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Abstract. We introduce a notion of palindromicity of a natural number which is inde-

pendent of the base. We study the existence and density of palindromic and multiple

palindromic numbers, and we raise several related questions.
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Natural numbers occur everywhere in our daily life: a bus ticket, a
car plate, an id number, a timetable, etc.. These numbers are mostly
expressed in the decimal system. That is, for a natural number n ∈ N
we write n = (ak−1 · · · a0)10 for some 0 ≤ ai ≤ 9 and ak−1 6= 0, which
means that

n = ak−1 10k−1 + ak−2 10k−2 + · · ·+ a0.

Of particular attraction are the so-called palindromic numbers. These
are the numbers whose decimal expansion is the same when read
from left to right, and from right to left, that is (ak−1 · · · a0)10 =
(a0 · · · ak−1)10 .

This kind of numbers appears already in the Ganitasârasamgraha, a
sanskrit manuscript dated around 850 AD. Therein the Indian math-
ematician Mahâv̂ırâchârya described the 12345654321 as the quantity
which “beginning with one until it reaches six, then decreases in re-
verse order” [1, p.399]. This is a curious palindromic number, and
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in particular it is the square of another palindrome: 12345654321 =
1111112 . There are many ways of generating palindromic numbers
(see for instance [2]) including an interesting conjecture [3].

Crossing by chance with one such a number is a rare occurrence:
for instance, the probability of picking at random a number 104 ≤
n < 105 and it resulting a palindrome is 1/102 , a fact well-known by
the collectors of palindromic bus tickets. Hence we tend to feel pretty
lucky when one of this rare numbers crosses our path. And the more
figures it has, the luckier we feel, and the luckier the number itself
seems to be.

But, is this feeling really justified? The truth has to be said: this
property is not intrinsic to the number, but also depends on the base
used to express it. So the number n := (894111498)10 is lucky (or
palindromic) in base 10, but is not in base 13 as n = (113314377)13 .
Hence each time we encounter the 894111498 we have to — at least in
principle — thank heaven for this occurrence together with the fact
that the human race has five fingers in each hand.

However we can easily get independent of the base, defining a num-
ber to be intrinsically palindromic if is palindromic in some base. A
minute reflection shows that this definition is meaningless as it stands:
every number is palindromic in any base m > n , as n = (n)m .

Indeed it is much more natural to take into account the number of
figures. So we define a number n ∈ N to be k -palindromic if there is
a base b such that the b -expansion of n is palindromic of length k .

The previous observation shows that every number is 1-palindromic.
Also note that for all n ≥ 2 it holds n = (11)n−1 , that is every n ≥ 2
is 2-palindromic.

What about k -palindromic numbers for k ≥ 3? Our thesis is that
very few numbers are k -palindromic, at least for k ≥ 4: the prob-
ability of a number in the appropriate range being, say, intrinsically
9-palindromic is small, and indeed quite close to the probability of be-
ing 9-palindromic in base 10. This justifies our first impression that
the 894111498 is lucky, regardless the base chosen to represent it.

To write down our results we first have to introduce the following
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counting functions. Take k,N, b ∈ N and set

Φk(N, b) := #{ n ≤ N ; n is k-palindromic in base b }.

Also set
Φk(N) := #{ n ≤ N ; n is k-palindromic }.

Then Φk(N, b)/N and Φk(N)/N stand for the density (or proba-
bility) of numbers below N which are k -palindromic in base b and
intrinsically k -palindromic, respectively.

Theorem 1 Let k ≥ 4 , and write k = 2 i+r with i ∈ N and r = 0, 1 .
Then

Φk(N) ≤ 4 (N + 1)
i+r+1

k .

Proof.– A base b contributes to Φk(N) if and only if Φk(N, b) > 0,
namely if and only if there exists a number

n = ak−1 b
k−1 + · · ·+ a0 ≤ N

palindromic in base b of length k , that is such that 0 ≤ aj ≤ b−1 and
ak−j = aj for j = 0, . . . , i+r , and ak−1 6= 0. Then bk−1 +1 ≤ n ≤ N ,

and hence b contributes to Φk(N) if and only if b ≤ (N − 1)
1

k−1 .

We consider separately the cases b ≤ (N + 1)
1
k and (N + 1)

1
k < b ≤

(N − 1)
1

k−1 . In the first case, the largest k -palindrome in base b is

(b− 1) (bk−1 + · · ·+ 1) = bk − 1 ≤ N,

and so Φk(N, b) = Φk(∞, b) = (b− 1) bi+r−1 .

Now for the second case we let θ(b) ∈ N be the largest integer such
that θ(b) (bk−1 + 1) ≤ N , that is θ(b) = [N/(bk−1 + 1)] ≤ N/bk−1 .
Then (θ(b) + 1) (bk−1 + 1) > N and so every k -palindromic number
in base b begins with ak−1 ≤ θ(b) . Hence

Φk(N, b) ≤ θ(b) bi+r−1 ≤ N/bi.

Set
L := [(N + 1)

1
k ] , M := [(N − 1)

1
k−1 ].

We split the sum Φk(N) = ϕ + χ + ψ with ϕ :=
∑L−1

b=2 Φk(N, b) ,
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ψ :=
∑M

b=L+2 Φk(N, b) , and χ := Φk(N,L) + Φk(N,L+ 1). From the
previous considerations we deduce that

ϕ ≤
L−1∑
b=2

bi+r ≤
∫ L

2
ti+r dt ≤ Li+r+1

i+ r + 1
≤ (N + 1)

i+r+1
k

i+ r + 1
.

On the other hand

ψ ≤
M∑

L+2

N

bi
≤ N

∫ M

L+1

dt

ti
≤ N

(i− 1) (L+ 1)i−1 ≤
(N + 1)

i+r+1
k

i− 1
.

Finally χ ≤ Li+r +N/(L+ 1)i ≤ 2 (N + 1)
i+r
k and thus

Φk(N) ≤
(

2

(N + 1)
1
k

+
1

i+ r + 1
+

1

i− 1

)
(N+1)

i+r+1
k ≤ 4 (N+1)

i+r+1
k .

2

Let k = 2 i + r ≥ 4, and let b ≥ 2 be a base. Set N := bk − 1,
so that N is larger than every number whose representation in base
b has length k . Then

Φk(N, b) = Φk(∞, b) = (b− 1) bi+r−1,

and so the density of numbers below N which are k -palindromic in
base b is (b − 1) bi+r−1/N ∼ 1/bi . On the other hand, the previous
result shows that the density of intrinsic k -palindromes below N is
bounded by 4 (bk)

i+r+1
k /(bk − 1) ≤ 4/bi−1 .

For instance, the probability of a number n < 109 being 9-palindromic
in base 10 is 0.00009, while the probability of it being 9-palindromic
in any base is below 0.004.

From the point of view of probability, the situation is then — in
most cases — quite clear: for k ≤ 2 every number is k -palindromic,
while for k ≥ 4 almost every number is not.

The critical case is k := 3. Consider the following table:
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Φ3(102 + 100)− Φ3(100) = 61

Φ3(103 + 100)− Φ3(103) = 70

Φ3(104 + 100)− Φ3(104) = 83

Φ3(105 + 100)− Φ3(105) = 86

Φ3(106 + 100)− Φ3(106) = 89

Φ3(107 + 100)− Φ3(107) = 94

This suggests that almost every number is 3-palindromic, but not
every sufficiently large number. To tackle this problem it might be
worth considering the following reformulation. We recall that {ξ} :=
ξ − [ξ] ∈ [0, 1) denotes the fractional part of a real number ξ ∈ R .

Lemma 2 Let n, b ∈ N such that the b -expansion of n has length 3.
Then n is 3-palindromic in base b if and only if

{ (n+ 1)
b

b2 + 1
} < b

b2 + 1
.

Proof.– First note that the hypothesis that the b -expansion of n has
length 3 is equivalent to the fact that b2 + 1 ≤ n ≤ b3 − 1. Now n

is 3 -palindromic in base b if and only if there exists 0 < e < b and
0 ≤ f < b such that

n = e (b2 + 1) + f b.

Solving the associated Diophantine linear equation n = x (b2 +1)+y b
with respect to x, y we see that the above representation is equivalent
to the existence of ` ∈ Z satisfying

0 < n− ` b < b , 0 ≤ ` (b2 + 1)− n b < b.

The second pair of inequalities is equivalent to n b/(b2 + 1) ≤ ` <
(n+1) b/(b2+1), and so it implies that { (n+1) b/(b2+1) } < b/(b2+1).
Then this condition is necessary for n to be 3-palindromic in base b .

Let’s check that it is also sufficient: the integer ` := [(n+ 1) b/(b2 +
1)] satisfies the second pair of inequalities. Then it only remains
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to prove that it also satisfies the first pair, which is equivalent to
` < n/b < `+ 1. This follows from the inequalities

(n+ 1)
b

b2 + 1
<
n

b
< n

b

b2 + 1
+ 1,

which are in term a consequence of the hypothesis b2 +1 ≤ n ≤ b3−1.
2

Now we begin to look at palindromicity as an intrinsic property
— not attached to any particular base — nothing stop us from con-
sidering the fact that a given number can be palindromic in several
different basis. For instance

3074 = (44244)5 = (22122)6.

Common sense dictates that multiple palindromicity should be a
much more rare occurrence than simple one, which is also rare as we
have already shown. In fact it even seems unclear whether there are
numbers which are k -palindromic in as many basis as desired. We
formalize this: let

µk(n) := #{ b ; n is k-palindromic in base b }.

So in first instance, we propose the problem of determining whether
µk is unbounded or not. Again the cases k = 1, 2 are easy. In the
first case n = (n)m for any base m > n , and so µ1(n) = ∞ for
every n . In the second case, set n := 22 u+1 for some u ∈ N . Then
n = 2v (2w−1)+2v = (2v, 2v)2w−1 for v < w such that v+w = 2u+1.
Then µ2(n) ≥ u .

The following solves the case k = 3:

Theorem 3 There exists an infinite sequence n1 < n2 < n3 < · · ·
such that

µ3(nj) ≥
1

7
log(nj + 1).
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Proof.– Take N � 0 and assume that µ3(n) < (1/7) log(N + 1) for
all n ≤ N , so that

∑
b

Φ3(N, b) =
N∑

n=1

µ3(n) <
1

7
N log(N + 1). (1)

We will see in a minute that this is contradictory:
Set L := [(N + 1)

1
3 ] and M := [(N − 1)

1
2 ] . For L ≤ b ≤ M we let

ζ(b) ∈ N be the largest integer such that

ζ(b) (b2 + 1) + (b− 1) b ≤ N.

Then 1 ≤ ζ(b) ≤ b − 1, and also every 3-palindromic number n :=
e b2 +f b+e with e ≤ ζ(b) is less or equal than N . Hence Φ3(N, b) ≥
ζ(b) b which implies that

∑
b

Φ3(N, b) ≥
M∑

b=L

Φ3(N, b) ≥
M∑

b=L

ζ(b) b ≥
M∑

b=L

b (
N

b2 + 1
− 2),

as ζ(b) + 2 ≥ N/(b2 + 1). We have that

M∑
b=L

b (
N

b2 + 1
−2) ≥ N

∫ M+1

L

t

t2 + 1
dt−2M 2 ≥ N

2

(
log((M + 1)2 + 1)− log(L2 + 1)

)
−2N.

We have that (M + 1)2 + 1 ≥ N and L2 + 1 ≤ 2N 2/3 and thus
we conclude

∑
p Φ3(N, p) >

N
6 logN − 2N − log 2 , which contradicts

Inequality 1 for N large enough.

It follows that for each (sufficiently large) N ∈ N there exists n ≤ N
such that

µ3(n) ≥ 1

7
log(N + 1) ≥ 1

7
log(n+ 1).

The fact that µ3(n) <∞ implies that the set of such n ’s is infinite.
2

Here is some sample data for the cases k := 4, 5:

µ4(624) = µ4(910) = 2 , µ4(19040) = 3 , µ5(2293) = 2.
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For k, `,N ∈ N , we let Φk,`(N) be the number of n ≤ N which are
k -palindromes in ` different basis, that is

Φk,`(N) := #{ n ≤ N ; µk(n) ≥ ` }.

In particular Φk,1 = Φk . The following table gives some more infor-
mative data:

k ` N Φk,`(N)

4 2 104 13

4 3 105 2

4 4 105 0

5 2 104 10

5 3 105 0

6 2 105 0

This suggest that for k ≥ 4 and k + ` ≥ 8 there are no k -
palindromic numbers with multiplicity ` at all.

Finally we can also consider

µ≥k(n) := #{ b ; n is j-palindromic in base b for some j ≥ k } =
∑
j≥k

µj(n),

that is the number of different basis in which n is a palindrome of
length at least k . It is easy to see that this function is unbounded:
we have that

nL := 22L − 1 = (

2L−`︷ ︸︸ ︷
22` − 1, · · · , 22` − 1)22`

and so nL is 2L−` -palindromic in base 22`

for ` = 0, . . . , L . Hence
µ≥k(nL) ≥ L− log2 k .

A further problem is to determine the density of k -palindromic
numbers in ` different basis. From this point of view, Theorem 1 is
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an important advance towards the solution of the cases k ≥ 4 and
` = 1.

The cases when ` ≥ 2 seem to be much more elusive, but also
interesting. A solution of them would allow you, for instance, to know
how lucky you are when the number of the taxi-cab you are riding is
the

19040 = (8888)13 = (5995)15 = (2, 14, 14, 2)19 .
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