A sequence of flip and fold bifurcations. The first sixalues of 7’ such that the principal FM lies in the interval

such bifurcationsd? — fr —f2 —d2 —d2 — f2 are shown ]-1, 1[, i.e., before the bifurcation, and within the bifur-
in Fig. 4. Notice thatf!, (i = 1, 2, 3) are flip bifurcations cationsd: —f}, 2 —d2, d° —f2 and 2) the fold bifurcations
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Fig. 9. Periodic orbit obtained from the symmetric limit cycle through the HB systenT fer 13.3685, o = 11.5875, 3 = 15. The cycle is very close
to the homoclinic loop lying around the origin of the state space. The HB system was solved/with21 harmonics.

30
25 | 1
20 1
jen B
15 41195 14.1205 14.1227]
10 11.705 -
2
dﬂ
11.701
9.956 9.958 9.96 9.962 9.168 9.17 9.172
5 1 1 1 1
5 10 15 20 25 30

Fig. 10. Bifurcation curves in the parameter space.

fi(i = 1,2,3) occur for values ofa corresponding to a vertical asymptote. In order to verify this conjecture, we have
vertical tangent of the asymmetric limit cycl€(«) curve plotted the symmetric limit cycle obtained through the HB
(dashed curve in Fig. 2). system forl’ = 13.3685, o = 11.5875, 8 = 15in Fig. 9. The

The principal FM’s are also shown in Figs. 5-8 f8r= 5 resulting orbit appears to be very close to the homoclinic loop
and/ = 25, respectively. It is worth noting that the same foldrising from the intersection between the stable and unstable
and flip bifurcations of the casé = 15 can be observed. manifolds of the origin of the phase space.

Fig. 2 also yields a strong indication of the existence of a Starting from the bifurcation points detected from Figs. 3
homoclinic orbit, due to the fact that both curves exhibit and 4, bifurcation curves have been obtained by continuation
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rise to the period-three orbit window lying within the chaotic  periodic systems,1EEE Trans. Circuits Systyol. 43, pp. 1015-1018,

; i ; Dec. 1996.
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homoclinic bifurcationk has been evaluated as the vertical ~ microwave techniques,JEEE Trans. Microwave Theory Techpp.
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very close to each other, the insets in Fig. 10 permit us &l A. Suarez, J. Morales, and R. @8, “Synchrorlﬂzbatllon g_fll_alySIS IIJf_
. . . . autonomous microwave circuits using new global-stability analysis

distinguish between them. It is seen that, for a given value of ;,c."|EEE Trans. Microwave Theory Techvol. 46, pp. 494-504,

(3, by increasingx one encounters the curves corresponding to  May 1998.

the followina seguence of bifurcation¢: — d. — f,, — f5 — [13] D. W. Berns, J. L. Moiola, and G. Chen, “Predicting period-doubling
22, gd3 g 3_ gt 1 2 Th'$5' e Jo f; ith bifurcations and multiple oscillations in nonlinear time-delayed feedback
fa TG T T T fa “Ua T fa _fs : IS 1S In agreement wi systems,"|EEE Trans. Circuits Syst. kol. 45, pp. 759-763, July 1998.

the relative positions of the bifurcation points shown in Fig. 214] A. I. Mees,Dynamics of Feedback System&lew York: Wiley, 1981.
[15] K. S. Kundert, A. Sangiovanni-Vincentelli, and J. K. Whit8teady-
State Methods for Simulating Analog and Microwave CircuitBoston,
V. CONCLUSION MA: Kluwer, 1990.
[t16] E. T. Whittaker and G. N. Watso® Course on Modern Analysidth
We have presented a spectral approach, based on theé ed. Cambridge, U.K.: Cambridge Univ. Press, 1996, pp. 413-417.

harmonic-balance technique, for the analysis of stability a1 R. N. Madan, Ed., “Special issue on Chua’s circuit: A paradigm for

limit-cycle bifurcations in complex nonlinear systems. [18] chaos, T?'Sgéﬁl;"ltsi’sssgjt'oﬁogﬂg,"éotiféu'i\f:ag g for chaod.”
The approach is based on the following steps. 1) limit cycles Circuits, Syst. Computyol. 3, June 1993.

are detected by using the HB technique proposed in [1$},9] F. M. Ca!lier and C. A. Desoetl.inear System Theory.Heidelberg,

which allows the use of a large number of harmonics with Germany: Springer-Verlag, pp. 51-54, 1991.

a low computational burden; 2) by extending the technique

shown in [16], the FM’s of each limit cycle are computed

as the roots of a low-order algebraic equation; and 3) then

bifurcation conditions are expressed in terms of the coefficier*~ Fabrizio Bonani (S'89-M'96) was born in Torino,

of this equation. | Italy, in 1967. He received the Laurea degree,

. . . . . cum laude) and the Ph.D. degree in electronic
The method was applied to Chua’s circuit, since this cor ( ) ‘

engineering from the Politecnico di Torino, Torino,
plex dynamical system exhibits a large number of attractc
Since 1995, he has been a Researcher at the
. . .. Electronics Department, Politecnico di Torino. His
proposed spectral approach, a detailed analysis of limit-cyt
stability is feasible. Moreover fold, flip, and homoclinic bifur- physics-based simulation of semiconductor devices,
with special emphasis on the noise analysis of
We remark that the above spectral technique is also suitafgthermal analysis of power microwave circuits. Part of his research concerns
for studying circuits dispersive in time and distributed systentig analysis and simulation of nonlinear dynamical systems. From October
. ell Laboratories, Murray Hill, NJ, as a Consultant, working on physics-
domain. based noise modeling of electron devices.

Italy, in 1992 and 1996, respectively.
and bifurcation processes. We have shown that, through -
research interests are mainly in the areas of the
cation curves have been accurately evaluated. ; : ; ;
microwave field-effect and bipolar transistors, and
that admit of a simple description only in the frequenc 994 to June 1995, he was with the ULSI Technology Research Department,
Dr. Bonani is is member of the Associazione Elettrotecnica Italiana (AEI).

REFERENCES

[1] K. S. Kundert and A. Sangiovanni-Vincentelli, “Simulation of nonlinear
circuits in the frequency domain|EEE Trans. Computer-Aided Design,
. 521-535, Oct. 1986. T .
2] gp Ushida, T. Adachi, and L. O. Chua, “Steady-state analysis ¢ Marco Gilli (M'92) received the Dr. Eng. degree
nonlinear circuits, based on hybrid method&EE Trans. Circuits Syst. in electronics engineering from the Politecnico di
I, vol. 39, pp. 649-661, Aug. 1992. Torino, Torino, Italy, in 1989.
[3] Y. A. Kuznetov, Elements of Applied Bifurcation TheoryNew York: From November 1991 to November 1998, he was
Springer-Verlag, 1995. a Researcher (Assistant Professor) at the Depart-
[4] R. Genesio and A. Tesi, “A harmonic balance approach for cha ment of Electronics, Politecnico di Torino. Since
prediction: Chua’s circuit,Int. J. Bifurcation Chaosyol. 2, no. 1, pp. November 1998 he has been an Associate Professor
61-79, 1992. of electrical engineering at the Faculty of Engineer-
[5] M. Basso, R. Genesio, and A. Tesi, “A frequency method for predicti ing, Politecnico di Torino. His research activity is
limit cycle bifurcations,” unpublished. mainly in the area of nonlinear circuits and systems
[6] A. I. Khibnik, D. Roose, and L. O. Chua, “On periodic orbits and j and neural networks and partially in the field of
homoclinic bifurcations in Chua’s circuit with a smooth nonlinearity,”electromagnetic compatibility.
J. Circuits, Syst. Computpp. 145-178, 1993. Dr. Gilli received the Best Paper Award from tiernational Journal of
[7] C. Piccardi, “Bifurcations of limit cycles in periodically forced nonlinearCircuit Theory and Applicationsn 1994 and in 1998, he was recipient of
systems: The harmonic balance approatBEE Trans. Circuits Syst. I, the Ravani Award of the Academy of Science of Turin, for his research in
vol. 41, pp. 315-320, Apr. 1994. electrical engineering.




