POLITECNICO DI TORINO
Repository ISTITUZIONALE

Supersymmetry reduction of N-extended supergravities in four dimensions

Original

Supersymmetry reduction of N-extended supergravities in four dimensions / Andrianopoli, Laura Maria; D'Auria,
Riccardo; Ferrara, S.. - In: JOURNAL OF HIGH ENERGY PHYSICS. - ISSN 1029-8479. - 2002:03(2002).
[10.1088/1126-6708/2002/03/025]

Availability:
This version is available at: 11583/1399667 since: 2024-07-04T07:48:49Z

Publisher:
IOP publishing

Published
DOI:10.1088/1126-6708/2002/03/025

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright

(Article begins on next page)

27 July 2024



IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Supersymmetry reduction of N-extended supergravities in four dimensions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
JHEP03(2002)025
(http://iopscience.iop.org/1126-6708/2002/03/025)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 130.192.181.148
The article was downloaded on 21/11/2012 at 14:42

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1126-6708/2002/03
http://iopscience.iop.org/1126-6708
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

PUBLISHED BY INSTITUTE OF PHYSICS PUBLISHING FOR SISSA /ISAS

RECEIVED: November 22, 2001
REVISED: March 8, 2002
ACCEPTED: March 11, 2002

Supersymmetry reduction of N-extended
supergravities in four dimensions

Laura Andrianopoli,” Riccardo D’Auria® and Sergio Ferrara®c?

@ Dipartimento di Fisica, Politecnico di Torino
Corso Duca degli Abruzzi 24, 1-10129 Torino, Italy, and
Istituto Nazionale di Fisica Nucleare (INFN)
Sezione di Torino, Italy
YCERN Theoretical Division
CH 1211 Geneva 23, Switzerland
¢Istituto Nazionale di Fisica Nucleare (INFN)
Laboratori Nazionali di Frascati, Italy
4 Department of Physics & Astronomy, University of California
Los Angeles, U.S.A.
E-mail: pndrianopol@polito.it], ficcardo.d’auria@cern.chl,
ferrara@physics.ucla.edu

ABSTRACT: We consider the possible consistent truncation of N-extended supergravities
to lower N’ theories. The truncation, unlike the case of N-extended rigid theories, is non
trivial and only in some cases it is sufficient just to delete the extra N — N’ gravitino
multiplets. We explore different cases (starting with N = 8 down to N’ > 2) where the
reduction implies restrictions on the matter sector. We perform a detailed analysis of the
interesting case N =2 — N = 1. This analysis finds applications in different contexts of
superstring and M-theory dynamics.
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1. Introduction

It is well known that for globally supersymmetric theories, with particle content of spin
0,1/2,1 any theory with N supersymmetries can be regarded as a particular case of a
theory with a number N’ < N of supersymmetries [[[]. To prove this it is sufficient to

decompose the N supersymmetry-extended multiplets into N'-multiplets.



Of course N-extended supersymmetry is more restrictive than N’ < N supersymmetry
implying that the former will only allow some restricted couplings of the latter. As we are
going to show in the present paper the same argument does not apply to supergravity the-
ories. Indeed, let us consider a standard N-extended supergravity theory with N gravitini
and a given number of matter multiplets with spin 0,1/2,1: then the N’-extended super-
gravity obtained by reduction from the mother theory will no longer be standard because
a certain number N — N’ of spin 3/2 multiplets appear in the decomposition. Therefore to
obtain a standard N’-extended supergravity one must truncate out at least the N — N’ spin
3/2 multiplets and all the non-linear couplings they generate in the supergravity action.

The most known example is N = 2 supergravity in presence of hypermatter [2]-[f].
The non-linear couplings of the hypermultiplets generate what is called a “quaternionic
geometry” [B]. If we regard the N = 2 hypermultiplets as a pair of N = 1 Wess-Zumino
multiplets, what we obtain is incompatible with N = 1 supergravity where the non-linear
couplings must describe a Kihler-Hodge manifold geometry [f]. Therefore, in order to
consistently reduce a N = 2 supergravity to a N = 1 theory, the former theory must
have the property that a certain submanifold of the original quaternionic manifold be a
Kahler-Hodge manifold.

Note that in rigid supersymmetry hypermultiplet couplings are described by Hy-
perKéahler geometry which is instead compatible with N = 1 supersymmetry.

As an illustrative example let us consider maximal N = 8 supergravity in D = 4 [ff]
truncated to lower N’ supergravities. In this situation the consistent truncation consists
in deleting only spin 3/2 multiplets for sufficiently high N’ (N’ = 6,5,4), but for N’ < 4,
where the matter sectors begin to appear, the consistent truncation also requires to delete
some matter multiplets. We will illustrate how this process of reduction can be understood
in group-theoretical and geometrical terms, by requiring that certain geometrical condi-
tions dictated by supergravity define some submanifold of the original scalar manifold
E7(7y/SU(8) of N = 8 supergravity.

Returning to the N =2 — N = 1 case, we can show that this generally demands a
reduction of both special Kihler manifold (M“¥ (ny)) [, B, Bl ] and quaternionic manifold
(M®(ng)), where ny and ng are the number of vector multiplets and hypermultiplets
respectively. By equipping these manifolds with complex coordinates 27 € MK (7 =
1,...,ny) and real coordinates ¢* € M® (u=1,...,4ny) the Riemann tensors are given
respectively by:

_ Yal MN
Rrzxz = 9129x7 + 92977 — C7enCremy

A i A A
R UUNE = — 05 (02) 10 + Ry (1.1)

where the SU(2) triplet and singlet parts are the SU(2) and Sp(2ny) curvatures respec-
tively.! Here A,B = 1,2;2 = 1,2, 3 are indices of the fundamental and adjoint represen-
tation of SU(2) and «, 3,... =1,...,2ny are indices in the fundamental representation of
Sp(QTLH) .

"Here by Sp(2nsr) we denote the compact form of the symplectic group sometimes called USp(2nz) (i.e.
Sp(2) = SU(2)).




The Kahler metric g, = 070:K, with K = —log[i(YAFA — FAXM)], is given in terms
of (XA, F) which are the holomorphic symplectic sections of MSK (they are related to the
covariantly holomrphic symplectic sections (LA, Ma) by (LA, Mp) = ¢/2(XA, Fy)). The
tensor Czxaq is threefold symmetric and covarianty holomorphic, i.e. Czxam = Wz
(with Wik holomorphic).

On M@, 44 denotes the vielbein 1-form. Furthermore, we have:

1
Q" = dw” + S WY Nw' = —iCap(0a) AU NUPE
R = dA% + A% A A7,

= —eagUA AU + U NUP eqpC¥Qp5.5, (1.2)

where €2,3,5 is completely symmetric in its four indices.

The N =2 — N = 1 reduction imposes a number of conditions on the above defined
structures, which have to be satisfied in order to have a consistent reduction. In particular,
we find that the two scalar manifolds MS% and M® have to be reduced to the submanifolds
Mpg(ng) € M3K and MEH (n;,) ¢ M@, where ng < ny — ny, n, < ny are the complex
dimensions of the two Kahler-Hodge manifolds Mg and MXH and nj, is the number of
N =1 vector multiplets.

We first discuss the two extreme cases nj, = ny (n¢ = 0) and n}, =0 ( n¢ = ny).
In the first case no N = 1 chiral multiplet coming from N = 2 vector multiplet is retained
and all N = 1 vector multiplets may remain. In the second case, all the N = 1 vector
multiplets are truncated out, and no restrictions appear on the special-Kéhler manifold:
Mp = MK,

In the general case, let us decompose the coordinates on MSK:

2T — (2%, 2%) (1.3)

and those on M@:
¢" — (0, @°,n",7"), (1.4)
where 2* (i = 1,...,n¢) and w® (s = 1,...,ny) are the holomorphic coordinates in Mg
and MEH respectively, and 2 (a = 1,... .y, =ny—nc)andn' (t=1,...,ng —ny) are

the holomorphic coordinates in their orthogonal complements. Splitting furthermore the
N = 2 vector indices A — (A, X), where A =1,...,n}, and X =0,1,...,n¢, we find the
following constraints to be satisfied on Mp x MEH from supersymmetry reduction. On
Mg we get, for consistent reduction of the special geometry sector in the ungauged case:

Cijoz’MR = 07 CO&B’Y’MR =0
LA’MR = 07 fiA’MR = ViLA‘MR =0 (1'5)
fé(’MR = VOéLX‘MR =0.

The parent (non holomorphic) vector kinetic matrix Max satisfies on Mp:

Nay|mp =0. (1.6)



Furthermore we obtain that A/ Asmp = % fax; is holomorphic, while N'xy has no restric-
tions and gives the period matrix on Mg, which is indeed a Special-Ké&hler manifold.

For the hypermultiplet sector, the reduction is more subtle because we have to reduce
the holonomy from SU(2) x Sp(2n ) to U(1) x SU(ny,) which corresponds to decompose the
SU(2) indices A, B,...,— (1,2) and the Sp(2ny) indices o, 3... — (I,I). The following
constraints are found on the geometrical structure of the manifold M&H? c M®

QIJKL|MKH =0
u21|MKH = (UH)*|MKH =0. (1.7)

In particular, the second equation implies that the complex scalars of the chiral multi-
plets coming from the reduced quaternionic manifold are at most half of the quaternionic
dimension of the original N = 2 manifold [[L{].

The present investigation concerning the N = 2 — N = 1 reduction is further analyzed
in the most general case when isometries of the scalar manifolds are gauged.

In particular we find that the number of reduced N = 1 vector multiplets and of
N =1 chiral multiplets obtained by truncation of the N = 2 vector multiplets (which are
in the adjoint representation of some gauge group G(Q)) depend on the gauge group GV
under which the reduced hypermultiplets are charged. Indeed, if Adj(G?) — Adj(GW) +
R(GW), then the chiral multiplets coming from N = 2 vector multiplets are in R(G'1).

The reduction of the gauge group further implies constraints on the special geometry
and quaternionic Killing vectors and prepotentials [[L1], ff]. For the kihlerian Killing vectors
k/{ and prepotential PR we find:

ke =0, kY=0
Ky = ig70,P) # 0
PY =0. (1.8)

Furthermore, for the quaternionic Killing vectors k' and SU(2)-valued prepotentials Py,
we find:

kK =0, ki=0,

ki = ig™0sPX # 0,

Py =0,

Pi=0, (i=12). (1.9)

The N = 1 D-term and superpotential are respectively given by:?

DA = —2(Imf) ¥ (P(2,Z) + Pi(w,w))

Kr+Kg

L= Wiz, w) = %LX (Pk —iP%), (1.10)

where Kg, Ky are the Kihler potentials on Mg and M&H respectively.

2Particular cases of these formulae have been obtained in [@7[



This reduction may find applications and is in fact related to many interesting aspects
of string theory or M theory compactified on a Calabi-Yau threefold. Indeed M-theory on a
Calabi-Yau threefold originates a N = 2 theory in five dimensions [R3]. Trivial reduction on
St would give a N = 2 theory in D = 4. However, if we reduce on the orbifold S!/Z, [R4]-
[Bg], then we obtain a N = 1 theory with a particular truncation of the D = 5, N = 2
supergravity states. Other applications are related to brane-dynamics where the theory on
the brane has lower supersymmetry than the theory on the bulk [29, B0J.

A different mechanism is obtained by considering type IIB theory on a Calaby-Yau
threefold in presence of H-fluxes [[2]-[Rd where also N = 1 (or N = 0) supersymmetric
vacua can be studied.

A related issue is the partial supersymmetry breaking of N = 2 down to N = 1
through a superHiggs mechanism [BI], 2. If one integrates out the massive gravitino, then
the theory should become a N = 1 theory. In this case to “integrate out” is in principle
different from truncating unless very special situations occur. However in the minimal
model studied in reference [B], the resulting N = 1 lagrangian is a particular case of the
general case studied here.

The paper is organized as follows: in section P we study the decomposition of the
N = 8 supergravity multiplet into N/ < 8 supermultiplets and infer the reduced theories
from group-theoretical arguments.

In section | we extend the analysis to three, five and six dimensional maximal super-
gravities reduced to eight supercharges.

In section ] we give the interpretation of the reduction procedure in a geometrical
setting which will be useful to apply our results to the specific problem of the N =2 —
N =1 reduction.

In section | we discuss the constraints coming from supersymmetry when the reduction
procedure is applied to ungauged theories.

In section ], which is the heart of the paper, we give the analysis of the N = 2 —
N = 1 reduction in detail, also in presence of gauging, both in the vector multiplet and
hypermultiplet sectors. At the beginning of the section we discuss the constraints coming
from the gravitino truncation, while in section and we study the reduction of the
N = 2 vector multiplet sector. Subsection f.3| is devoted to the truncation of the hyper-
multiplets sector, while subsection .4 discusses further consequences of the gauging. In
subsection .5 the computation of the reduction of the scalar potential is given, and finally
in subsection [.6 we give examples of supergravity models which realize this consistent
truncation.

The appendices include some technical details related to the reduction. In particular,
in appendices [f] and [f we show the consistency of the N =8 — N = N’ truncation in the
superspace Bianchi identities formalism and we apply it to the N =2 — N = 1 reduction
of gauged supergravity. In appendix [J we prove a formula valid for the N = 2 vector
multiplets which is useful for the truncation. Appendix [ refers to the reduction of the
special-Kahler manifolds with special coordinates; appendix ] contains the reduction of an
important relation valid on quaternionic geometry in presence of isometries and appendix F]
shows the consistency of the reduction of the N = 2 scalar potential to N = 1 and exploits



some magic properties of the supersymmetry Ward identities. Finally, appendix [G] contains
the explicit form of the N = 2 and N = 1 lagrangians which are left invariant under the
supersymmetry transformation laws given in the text.

2. N =8 — N’ reduction without gauging

Reduction of N = 8 supergravity to 2 < N’ < 6 offers interesting examples of consistent
truncations of standard supergravity [B3, B4].

We restrict our analysis to theories whose o-models are given by symmetric spaces
G/H. This includes all the theories with N’ > 3 and a subset of the N = 2 theories. The
analysis turns out to be particularly simple in all these cases.

Let us first consider N’ = 5,6 where the reduction only involves the graviton multiplet
and N — N’ spin 3/2 multiplets.

In the N = 6 case the N = 8 R-symmetry group SU(8) decomposes as:

SU(8) — SU(6) x U(1) x SU(2), (2.1)

where SU(2) is the group commuting with the N’ = 6 R-symmetry U(6). Correspondingly
the N = 8 graviton multiplet decomposes into N’ = 6 spin 2 and 3/2 multiplets, as follows:

[(2), 8(%) ,28(1),56 (%) , 70(0)} .

. [(z),es(%) (15 4 1)(1), (20 + 6) (%) (15 + T5)(0)] o

©2 Kg),au),w(%),m(m} .

The hypersurface corresponding to freeze 40 scalars of the spin 3/2 multiplets is precisely
the N/ = 6 o-model described by the symmetric space SO*(12)/ U(6). Therefore by just
deleting the two spin 3/2 multiplets one obtains standard N = 6 supergravity.

Let us now consider N’ = 5. In this case the decomposition of the N = 8 graviton
multiplet into N’ = 5 multiplets, corresponding to the R-symmetry decomposition

SU(8) — SU(5) x U(1) x SU(3) (2.2)

[(2),8(%),28(1),56(%),70(0)] — [(2),5(%),10(1),(10+ 1)(%),(5+3)(0)] b

3 /1 —
@3 [<§> ,(5+1)(1),(10 +5) <§> , (10 + 10)(0)} .
(2.3)
If we delete the three spin 3/2 multiplets we obtain standard N = 5 supergravity, or,

geometrically, freezing the 60 scalars inside the spin 3/2 multiplets corresponds to single

out the manifold SU(5,1)/ U(5) C Ex7)/SU(8).



When N’ < 4 a new phenomenon appears since in this case also matter multiplets start
to appear in the decomposition of N = 8 supergravity into N’-extended supergravities.
Therefore in this case deleting the spin 3/2 multiplets is only a necessary, but not sufficient
condition to obtain a consistent N’-extended supergravity theory.

Let us first start with N/ = 4 (this actually corresponds to compactify a type II theory
in ten dimensions on Ty ® Ty /Z3). The decomposition of the N = 8 graviton multiplet into
N’ = 4 multiplets, corresponding to

SU (8) — SU(4) x SU(4) x U (1) (2.4)

is:

(1),4(%),6(0)] . (2.5)

If we now delete the 4 spin 3/2 multiplets this is equivalent to freeze 32 scalars. When this
occurs the Fy(7)/SU(8) manifold reduces to the submanifold (SU(1,1)/U(1)) x SO(6,6)/
SU(4) x SU(4), corresponding to the product space of the N = 4 supergravity o-model and
the o-model of 6 vector multiplets. In this case a standard N’ = 4 supergravity coupled to
6 vector multiplets corresponds to a consistent truncation since E7¢7y O SU(1,1) x SO(6, 6).

Let us now consider N/ = 3. In this case we have the following decomposition of the
N = 8 R-symmetry group:

SU (8) — SU (3) x U (1) x SU (5) (2.6)

SU (3) x U (1) being the R-symmetry of the N = 3 theory. Note that this case is dual to
the N’ =5 case with the roles of SU(N’) and SU(N — N’) exchanged. The decomposition
of the N = 8 multiplet is now:

(2),8(3/2),28(1), 56(%) , 70(0)} . [(2),3(3/2), 301), <1>] ®

o 5 [(3/2),3(1),3(%),2(0)} @

& 10 [(1), (3+1) <%) B3+ 3)(0)] L@

If we now delete the spin 3/2 multiplet we freeze the corresponding 10 scalars. In this
case, however, it is obvious that we cannot define a submanifold of E7)/SU(8): indeed
the standard N = 3 supergravity coupled to n vector multiplets [@] has a non linear o-
model of the form SU(3,n)/SU(3) x U(1) x SU(n) and , for n = 10, SU(3,10) is not a
subgroup of E7(7). Therefore we must ask the question whether there is some n for which
SU(3,n) C Eq(7). The answer is n = 4 since

Err) D SU(4,4) 5 SU(3,4) x U(1). (2.8)



Therefore the maximal N’ = 3 supergravity contained inside the N = 8 theory corre-
sponds to the coupling with 4 matter multiplets and the corresponding o-model lives in
the submanifold

U(3,4)/U(3) x U(4) C Eq()/SU(B). (2.9)

As far as (continuous) duality is concerned, we see that the 3 graviphotons and 4 matter

vectors are in the fundamental of SU(3,4) as required by supersymmetry since
56 — 21 +21"+7+7. (2.10)

This means that the 1546 vectors coming from the five gravitino multiplets and six residual
matter multiplets should combine in the antisymmetric of SU(3,4).
We note that if we instead use the chain

N=8—=N =4—-N =3 (2.11)
we would only obtain a non-maximal theory with three matter multiplets since in that case
Eq¢7y — SU(1,1) x SO(6,6) — SU(3,3) x U(1). (2.12)

The latter is a particular case of the more general fact that N = 4 with 2n vector multiplets
can be consistently truncated to N = 3 with n vector multiplets® using the chain?

SO(6,2n) D SU(3,n) x U(1) (2.13)
and

SO(6,2n) SU(3,n)
SO(6) x SO(2n) ~ SU(3) x SU(n) x U(1)

(2.14)

The last case we would like to consider is N’ = 2 where there are two kinds of matter
multiplets, namely the vector multiplets and the hypermultiplets. In the standard N = 2
theory the corresponding o-model generally is not a coset, but we limit ourselves to examine
this case, namely M = G/H. The consistent truncation will now receive severe constraints
on the matter content since the submanifold of the N = 8 o-model must factorize as:

M (ny) x MO (ny) C Eqzy/SU(8), (2.15)

where we have denoted with M (ny,) and M%(ny) the special-Kéhler and quaternionic
manifolds of real dimensions 2ny and 4np respectively.

The decomposition of the NV = 8 graviton multiplet gives now:

(2),8(3/2), 28(1), 56<%) , 70(0)] . [(2),2(3/2),(1)] @ 6 [(3/2),2(1), (%)]

®15 [(1),2(%),2(0)] & 20 [(%),2(0)] . (2.16)

3Note that in string theory this would imply n = 11 in agreement with @

4N = 3 models based on brane flux supersymmetry breaking have recently been constructed [@}



We immediately see that deleting the spin 3/2 multiplets all the scalars survive. So the
question is now, how many scalars we must delete so that the scalar submanifold enjoys
the above property of reducing to MK (ny) x M@ (ng).

Two immediate solutions are obtained [B§]. For ng = 0, ny = 15 we find:

MSE (ny = 15) = SO(12)/U(6) C Erry/ SU(S) (2.17)

which is indeed a special-Kéhler manifold (coinciding with the o-model of N = 6 super-
gravity). The other solution is ny = 0, ny = 10 for which

MQ(TLH = 10) = EG(Q)/SU(G) X SU(Q) C E7(7)/SU(8) (2.18)

which is indeed a quaternionic space. It corresponds to the o-model obtained by compact-
ification of type IIB on Tg/Z3 where only the untwisted states were retained.
By c-map of (P.1§) we obtain another solution with ny = 9 and ng = 1 corresponding
to type IIA on Tg/Z3 BY:
SU(3,3) " SU(2,1)
SU(3) x SU(3) x U(1) =~ SU(2) x U(1)

If we look for other maximal subgroups G1 x G C Er(7) we find [i0] (see table fl):

SO(6,2n) C SU(3,n) x U(1)
Gi x Gy = Sp(6, R) x Gay;  SU(L, 1) x Fygy;  SU(1,1) x SO(6,6);  SU(4,4) . (2.20)
The first two correspond to (ny,ng) = (6,2) and to its c-map image (1,7), namely:
Sp(6,R) Gz
U(3) SO(4)
SU(I, 1) F4(4)
U(1) Usp(6) x Usp(2)

From the last two cases we can obtain a N = 2 truncation of N =4 and N = 3 supergrav-

ities with six and four hypermultiplets respectively:

SO(6, 6) SO(6,4)

S0(6) x SO(6) " SO(6) x SO() (223)
SU(4,3) R SU(4,2) (2.24)
SU(4) x SU(3) x U(1) SU(4) x SU(2) x U(1) )
with (ny,ng) = (1,6) and (ny,ng) = (0,4) respectively.
The first, together with its c-map (ny,ng) = (5,2)
SU(1, 1) SO(2,4) SO(4,2) (2.35)

U1) ~ SO2) x SO@) ~ SO(4) x SO(2)

corresponds to type IIB (type IIA) on Ts/Z4.> The last is a truncation of the (ny,ny) =
(0,10) case and its c-map is

SU(3,1) SU(2,1)
SUB) x U() ~ SU@) x U(D) (2.26)
S0(4,2) SU(2,2)

5Note that

SO(@)xS0(2) ~ SU[@)xSU2)xU(1) "



with (ny,ng) = (3,1) (This is a truncation of the (ny,ng) = (9,1) case.).
By the decomposition

SO(6,6) — SO(4,6 — p) x SO(2, p) (2.27)

we can obtain the additional cases:

(ny =2,ng =5)p=1
(ny =4,ng =3)p =3
(ny =3,ng =4)p =2
(ny =6,ng=1p=>5
(ny =T,ng =0)p=6. (2.28)

Their c-map do not give new models. We note that the case p = 6 is a truncation of the
(nv,nmg) = (15,0) case and that the case p = 5 is not a subcase of the (ny,ny) = (9,1)

USp(Q’Q)( ) which is

case because the corresponding quaternionic manifold is in this case TUsp(@) % Usp (@)

not the same of the (ny,ny) = (9,1) case.

In conclusion we have found eleven “maximal” cases: the cases (ny,ng) = (15,0), (6, 1)
which have no c-map counterpart, the case (ny,ng) = (3,4) which is self conjugate under
c-map and four pairs conjugate under ¢- map, namely:

(TL\/—GTLH—Q TLv—lTLH—7

) < )
(ny =5,ng =2) «— =6)
(ny =0,ny = 10) « =1)
)

(TLV:4,TLH:3) — nV—QnH—5 . (2.29)

Many of these cases can be retrieved from type II string theories compactified on Z
orbifolds which preserve one left and one right supersymmetry [BY, f].

3. D=3, D =25 and D = 6 reduction of maximal supergravity to theories
with eight supercharges

The same analysis can be carried out in N = 2 theories (eight supercharges) in D = 3,
D =5 (for the cases where the scalars span a symmetric space) and in D = 6.

In D = 5, N = 8 supergravity has a non-linear o-model Egg) /USp(8 ) BY. We
consider only the N =8 — N = 2 case.

The 42 scalars, decomposed with respect to the N = 2 theory, consist of 14 scalars

belonging to vector multiplets and 4 x 7 = 28 scalars belonging to quaternionic multiplets,
SU*(6)

giving (ny = 14,ng = 0) and (ny = 0,nyg = 7) models which correspond to TS
US%?%) and USp(G)ﬁ%Sp(?) - US%?%) [BY]. For each model in D = 4 there is a parent in D =5

(the above correspond to the ny - ng = 0 cases).
If we now look to spaces with isometry groups G1 X G C Egg), where G, G2 corre-
spond to real special geometry and quaternionic geometry respectively, we find (see table [i)):

G1 X G2 = SL(3,C) X SU(Q, 1) (31)
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which give rise to

SL(3,C) SU(2,1) C E¢(6)

SUG) “SU@ xU@ C Uspyy (v =& ma=1) (32)
and [[I]
G1 X G2 = SL(3,R) X G2(2) (3.3)
giving . 5
SLBR)  Coy - oo (g gy (3.4)

SO(3) " SO() = USp(®)
If we go through the N = 4 theory we also get the series of six cases

SO(1,p) SO(4,5 — p)
SO(p) ~SO(4) % SO(5 — p)

SO(1,1) x (ny =p+1,ng=5-p), 0<p<5.(3.5)
So we see that there are ten D = 5 cases with similar types of quaternionic manifold as in
D =4 (with the only exception of the ng = 10 case.).

In D =6 the N =8 ((2,2) theory) o-model is SO(5,5)/SO(5) x SO(5). If we decom-
pose the (2,2) theory with respect to the (1,0) theory we get 5 tensor multiplets and 5
hypermultiplets corresponding to

SO(1,5) S0(5,5) S0(4,5) SO(5,5)
SO(5) ~ S0(5) xSO()’ S0(d) x S0(5) = SO(5) x S0(5)

(3.6)

These are the np - nyg = 0 cases.

Again we can now look at subgroups G; x Go C SO(5,5) where G; = SO(1,n7) and
G5 is the isometry group of a quaternionic manifold.

We find a series analogous to the D = 5 case (B.H), with

Gl = SO(].,p) ) G2 = 80(47 5 _p) (TLT =p,ny = 59— p) (37)

corresponding to the manifolds

SO(1,p) SO(4,5 — p)
SO(p) ~ SO(4) x SO(5 — p)

(nr=p,mg=5-p), 0<p<5 (3.8)

which contains also the above mentioned ny - ny = 0 cases (B.6).

The reduction of N = 8 — N = 2 supergravity studied in D = 6,5 and 4 finds a
further simplification if we look for theories with eight supercharges in D = 3, where the
R-symmetry is SU(2); x SU(2)s.

In fact, if we compactify type II on a Calabi-Yau threefold times Si, down to D = 3,
then type IIA and IIB become the same theory with 1 < 2. The N = 4 o-model is a
product of two quaternionic geometries, where ng, = hi1 + 1, ng, = ho1 + 1, the extra
quaternion coming from the graviton and graviphoton degrees of freedom.

More generically, suppose we have a theory which at D = 4 has a o-model MK (ny) x
MO (ng), then its dimensional reduction to D = 3 will give rise to a N = 4 SU(2); x SU(2),
theory with o-model M® (ng, = ny + 1) x M@ (ng, = ngy), where M@ is the dual
quaternionic manifold of MK (ny).

— 11 —



Using the previous recipe, if we look to the D = 4, N = 2 theories of section Pf obtained

from N = 8, we can predict N = 4 theories at D = 3 which are embedded in the S%((%)

o-model of D = 3, N = 16 maximal supergravity.

From (ny = 15,ng = 0) and (ny = 0,ny = 10) we respectively obtain:

(na, = 16,11, =0). 50(112)7 (;5)SU(2) sgi%
(s = 1,nm, = 10), SUS(;I)% 3(1) x SU(6§3§<(2§U(2) < s;E)S((f)ﬁ)
(i, = 2nm, = 7). SGOQEZ)) x USp(G;UiM%ISp(Q) s?((fzs) ' (39)
Also, by using the embedding [[EJ] FEg(g) D SO(8,8) we have the further possibility:
Ey(s) SO(8,8) SO(4,k) x SO(4,8 — k) (3.10)

SO(16) ~ SO@) x SO®) ~ SO(4) x SO(k) x SO(4) x SO(8 — k)

with ng, = k, ng, = 8 —k (k = 0 is a subcase of the (ng, = 16,ny, = 0) case, since
SO(4,8) x SU(2) C E7(_5).). They are all dimensional reductions of the cases previously
studied at D = 4.

For the decomposition of the isometry group of maximal D = 3 supergravity to maxi-
mal subgroups, see table [i]

4. Geometrical interpretation

It is interesting to analyze the results of the previous section in geometrical terms, that
is to explore the consistency of the reduction of the N = 8 o-model E77/SU(8) to the
appropriate submanifolds for different values of N’. A consistent truncation of a manifold
of dimension n to a submanifold of dimension n — k can be obtained by considering a set
of k 1-forms ¢°, i = 1,...,k, which vanish on the submanifold and such that they are in
involution, that is:

dg' = 0% A ¢l (4.1)

where 0§ are suitable 1-forms on the manifold.
To apply this result, known as Frobenius theorem, to our problem we consider the
coset representative U of Eq(7)/SU(8) in the 56 fundamental representation of F7) and

the corresponding left invariant 1-form:%

r=U"'dU = (2 g) (4.2)

satisfying the Cartan-Maurer equation

Al +T AT =0. (4.3)

%We use notations as in ref. @]
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Some Maximal subgroups of Eys:
SO(16)
SO(8,8)
E7(,5) X SU(Q)
E6(2) X SU(Q, 1)
Ga(z) X Fa)

Some Maximal subgroups of Ey:
SU(8)
SU(4,4)
Eg(2) x SO(2)
SO*(12) x SU(2)
SO(6,6) x SU(1,1)
SU(3,3) x SU(2,1)
SU(1,1) x Fyy
Sp(6,R) x Gy
Some Maximal subgroups of Eg):
USp(8)
Fiya
SU*(6) x SU(2)
SO(5,5) x SO(1,1)
SL(?),]R) X Gg(g)
SL(3,C) x SU(2,1)

Table 1: Decomposition of “duality” groups of maximal D = 3,4, 5 supergravities with respect to
maximal subgroups relevant for supergravity reduction [, @]

Here the 28 x 28 subblocks 2 and P embed the SU(8) connection and the vielbein of
E7(7y/SU(8). Introducing indices A, B = 1,...,8 we have explicitly:

A B
Q = 20! [céD% : P = Papcp, (4.4)

where w?, is the SU(8) connection and Papcp is the vielbein of Er(7/SU(8), antisym-

metric in its four indices and satisfying the reality condition:

—PQRS
Papcp = ﬁEABCDPQRSP QRS (4.5)
From the Cartan-Maurer equations one easily finds the two structure equations:
1_
RAB = deB +WAC/\WCB :—gpALMN/\PBLMN (46)
vP PP = gpAPOP g A PPt — . (4.7)

Equation ([.6) gives the SU(8) Lie algebra valued curvature R“ ; in terms of the vielbein
of the symmetric coset Er(7)/SU(8) and equation (.7) expresses the fact that the same
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manifold is torsionless. Note that, since the coset is symmetric, the Lie algebra connection
wAB is simply related via a structure constant to the riemannian spin connection.

Let us now consider how the vielbein P4pcp decomposes under the holonomy reduction
SU(8) — SU(N')xU(1)xSU(8—N'). We call a,b,¢,... =1,..., N’ the indices of SU(N’)
and 4,5, k... =1,...,8— N’ the indices of SU(8 — N’). Then the holonomy reduction gives
the following fragments:

Papcp — Paved ® Pabei © Pavij © Puijrk © Pijra (4.8)

where actually some of the fragments can be zero if the number of antisymmetric indices
of SU(N’) or SU(8 — N’) exceeds N’ or 8 — N’, respectively. Now we observe that P,peq
satisfies eq. ([.7) which gives for this particular component:

~abcd

JdP . 4w[aéﬁbcd}€ _ 4w[aiﬁbcd]i

=0. (4.9)

We see that, in order that eq. ([.9) describe a torsionless submanifold with SU(N’) x U(1)
holonomy, we must set w®, = 0 and since

. 1_
R = dwf; + w AW + w A w! = —gPaLMN ANPLuN (4.10)

we must also impose that, on the submanifold whose vielbeins are P%°?_the curvature with

—aLMN

—%P AP;pyn = 0. Using the decomposition ([.§),
eq. (f.1(J) can be rewritten as follows

mixed indices is zero, namely R% =

1
dwf = —wWi AWG —w% A W’ — gpade A Ppeqg —
1—abei 1—abjk 1 —ajki
_gpa TN ]Dibcj - gPa TENA P@'bjk — gpaj N ]Dijkl . (411)

On the basis of the Frobenius theorem, each term on the r.h.s. of (ff.11]) must be in involution
with w?; this is satisfied for the terms bilinear in the w-connections, but not for those
involving the vielbein. In order to obtain involution, we must also set to zero some of the
vielbein 1-forms and verify that also these are actually in involution. Let us see how we
can achieve this result in the various cases.

When N’ = 6, P,ji; = Py;r = 0 because we have 4-fold or threefold antisymmetrization
of the SU(2) indices. Therefore it is sufficient to set

Py =P =0 (4.12)

on the submanifold in order to obtain involution, since in this case eq. (f.11]) reduces to

dws = —w Aw§ —w% A wji — R%=0. (4.13)

We still have to verify that also the vanishing 1-forms Pjy.4 are in involution with themselves

and with w®. Indeed, from eq. ([.7), we find:

—abci —abcd ; —Sabcj

dP™ = 3wl PP 4 3PN P 4 P (4.14)
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and we see that every term in the r.h.s. contains either P op w% so that we get involution.

We note that condition ({1.12) is equivalent to impose that the SU(6) x U(1) x SU(2)
representation (20,0,2) must be absent in the reduction of the scalar vielbein, and this
implies that all the 40 scalars of the N/ = 6 spin 3/2 multiplets must be frozen according
to our analysis in the previous section. In conclusion, setting P®% = (0 and w =0, we
define a consistent truncation of the N = 8 theory down to a N’ = 6 theory since the
above conditions define a submanifold of holonomy SU(6) x U(1) x SU(2) whose curvature

is easily seen to be given by
_l—almn

3P A Proimn - (4.15)

The corresponding manifold has dimension 30 and of course coincides with SO*(12)/U(6).

Rab -

The cases N’ = 5 and N’ = 4 can be treated in exactly the same way. For N/ = 5,
eq. () does not contain P;ji; and in order to get involution we have to set

Pabci = Labij = 0 (416)

which corresponds to delete, in the holonomy reduction (R.2), the representations (10,1, 3)
and (10, —1,3) for the vielbein (because of the reality condition(fLH)). According to the
discussion of the previous section, this is equivalent to freeze the 60 scalars of the spin
3/2 multiplets. Using again eq. (@, we can immediately verify that Pgpe;, Papi; and w
are indeed in involution so that the reduction to the submanifold SU(1,5)/U(5) is indeed
consistent.

For N’ = 4, eq. ([.11) contains all the terms bilinear in the vielbeins. However it is
sufficient to set

—=abci

Pupei = Pujr(= P) =0 (4.17)

to achieve the vanishing of the r.h.s. of (JL.11)) on the submanifold. This corresponds to
delete, in the holonomy reduction (.5), the representations (4,1,4) and (4, —1,4) in the
decomposition of the scalar vielbein, that is to freeze the 32 scalars appearing in the N/ = 4
spin 3/2 multiplets. Again the structure eq. (.7) can be used to show that Py, P,ij and

w? are in involution so that we get a consistent reduction to the N’ = 4 submanifold

SU(1,1)/U(1) x SO(6,6)/[SU(4) x SU(4)].
The reduction to the submanifold of the N/ = 3 theory requires a little more labor. In
this case equation (.11)) does not contain the term pered A Pipeq and if we set

P = Py =0 (4.18)
then 1 ‘
R = —gﬁ“bﬂf A Pyix £ 0. (4.19)

—abjk
We could of course set also P*”

= 0, but then we would be left with a theory without
scalars, that is pure N/ = 3 supergravity theory.
In order to obtain a matter coupled N’ = 3 theory, we further reduce the submanifold

holonomy:

SU(8) — SU(3) x U(1) x SU(5) — SU(3) x U(1) x SU(4). (4.20)
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To see that in this case we obtain a consistent submanifold, we split the SU(5) indices
i,7,...=1,...,5 into SU(4) indices a, 8,... = 1,...,4 and the index 5. Then we have:

R% — R%.; R%

1—ap 2—abs5
Re, = _gpa TN Papgy — gP“ A Popss
1—app
R4y = _gpa TN Psygy - (4.21)

The vielbeins Pypap and Psggp are in the representations (3, 6) and (3,4) of SU(3) x SU(4),
respectively. Hence if we delete the representation (3,6), that is if we set

Pabaﬁ = Pgbﬂ7 =0 (4.22)

we get R?, = R% = 0. On the light of the discussion given in the previous section for the
same case, this corresponds to select, as different from zero on the submanifold, only the
vielbeins with indices in the (3,4) rep. of the holonomy group U(3) x SU(4). We obtain
in this case a consistent reduction to the submanifold spanned by the vielbeins Py,5 since
it can be easily verified that Pypeq s Pabes, Pagyss Papys, w? o, w are all in involution among
themselves.

Finally, in the N’ = 2 case, in order to have involution for w?% = 0, we must have

1 —abjk

R — —gp ajkl

N P@'jkl =0 (4.23)

i N Ppjr — %F
on the manifold.

If we take pobik (and its complex conjugate Pjjre) or Pt vanishing on the submanifold
this corresponds to delete the complex representation (1, —1,15) or the real representation
(2,0,20) of the holonomy group SU(2) x U(1) x SU(6). We may check immediately that
in both cases the vanishing vielbein are indeed in involution with w® and with themselves.

Indeed:

~abci

P _ 30)[3? —=abcd i —=abcj

+ 3PV ot P 4 P
—sajkl o wbikt —ijke

dpP WP+ wh P + 3w[ji?kam

bcldi

Fhtlab

+ 3w, (4.24)

and we see that in both cases the involution condition is satisfied. Therefore we have found
a consistent reduction to the submanifolds SO*(12)/U(6) and )/ SU(6) x SU(2) which
are special-Kéahler and quaternionic manifolds respectively of maximal holonomy.

The other cases treated group theoretically in the previous section can be handled
in an analogous way, provided we reduce the holonomy of the resulting submanifold in a
suitable way. We just give an example.

Consider the manifold given in eq. (R.19), corresponding to (ny,ng) = (9,1). We
decompose the representation 6 of SU(6) into the representation (3,1) + (1,3) of SU(3) x
SU(3). Correspondingly, the index 7 in the 6 of SU(6) is decomposed:

i—ad,  (,a=1,2,3), (4.25)
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where a and & run on the fundamental rep of the two SU(3) groups. Then we have:

Rai — Raa 5 Rad (426)
and we find:
(13,1) (1,3,3) (1,1,3) -
- (2,1,1) (2,3,3) (2,3,3)
R = P A Py + P A Py + PV APy +
(2,3,3) (2,3,3) __ (2,1,1)
g L) A (33) i (13.))
+ P NP, 5+P NP, 5+P /\Pamé, (4.27)

where we have set on the top of each vielbein the rep of SU(2) x SU(3) x SU(3) to which it
belongs. We see that deleting the vielbein in the reps (1,3,1), (2,3,3) and (1,1,3) (and
their complex conjugates) we get R%, = 0 so that involution is satisfied. An analogous
computation can be done, with the same conclusions, for R . Note that the vielbein
which survive, Phag, and Pygs, in the representations (2,1,1) and (1, 3,3) respectively,
do in fact describe the vielbein system of the given manifold.
The involution of the deleted vielbein is also easily proved. Indeed:
dab

dab

dP" = 21 AP 1l AP paule AP P AT 9P AP (4.28)

and we see that each term contains at least a 1-form which is zero on the submanifold.

It is a simple exercise to verify that one can actually further reduce the holonomy to
all the holonomy subgroups of the various cases treated in section P] and find consistent
reduction to the corresponding special-Kahler and quaternionic symmetric coset submani-
folds.

5. Consistency constraints from supersymmetry

In the previous sections we have analyzed the effects of truncating out some of the su-
percharges in the supergravity theories. In particular, in section | we have considered
the effects of the reduction of the holonomy group for the various supermultiplets at the
linearized level, while in section [l we have studied the consequences of such a reduction on
the scalar sectors.

We still have to analyze if the consistency found at the level of o-model in the geomet-
rical analysis can be extended to the full supersymmetric level.

For this purpose, we analyze the supersymmetry transformation laws of N = 8 su-
pergravity, when the R-symmetry gets reduced from SU(8) to SU(N') x U(1). They are,
neglecting three fermions terms:

oV = —i@ﬁw“e/x + h.c.
OPay = Vyea+ TAB|up7uy7p€B
dxABc = Papcp,a0u ¢y + Tiap " ey
SAY” = fiB <¢u ABC'YMGC> +hee.

—ABCD,«a

ot =P Xapcep + h.c. (5.1)
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(the SU(8) indices A, ... run from 1 to 8). We use the same notation as in reference [{L3]:

we call U the coset representative of E7 )/ SU(8) parametrized as follows:
1 (f+ih f+ih
V2 \f—ih f—ih

where fg\]_% and haxnap (A, %, ... =1,...,8) are labelled by couples of antisymmetric indices

AY andAB with A,¥X =1...,8 and A, B =1...,8. Therefore they describe 28 x 28 sub-

blocks of the 56 x 56 symplectic matrix (coinciding with the fundamental 56 representation

(5.2)

of E7(7y). Note that U transforms on the left as the 56 representation of E7(7) and on the
right as the 28 & 28 of SU(8) .
In terms of f and h, the 2-form T4p is given by:

1= As _ 1 AS AS
T :--( ) FAS = 2 (hpsapFAS — : 5.3
AB 5 f ABAS 2( ASAB f4BGax) (5.3)
where Gay, is the magnetic counterpart of the field-strength FA*. The spinor fields v Ap
and yapc are the N = 8 left-handed gravitinos and dilatinos respectively. Finally, the
covariant derivative acting on the spinors is defined as follows:

VeA:DeA+wABeB, (5.4)

where w42 is the SU(8) connection and D,, denotes the Lorentz covariant derivative.

Let us first analyze the gravitino decomposition. We want to reduce the theory to an
N’ < 8 one. Therefore, to reduce the R-symmetry SU(8) — SU(N') x U(1), we decompose
the holonomy indices A4, ... = (a,i) with a = 1,...,N" and i = 1,...,8 — N’. We then
have to truncate out (to set to zero) the 8 — N’ gravitinos v, and the corresponding
supersymmetry parameters €¢;. We get:

Sthay = Dyéa + wy "ep + Tt;bluﬂuwpeb

iy = w; “eq + Tiglwﬂu”ype“ =0. (5.5)

The second equation, consistency condition for the truncation, implies

w; =0, T.,=0. (5.6)
The first condition in (b.6) confirms the restriction of the scalar o-models found in the
previous section from the geometrical analysis, while the second one kills the vector super-
partners of the erased gravitinos at the full interaction level.

Then what is left, eq. (5.5), is the correct transformation law for the survived grav-
itini, provided T,, = —%(? 71)abAEFAE (and T;; = —%(7 71),~jAZFAE for N’ = 6) de-
scribe the correct expression for the (dressed) graviphotons in the reduced theory, Ty, =

i 1
—3(f
of the reduced theory.”

JabA F' A with A running on the appropriate representation of the U duality group

"With abuse of language, we call U duality group the continuous group whose restriction to the integers
is the U duality group of the theory.
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G = Eqp) G1 x G G — Gy x Gy
N =6 (# vect. = 16) SO*(12) x SU(2) 56 — (32,1) + (12,2)
N =5 (# vect. = 10) SU(5,1) x SU(3) | 56 — (10,1) + (10,1) + (6,3) + (6,3)
N =4 (# vect. = 12) SO(6,6) x SU(1,1) 56 — (12,2) + (32,1)
N =3 (# vect. =4) SU(3,4) x U(1) 56 — 21 +21+ 747
N =2 (# vect. =ny +1)

ny =0 Eg2) x U(1) 56 — 1+ 1" +27+27

v =15 SO*(12) x SU(2) 56 — (32,1) + (12,2)

ny =9 SU(3,3) x SU(2,1) 56 — (20,1) + (6,3) + (6, 3)

ny =6 Sp(6,R) X G2(2) 56 — (1, 14) ( s )

ny =2 SU(1,1) x Fyq 56 — (4,1) + (2,26)

Table 2: Duality reduction in D = 4.

To this aim, let us first recall that, in all N-extended theories, the electric and magnetic
field-strengths transform in a representation of the U duality group whose dimension is the
same as the fundamental representation of the embedding symplectic group Sp(2n,) [
(ny is the total number of vectors). Let us consider separately the cases N’ = 5,6, where
all the vectors are graviphotons, from the N’ < 4 cases, where matter vectors are present.

In the former cases, note that F77) (the isometry group of N = 8 theory) contains, as
maximal subgroups: SO*(12) x SU(2) and SU(5,1) x SU(3). The duality groups for the
N’ = 6,5 are SO*(12) and SU(5, 1) respectively. The rep 56, in which the N = 8 vectors
field strengths and their duals lie, decomposes respectively as follows (see also table f):

Engry — SO(12) x SU(2)56 — (32,1) + (12,2) (5.7)
Ez7y — SU(5,1) x SU(3)56 — (20,1) + (6,3) + (6,3).

We note that in each case only a subset of the 56 field-strengths is transformed only
with respect to the (reduced theory) duality group, while it is a singlet of the SU(8 — N”)
commuting group, and this immediately identifies the electric and magnetic field strengths
which remain in the gravitational multiplet after truncation. (Indeed this exactly repro-
duces the counting at the linearized level, since we expect to have, in the gravitational
multiplet of the N’ = 6 (respectively N’ = 5) theory, 16 (respectively 10) electric field
strengths parametrized by Ty, T;; (respectively by Typ).

Therefore, in performing the truncation, we also have to decompose the representations
of the N = 8 U duality group with respect to its maximal subgroups as in (p.7)), (f.§), and
to keep only the irrepses, in the decomposition, which are singlets under the commuting
group, as shown in table JJ.

Note that this prescription automatically guarantees the consistency of the truncation,
since the objects to be truncated out (in particular the (12,2) (respectively (6,3) + (6,3))
field strengths given by T,; and their magnetic duals), being in a non trivial representation
of the commuting group SU(8 — N’), can never mix with those which have been kept, which
are instead singlets.
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Let us now consider the matter coupled theories, and in particular N’ = 4 (the N/ =2
case is similar). Here the argument is reversed with respect to the higher N’ theories,
but with analogous conclusions. Indeed, the U duality group for the N’ = 4 theory is
SU(1,1) x SO(6,n), and, for n = 6, it is indeed a maximal subgroup of the N = 8 U
duality group, (no commuting subgroup). Note that the U-duality group is now factorized
into the S-duality group SU(1,1), which mixes electric with magnetic field strengths, and
the electric T-duality group SO(6,6). We have, for the decomposition of the 56 of E7(7y —
SU(1,1) x SO(6,6):

56 — (2,12) + (1,32). (5.9)

In this case it is the (2,12) field strengths (given by the six graviphotons Ty, and the six
matter vectors Tj;, together with their magnetic counterpart) which have to be retained,
since they have the appropriate transformation property under the U duality group, while
the extra 32 field-strengths (given by Ty; and its magnetic dual), which are spinors under
SO(6,6), have to be truncated out and do indeed belong to the extra gravitini multiplets.
A similar argument as given previously still works for the consistency; indeed the field-
strengths in the (1,32), spinors under SO(6,6), can be set to zero consistently since they
cannot mix with the other field-strengths which are not in the spinor representation of
SO*(12). As far as the transformation laws for the vectors, scalars and spin one half fields
are concerned, one sees that the decomposition confirms the results of the analysis at the
linearized level given in section f], as summarized in table B}

For the case N =8 — N = 2, we see from table J that the vectors belonging to the
six spin 3/2 multiplets and to those vector multiplets which are truncated out are tied
together by an irrep. of G; X G2. This means that to delete only the spin 3/2 multiplets
would be inconsistent.

The same analysis applies to theories in higher dimensions and, for the D = 5 case,
the duality reduction, for some interseting cases, is given in table I}

6. N=2 — N =1 reduction

This section is devoted to a thorough analysis of the consistent truncation of N = 2
supergravity down to N = 1 in four dimensions. The N = 2 — N = 1 reduction of
the supersymmetry transformation laws presents different features in the vector multiplet
and in the hypermultiplet sectors. The vector multiplet case is simpler since the special
geometry is already a Kéhler-Hodge geometry while for hypermultiplets we are confronted
with the more difficult task of reducing a quaternionic manifold to a Kahler-Hodge one.

Note that, differently from what done in the preceeding sections, where we discussed
only ungauged theories, the present reduction is given at the level of the complete N = 2
gauged theory.

In the first two subsections we begin to analyze the reduction in the vector multiplet
sector, where much of the special geometry relations are needed. In subsection we
analyze the reduction in the hypermultiplet sector. In both cases the geometrical approach
discussed in section [J will be essential for the discussion. The other subsections are devoted
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N’ multiplet max spin | multiplicity
8 (9w Y apTaB|ws XaBC, PaBep) 2 1
6 (guuawauTabmwnjmwXabcaXaijaPabcdaPabij) 2 1

(Vi T i » Xabis Pabei) 3/2 2

o (9> YapTab| s Xabes Xijks Pabeds Paijk) 2 1
(VipTailyw> Tl Xabis Xaijs Pabei Pabij) 3/2 3

4 (gum wauTabmw Xabcs Papeds Pz'jké) 2 1
(ViuTai| s Xabi> Xijk> Paveir Paijh) 3/2 4

(T3> Xaig s Pabvij) 1 6

3 (gum wauTabmw Xabc) 2 1
(Vi Ti\ > Xabi> Paveis Pijre) 3/2 5

(T3> Xaij» Pavijs Paijk) 1 10

2 (gum wauTabLuu) 2 1
(wiuTaﬂ,uw Xabi) 3/2 6

(T3> Xaig s Pabij) 1 15

(Xijk> Paijk) 1/2 10

1 (gum wau) 2 1
(¢iuTaz’|,uu) 3/2 7

(ﬂj|puaXaij) 1 21

(Xijk> Paijk) 1/2 35

Table 3: Decomposition of N = 8 into N = N’ supergravity multiplet.

G:Eﬁ(ﬁ) G1XG2 G—>G1XG2
N =2 (# vect. =ny +1)
ny =0 Fy 27T —1+26
ny = 14 SU*(6) x SU(2) 27 — (15,1) + (6,2)
ny =8 SL(3,C) x SU(2,1) | 27 — (3,3,1) + (1,3,3") + (3, 1,3)
ny = ) SL(3,R) X G2(2) 27 — (6, 1) + (3, 7)

Table 4: Duality reduction in D = 5.

to a careful analysis of the implications of the gauging, to the reduction of the scalar
potential and to the discussion of some explicit examples.

The reduction is obtained by truncating the spin 3/2 multiplet containing the second
gravitino 1,2 and the graviphoton.

Here and in the following we use the notations both for N = 2 and N = 1 supergravity
as given in reference [[{], the only differences being that we use here world indices Z,7 =
1,...,ny and boldfaced gauge indices A = 0,1,...,ny for quantities in the N = 2 vector
multiplets (since we want to reserve the notation A and ¢,7 for the indices of the reduced
N = 1 theory) and that the holomorphic matrix appearing in the kinetic term of the vectors
in the N = 1 theory will be renamed as follows:

Nas(z) = fas(2Y). (6.1)
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Let us write down the supersymmetry transformation laws of the N = 2 theory, up to
3-fermions terms [fj:

Supergravity transformation rules of the (left-handed) Fermi fields:

51/}14“ = ﬁu €A + (lg SABan + 6AB]);/) VVGB (62)
SATA = iv, zzvueA + G;VI’}/NVEBEAB + gWIABeB

5 Co = iUBPV, q" yetean Cop + gN2en,

where:

§H €qA = ’D,uEA + (./JM‘ABEB + @“EA (6.5)

and the SU(2) and U(1) 1-form “gauged” connections are respectively given by:

©,7 = w,P + ga) A PE (07) 47, (6.6)
Q= Q+gn AN PR,
Q = —5 (8rkd:" - oyKazT) (6.8)

w, P, Q are the SU(2) and U(1) connections of the ungauged theory. Moreover we have:

VMZI = BMZI +g(A)Al’}ki
Vug" = 0ug" + g(A)Aﬁkx . (6.9)

Supergravity transformation rules of the Bose fields:

SVE = =P, 7" e =10, 1 ea (6.10)
§AD = 9T 1 eneB + 2T Ben +i AN 6P ean + 172 Napen P (6.11)
A (6.12)
5T = Neh (6.13)
Sqt = U, (Z%A n caﬁeABZBeB) . (6.14)

Here T}, appearing in the supersymmetry transformation law of the N = 2 left-handed
gravitini is the “dressed” graviphoton defined as:

T, = A2ImNps L F (6.15)

while
_ =T _
ny = —gzjfjlml\/rAFﬁ, (6.16)

are the “dressed” field strengths of the vectors inside the vector multiplets. Moreover the
fermionic shifts Sap, WZAE and NC‘? are given in terms of the prepotentials and Killing
vectors of the quaternionic geometry (suitably dressed with special geometry data) and of

— 22 —



the special geometry Killing vectors, as follows:

1 1
Sap =i Papa IA = 15P§ajBLA (6.17)
WEIAB = ipAB gT7 fA | ABRITH (6.18)
NA = oyA ke T (6.19)
N% = —2U%, kK4 L™ . (6.20)
We recall that the Killing vectors k:,I\ and k} are related to the prepotentials by:
% = 170,
1

B = @ @VuPR s A= (6.21)

where Q7 is the SU(2)-valued 2-form defined in section p.3 below, and that the prepotential

PR satisfies:
A = PATM =o. (6.22)

Since we are going to compare the N = 2 reduced theory with the standard N = 1
supergravity, we also quote the supersymmetry transformation laws of the latter theory [[f
[d]. We have, up to 3-fermions terms:

N =1 transformation laws:
ey = Dy€e + @u€° +iL(2,Z)v,e° ( )
o =1 (8ﬂzi + g(A)Aﬁkf\) YHeq + Nig, (6.24)
SNy = F M1 ey +1D e, (6.25)
0V = —iheyue® + huc. (6.26)
1A
A . °
0A, = 15)\. Yue® + h.c. (6.27)
62 = yie., ( )

where Q is defined in a way analogous to the N = 2 definition (f.7) and:

L(2,%) = W(z) e2kv(z2) (6.29)
N' =2¢7V;L (6.30)
DA = —2(Imfrx) 1 Ps(2,%) (6.31)

and W(z),K1)(2,%), Px(z,%), fas(2) are the superpotential, Kéhler potential, Killing pre-
potential and vector kinetic matrix respectively [[f6], |, [[7]. Note that for the gravitino and
gaugino fields we have denoted by a lower (upper) dot left-handed (right-handed) chirality.
For the spinors of the chiral multiplets y, instead, left-handed (right-handed) chirality is
encoded via an upper holomorphic (antiholomorphic) world index (x?, x?).

The supersymmetric lagrangians which are left invariant by these transformation laws
are given in appendix .
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To perform the truncation we set A=1 and 2 successively, putting 1, = €2 = 0, and
we get from eq. (B.9):

091 = Dper — /Q\uel -0 Yo + ig Sumuye, (6.32)

Kl

where D denotes the Lorentz covariant derivative (on the spinors, D, = 0, — %wﬁbyab),
while, for consistency:

S1ho, =0 = —CJMlQ L+ (ig So1 M — Tl;,) Vel (6.33)

For a consistent truncation in the ungauged case we must set to zero the graviphoton:

T~ =TyF 2 =0, (6.34)
where
Ty = AImNps LA (6.35)
is the projector on the graviphoton [[§], and the component w,? of the SU(2) connection
1-form:
wi=0. (6.36)
In the gauged case we have the further constraints:
Sop = %Pj{(ax)lgLA - %P,?(LA =0, (6.37)
@12 = W12 + Q(A)AAPK(Ux)l ’= Q(A)AAPK(Um)l 2= 0, (6.38)

while no further restriction comes from (p.7) since the form of the gauged U(1) connection
should not change in the reduced theory.

Comparing (.23) with (p.32), we learn that we must identify:

wlu = ¢.M
€] = €o. (6.39)

Furthermore, g 511 = % gy Px(o” )11LA must be identified with the superpotential of the
N =1 theory, that is to the covariantly holomorphic section L of the N = 1 Kéhler-Hodge
manifold. Therefore we have [13-[R2]:

i i .
L(g,2,z) = §g(A)PK(Ux)11LA = 39(A) (Pa —iPR) L. (6.40)

We will show in the following (section p.4)) that, after consistent reduction of the special-
Kéhler manifold MSK and of the quaternionic o-model M, L will in fact be a covariantly
holomorphic function of the Kihler coordinates w® of the reduced manifold ME? c M@
and of some subset z* € Mp of the scalars 2% of the N = 2 special-Kéhler manifold MK,

The condition on the graviphoton T~ = 0 will be analyzed in subsection .1, while
the condition w;? = 0 will be discussed in section p.3 and the constraints appearing in the
gauged theory will be analyzed in section .4

Here and in the following we will denote by MS% and M® the special-Kihler and
quaternionic manifolds of the N = 2 theory while the special-Kéhler and Kéhler-Hodge
manifolds obtained by reduction of MSK and M® will be denoted by Mg and M&H
respectively.
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6.1 Reduction of the N = 2 vector multiplet sector

Let us now consider the gaugino transformation laws. When e = 0 we get:

SAN =iV, kel + Wil (6.41)
SN2 = =G iy ey + gWH ey, (6.42)
where, using (p.1§)
WP = ip 77 pA X T" (6.43)
W = Pl A — (PR —iP}) 477 13, (641

From eqgs. (6.41)) and (p.49) we immediately see that the spinors AZ! transform into the
scalars 2z (and should therefore give rise to N = 1 chiral multiplets) while the spinors A\%2
transform into the matter vectors field strengths G;VI (and should then be identified with
the gauginos of the N = 1 vector multiplets).

However, before entering the details of the identification, we have to discuss the impli-
cations of putting to zero the graviphoton 7', eq. () We observe that this condition
gives a constraint on the scalar and vector content of the N = 1 reduced theory, that is on
the number of chiral and vector multiplets which are retained after truncation.

Now, since the graviphoton projector Th (p.35) is a scalar field dependent quantity,
the request that eq. ([.34)) is verified all over the manifold can be trivially realized either by
setting to zero all the scalars 2z and the graviphoton Ag, which implies on the symplectic
section LA = (L% = 1;L* = 0,A = 1,...ny), or, alternatively, by truncating out all the
vectors A7, leaving an N = 1 theory with only chiral matter content.

There is however a more interesting and non trivial way to satisfy eq (§.34)), by imposing
a suitable constraint on the set of vectors and of scalar sections which can be retained in the
reduction. Indeed, if we decompose the index A labelling the vectors into two disjoint sets
A= (AX),A=1,...,n, =ny —nc; X =0,1,...,n¢, we may satisfy the relation ([.34)
as an “orthogonality relation” between the subset A running on the retained vectors and
the subset X running on the retained scalar sections. That is we set:

FX =0;
ImNpysL> = Ty =0. (6.45)

We note that if we delete the electric field strengths F' =X we must also delete their magnetic

counterpart
g)_( = nyny —|—./T/’XEF72 =0 (6.46)
so that we must also impose
Nxs =0. (6.47)
Then, the constraint (.45) reduces to
ImANsL” = 0 (6.48)
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which implies
L* =0 (6.49)
since the vector-kinetic matrix ImA s has to be invertible.
Note that conditions (f.4§) and (p.49) imply a reduction of the N = 2 scalar manifold
MSE — Mp, since it says that some coordinate dependent sections on M have to be

zero in the reduced theory.

Let us decompose the world indices Z of the N = 2 special-Kéahler o-model as follows:
T = (i,a), withi=1,...,nc, « =1,...,n}, = ny —n¢, where n¢ and nj, are respectively
the number of chiral and vector multiplets of the reduced N = 1 theory while ny is the
number of N = 2 vector multiplets.

Then from eq (p.5J) it follows that the metric on Mg is pulled back to the following

form [, Bg):
g5 = —2f X ImNxy T . (6.50)

To examine further the implications of the reduction of the special-Kéhler manifold to
the submanifold Mpg, it is convenient to write the special geometry objects using flat
indices. We then define a set of kihlerian vielbeins P! = PIIdzI on MK together with
their complex conjugates. Performing the reduction, they decompose as: Pl = (P, P4),
where I and A are flat indices in the submanifold Mg and on its orthogonal complement
respectively. By an appropriate choice of coordinates, we call z* the coordinates on Mg,
2% the coordinates on the orthogonal complement. Then we may set P! = O,PZA =0, so
that the metric g;7 = szﬁlj has only components g3, 9,3, while giz = 0.

Then, if we decompose the gauginos A¥? = (A2, \°2), the above truncation implies,
by supersymmetry, A’> = 0 and, for consistency,

SN2 = —G;,fw“”el + gW?le =0. (6.51)
Setting G;,ﬁ = 0 gives:
Gi = —g" TV L NanFLS = —g7V; L ImNas F> = 0 (6.52)
implying
v,I' =T =o. (6.53)
Moreover, W1 = 0 implies:
Py =0, ky=0. (6.54)
Note that the integrability condition of eq. (f-53) is:
ViV LA = iCi g™ VeI = iCyjrg™ VL +iCijug™ V4L =0,  (6.55)

where Cj;i, is the 3-index symmetric tensor appearing in the equations defining the special

geometry (see e.g. ref. [ig, f]).
Since the first term on the r.h.s. of eq. (f.59) is zero on Mg (eq. (6:59)), eq. (6.59) is
satisfied by imposing:
Cija =0 (6.56)

so that only the N = 2 special-Kéhler manifolds satisfying the constraint (p.56) are suitable
for reduction.
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Note that, since Cyjq, is defined as a symplectic scalar product [B, B, fl, f] in terms of
the symplectic section U = (LA, My ):

Cija = (ViV;U,V,U), (6.57)
it follows that
Cija=0=VU=0=V, X =0, V,Mx=0. (6.58)

The same constraint (6.56)) can also be retrieved by looking at the integrability condi-
tions of the N = 2 special geometry as given in [i3]. The relevant ones for our discussion
are the following:

vpl = dP7+iQAPf+w7jAPf:0

R = (dw+w/\w)j :P?/\ﬁ“]—iKé‘g—Cjz/\gL

- - (6.59)

7

where Q is the Kahler connection 1-form, K = dQ is the Kéhler 2-form, wfj is the SU(ny)-

Lie algebra valued connection and the 1-form CjE can be written in terms of the 3-world

indices symmetric tensor C77xc, whose properties are given in ref. [, via:

¢’ = PP.I Crypd, (6.60)

Let us restrict the previous equations to the submanifold M g. From the vanishing of the
torsion, eq (p.59), we find:

VP! = dP'+iQA P +w' AP+ AP =0
VPA = dPA+1QA P+ w0t AP +w? A PP =0, (6.61)
With the same procedure illustrated in the general discussion of section f] and in the

example of section [.1], we easily find that the vanishing of the torsion on M p implies
w! A| Mz = 0, from which it follows, taking into account the Frobenius theorem and the

definition of Rj? :

R |y =Py AP’ = CT ATy =07 nT% =0, (6.62)

Now, expanding the vielbein and the C-tensor along the differentials of the coordinates,
we easily find

R |y =P P§ (Cijkéjag + ciﬁkéﬁag) d* Nd2t =0, (6.63)

where we have set to zero the terms in the external directions dz®, and the C-terms
containing both holomorphic and antiholomorphic indices, which are zero already because
of the N = 2 special geometry properties [B, . Again, we see that equation (.63) is

satisfied by imposing the same condition (p.56) on the special-K&hler manifold.
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From the analysis of the fermionic terms in the supersymmetry transformation laws of
the fermions [[tJ], it is possible to find a further condition on the C-tensor:

Caﬁ'y|MR =0 (6.64)
which, together with (p.56), implies

R g lmp =0. (6.65)
6.2 N =2 vector multiplets — N = 1 matter multiplets

Let us now discuss the precise identification of the N = 1 matter multiplets obtained by
reduction of the N = 2 vector multiplets.
From the above analysis we have found that the indices labelling N = 1 chiral and
vector multiplets are not related anymore, as it was instead the case in the N = 2 theory.
As far as eq. (p.4])) is concerned, we immediately see that, after reduction of the index
7 and comparison with the corresponding N = 1 formula ([.24), we can make the following

identification:
% (6.66)
gW = N* =gy, (Pk —1P%) g7 X (6.67)
that is we may interpret the A\*! as n¢ N = 1 chiral spinors belonging to N = 1 left-handed
chiral multiplets (x*,z%), i = 1,...,n¢c. It can be easily verified that the consistency
condition
M =0=s =0 (6.68)
gives
kx =0 (6.69)

using fX = 0.

Let us now discuss the N = 1 vector multiplets coming from the truncation.

The transformation law for the ny + 1 vectors of the N = 2 theory (f.11]) becomes,
after truncation:

SAN = MNPyt — 1INy + hee. =~ + e (6.70)
6A;)t( = —if{(X”%el — ifj(xazyuel +h.c.=0, (6.71)

where in (p.70) we have used (6.53). Eq. (p.71)) is consistently zero if we put

N2 =0 (6.72)

since fX|mp = ValX |y =08
8This follows by looking at the expression of the N = 2 K&hler metric [@

977 = —2lmNas f 2 (6.73)

by requiring that its mixed component g;5 is zero. Indeed, after reduction we get
0 =gz = —2ImNxy f{* f& (6.74)

implying fX = 0.
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We note that while the gauge index A of the N = 2 gaugino runs over ny + 1 values
(because of the presence of the graviphoton) the indices A and « take only nj, < ny
values. In particular, the index of the graviphoton A? belongs to the orthogonal subset
X =0,1,...,n¢, so that the graviphoton is automatically projected out.

To match the corresponding N = 1 formula (f.27) we have to set:

M= —ofhye, (6.75)

Now, we observe that we may trade the gaugino world index Z = 1,...,ny with a vector
index A already at the level of the N = 2 theory, by defining

MNAA = o pANTA (6.76)

Here the gauge index A of the N = 2 gauginos runs over ny + 1 values (because of the
presence of the graviphoton) while the index Z takes only ny values. The extra gaugino,
say A0, is actually spurious, since A4 satisfies:

TANM = 2T fANA =0, (6.77)
where
Ta = 2ImNpAs L™, (6.78)
due to the special geometry relation
ImNps LA f2 =0. (6.79)
Note that Tz is the projector on the graviphoton field-strength, according to equation
613 B
Using special geometry, one can see that the transformation law for the N = 2 gaug-

)\AA

ini (6.3) can be rewritten in terms of the , up to 3-fermions terms, as:

MM = PASF Py etBep — 21U (Phe'? + PgP) e, (6.80)
where PAE is the projector on the matter-vector field strengths and UA* a tensor of
special geometry. They are defined below in equations (f.84), (F.83)). The derivation of
formula (p.80) is given in appendix [J.

The above formulae allow us to perform the reduction of the gaugino AA% = (A\A2 A\X2)
straightforwardly. First of all, A\X? = fZX A2 = 0 as follows from (5.79). Then, setting
A=2and A = A, we have

AL = M2 = PN = 27 (6.81)

since in the reduced theory fZA =0, and then:

SAY = PASF P ey — 20U (P + PE) e . (6.82)

Let us now apply the following relations of special geometry [@] to the present reduction:
UAS = pgT 2 = —% {(ImN)_l}AE T (6.83)

PA, = —2UM ImNsr = 68 —iTs T . (6.84)
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After decomposing the indices and using fX| vy, = [ Mg = gialmy = 0 we have [f:

N 1 AT
UM = fRg°Pf5 = —5 [(Imi\/) 1] ; (6.85)
XY X _ij ¢Y 1 1% =xoy
UXY = XU = [(Im./\/') ] T, (6.86)
Py = (ImNHMImNyr = 0% ; (6.87)
PX, == —inyI". (6.88)
Eq. (6.82) can then be rewritten as:
SN — [FLAWW +1 (ImA DM (P2 + pg)} o (6.89)

We observe that the prepotential P2, which gives the special-Kihler manifold contri-
bution to the D-term, can be given an explicit form in terms of N = 2 objects. Indeed, let
us recall that P has the following general form, as shown in eq. (C.10) of appendix [C

PY = —2ilmNsyr fFKALS (6.90)
which gives, after reduction:

PY = —2ImNsr fokgs TV . (6.91)
On the other hand, using the following N = 2 special geometry property:

kA =iPRLY — fFAsL” (6.92)

(fFAE are the structure constant of the N = 2 gauge group G(2)) by contracting with e
and reducing it to the submanifold Mg, we also find [f]:

P2 = 2ilmNsr fTyy I LY . (6.93)

In conclusion we get the final form of the gaugino transformation law for the N =1
theory as:
(5A§)N:1 = .7:;1,/\’}/“”6. +iD%,, (A=1,...,n), (6.94)

<

where, in order to retrieve the transformation law (p.25) we have set
DM = (ImN~HA> (P2 + PE) . (6.95)

In order to show that equation (f.94) is the correct N = 1 transformation law of the
gauginos we have still to prove that My is an antiholomorphic function of the scalar fields
2 (as it is the case for an N = 1 theory), since the corresponding object of the N = 2
special geometry Mas is not antiholomorphic. For this purpose we observe that in N = 2
special geometry the following identity holds (at least when a N = 2 prepotential function
exists?) [

Nas = Fas — AT AT s (LY ImFraL?), (6.96)

where the matrix Fas is holomorphic.

9In appendix E we will discuss the reduction with special coordinates.
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If we now reduce the indices AX we find:
Nax = Fas — 2T \Ts(LXImFxy LY) = Fjx (6.97)

since Ty = 0 is precisely the constraint (p.45). Therefore A,y is antiholomorphic and the
D-term (5.95) becomes:

DN = 2ifAWo = —2(Imf 1 (2%))** (P2 + P?) , (6.98)
where we have defined 1
Fa(2') = 5 fas(2') (6.99)

in order to match the normalization of the holomorphic kinetic matrix of the N = 1 theory
appearing in eq. (p.31).

We observe that for choices of symplectic sections such that the function Fas does not
exist, the relation (p.97) does not hold, but still M5, has to be antiholomorphic on Mpg.
Un explicit example will be given in section @

As a final observation, we note that the above reduction on the indices of the N = 2
Killing vectors gives rise to kX = (k%, k%, k%, k%). The Killing vectors k) gauge the
isometries of the submanifold Mpg. On the other hand, £§ are zero on the submanifold,
since they correspond to isometries orthogonal to Mg; kzg( are also zero because we have
projected out the corresponding vectors. Finally, £$ are in general different form zero, and
enter in the definition of Pg, eq. (6.91). These conclusions can be formally retrieved by
analyzing the reduction of the special geometry identity [f]

21917%% = fas" PP (6.100)

One can easily verify that if we set A = A; ¥ = X then one retrieves the analogous of

relation (f.100) on Mg provided we set
kY =0; PY =0. (6.101)

For A = A;3 =Y eq. (p.100) is identically satisfied provided we add to the previous
condition the further constraint
ki =0. (6.102)

Finally, when A = X;¥ =Y, eq. (p.100) reduces to the relation:
219@43]“[%(]“@] = fxy' B¢ (6.103)
which has to be satisfied all over the manifold M g.

6.3 Reduction of the hypermultiplet sector

Let us analyze the sector of the hypermultiplets when the reduction is implemented. The

scalars of the hypermultiplets belong to a quaternionic manifold M¥. A quaternionic

manifold M® has a holonomy group of the following type [50], [E1], [[L]:

Hol(M®) = SU(2) ® H (quaternionic)
H C Sp(2ny). (6.104)
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Introducing flat indices {4, B,C' = 1,2} {«, 5,7 = 1,...,2n g} that run, respectively, in the
fundamental representations of SU(2) and Sp(2ny) (ng is the number of hypermultiplets)
we introduce the vielbein 1-form [f]

UAY = UAY(q)dg" (6.105)

such that
huw = UMUPPC penp (6.106)
where C,3 = —Cg, and eqap = —e€pa are, respectively, the flat Sp(2ny) and Sp(2) ~

SU(2) invariant metrics. The vielbein 24 is covariantly closed with respect to the SU(2)-
connection w®(x = 1,2,3) and to the Sp(2ny)-Lie Algebra valued connection A®? = AP

VUAY = quAe %wm (02) % AUP + A% AU =0, (6.107)
where (0%)48 = €1%(0%)P and (0%),P are the standard Pauli matrices. Furthermore

UAY satisfies the reality condition:
Unoa = UAY)* = eapCogldPP. (6.108)

The supersymmetry transformation laws of the fields in the hypermultiplets are given in
eq. (b.4) and (6.14), that we rewrite here using tangent-space indices for the quaternionic

variation:
U g = e + C¥PeAP hep (6.109)
6 Co = iUBPV , q" ye’eap Cop + g N2 ea (6.110)
0(Y = iZ/{;:‘O‘ Vﬂquw"eA—}—ng{eA. (6.111)

Let us see what happens to equations (p.109), (b.110)), (p.111), when the truncation is
implemented.

First of all let us note that the scalars in N = 1 supergravity must lie in chiral
multiplets, and have in general a Kéhler-Hodge structure. It is therefore required that the
holonomy of the quaternionic manifold be reduced:

Hol (M@) € SU(2) x Sp(2n) — Hol (MXH) c U(1) x SU(n). (6.112)

Therefore the SU(2) index A = 1,2 and the Sp(2ny) index have to be decomposed accord-
ingly. We set o — (I,1) € U(1) x SU(ng) C Sp(2ng). Since the vielbein YA satisfy the

reality condition (5.10§), we have, in U(ny) indices :
U= U = C U

Uy = Uy = —Cj UV, (6.113)

where we have used the decomposition of the symplectic metric C,g :(Cq (Cé"' > with
JI
Cri=-Cir=9;
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From equation (.113) one finds that it is sufficient to refer to the 2n z complex vielbein
UM, U since the ones with dotted indices are related to them by complex conjugation.
Let us first examine the torsion-free equation obeyed by the quaternionic vielbein
written in the decomposed indices:
dutt + §w3 AU + §(w1 —iw?) AU+ AT AU + AIJ- AUY =0 (6.114)
au?" — 5 Vi) autt — §w3 AU+ AT AU+ A AU = 0. (6.115)

For the N = 1 reduced Kéhler-Hodge scalar manifold, the holonomy has to be U(1) x
SU(ngr), with a non trivial U(1)-bundle, whose field-strength has to be identified with the
Kahler form. Since in the N = 2 quaternionic parent theory there is a similar non trivial
SU(2)-bundle, whose field-strength has to be identified with the Hyper-Kéhler form, we
assume that the U(1) part of the holonomy should be valued in the U(1) subgroup of the
SU(2) valued connection of N = 2 quaternionic holonomy group.

From equations (6.114), (6.115) we see that, setting
1 2 I
w =w =A5=0 (6.116)

we get two Kéhler-Hodge manifolds whose respective vielbeins obey the torsionless equa-
tions for each submanifold.

Let us now check the involution property dictated by the Frobenius theorem. As we
know from section fJ, this amounts to demand that the curvatures of the connections set to

zero, eq. (p.114), must satisfy the constraints of being also zero on the submanifold. That
is we must have:

O =0*=R'; =0, (6.117)
where the SU(2) curvature Q7 is given by!?
1
0F = dw” + iemyzwy Aw® =1ACqop(0®) apU NUPP (6.119)
while the Sp(2ng) curvature R is given by:
— 2l
R% = dA% + A% A A
= XeapU* NUF + UM NUP e pCPQp5,5, (6.120)

where 43,5 is a completely symmetric 4-index tensor [ff.
From equation (B.119) we see that the constraint (B.117) for involution is satisfied iff

U AU =0 (6.121)

.\ kK
that is if, say, the subset Y2/ = <Z/IH ) of the quaternionic vielbein is set to zero on a
submanifold MEH c M@,

ONote that Q° = A K%, with K2, given in terms of the three complex structures by:

K* = Kgj,dg" Ndg®
Ky, = huw(t]x)vw- (6.118)

The scale ) is fixed by supersymmetry of the lagrangian and in our conventions is A = —1.
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When condition (p.121)) is imposed, our submanifold has dimension at most half the
dimension of the quaternionic manifold (in the following we always refer to the maximal
case, where I = 1,... ,ny) and the SU(2) connection is reduced to a U(1) connection,

whose curvature on MEH ig:
Q| e = N AUy = iU AU (6.122)

so that the SU(2)-bundle of the quaternionic manifold is reduced to a U(1)-Hodge bundle
for the ny dimensional complex submanifold spanned by the np complex vielbein /1.

The truncation corresponds therefore to select a n g-complex dimensional submanifold
MEH < M@ spanned by the vielbein ¢! and to ask that, on the submanifold, the 2ny
extra degrees of freedom are frozen, that is:

u21|MKH = (UH')* | =0. (6.123)

Calling w® (s = 1,...np) a set of ny holomorphic coordinates on M%H and n' (t =
2np +1,...,4np) a set of 2ny real coordinates for the space orthogonal to MXH | we see
that equation (B.123), which can be rewritten as:

UH |y = (UH dw® + U dw® + U dn') |y = 0, (6.124)
implies:
Z/[?I’MKH = ugI’MKH =0 (6.125)
since:
dn®| pxm = 0. (6.126)

On the other hand, we also have:
UM |k =0 (6.127)

since the vielbein /! is tangent to the submanifold.
Let us note that the conditions (p.117) on the curvatures Q', Q? imposed on the sub-
manifold do not imply that all their components are also zero there, and indeed from

(6.129), (p.127) and the definition (p.119) it follows:
Q;EIMKH = Qtlt/’MKH = Q%’MKH = Q?t/’MKH =0 (6.128)

while the mixed components Q1| v xr, Q%|\xr (together with their complex conjugates
OL | vxr, Q| pxn) are different from zero. We also observe that, when the truncation is
performed, also the mixed components of the metric are zero:

hst| s = (U;IHHH) | =0. (6.129)

From (p.125), (p.127) and (F.119) it also follows that the only components different from
zero of the 2-form Q3 are Qg’g and Q?t"
Let us now analyze in detail whether the involution of the constraint A’ = 0 is

satisfied:

R, = ACjp (UM AUPK —UPT AUME) +
+2c"! [ulK ANUEQjper + 22U NUPEQ e + UM A uzLQU-KL-] =0.(6.130)
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After imposing (p.123)), the first line in eq. (p.130]) is automatically zero, and eq. (f.130) is
reduced to the constraint: _ _
1i; 1K , 7.2L

ACHUT NUQ i = 0. (6.131)

Furthermore, let us note that when the constraint (p.130) is imposed, the Sp(2n ) holon-
omy gets reduced to U(1) x SU(ng). The U(ng) curvature becomes:

le _ )\ull /\u2K + CIK@jLulM /\u2NQNKML . (6132)

Choosing cordinates such that ¢%*13 = ¢*™ = 0,s = 0,...,ny — 1 we may introduce
complex coordinates w® = ¢' 4 +ig? T4 with Kahler 2-form K = Q3 which is automatically
closed. The U(1) connection of the Hodge bundle is given by w? as can be ascertained from
the reduced form of eq. (p.114) expressing the vanishing of the torsion on the Kéhler-Hodge
submanifold MXH:

vul! = auM + %w?’ UM+ AT AUY = 0. (6.133)

In conclusion, what we have found is that the conditions for the truncation of a quater-
nionic manifold (spanning the scalar sector of ny N = 2 hypermultiplets) to a Kéhler—
Hodge one (spanning the scalar sector of nj, N =1 chiral multiplets) are the following:

ou212w1:w2:A§:0

e The quaternionic manifold cannot be generic; in particular, the completely symmet-
ric tensor Q,g,5 € Sp(2np), appearing in the Sp(2ny) curvature, must have the
following constraint on its components:

Qi =0. (6.134)

The resulting submanifold, denoted by MXH  has at most ny complex dimensions [l

and is of Kahler-Hodge type, with kihlerian vielbein P! ,ﬁl (for its normalization, see

eq. (p-146) below):

1 7 _
UM gt — —2P§dws

V2

: 1
U'dg" — —QPSI dw® (6.135)

V2

(where w®, s = 1,...ny are complex coordinates on the reduced Ké&hler manifold) and
U(1) x U(ng) curvature given by:

RY = RUM Uy, —s %935{, + R, (6.136)

Once the dimension of the manifold has been truncated, the only constraint on the
quaternionic manifold is given by eq. (f.134)). Let us therefore discuss how general it is,
and which quaternionic manifolds satisfy it.
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First of all we note that the family of symmetric spaces Sp(2m, 2)/Sp(2) x Sp(2m) has
a vanishing -tensor, 2,55 =0 [[1], and hence a fortiori satisfies our requirement.

Furthermore we can now show that the special quaternionic manifolds obtained by
c-map [bg] from special-Kihler manifolds do indeed satisfy the condition:

Qigi =0 (6.137)

Indeed the tensor (b.137) appears in eq. (b.130) multiplied by the product of the vielbein
UM AUPE. The same sub-block of the Sp(2n) curvature is denoted in [p2] by T‘,AE. Now, it is
easy to recognise that the set of n + 1 complex vielbein (v,e®) of [f3] have to be identified

with our vielbein 4'X. However, no wedge product of type T A e® nor of type €* A e?
AE’
the special quaternionic manifolds (including non symmetric quaternionic spaces) can be

appear in r*, which means that the corresponding coefficient Q; ;. ; = 0. Therefore, all
reduced to Kéahler-Hodge manifolds in a way consistent with our procedure.

There are however other symmetric spaces which do not correspond to c-map of special-
Kahler manifolds, yet they satisfy our constraints. Indeed consider the following reduction
from quaternionic to Kahler-Hodge manifolds:

SO(4,n) SO(2,n1) SO(2,n2)
SO4) x SO(n)  SO(2) x SO(n1) « SO(2) x SO(na) ’

(6.138)

where (ny 4+ no = n). We see that they satisfy our constraints. Indeed, the Kéhler-Hodge
manifold on the right of the correspondence in eq. ($.13§) is apparently a submanifold
of the corresponding quaternionic with half dimension. Therefore the conditions for the
validity of the Frobenius theorem have to be satisfied, in particular eq. (§.134). Indeed,
for symmetric spaces we can compute explicitly the 2-tensor by comparing the general

formula of the Riemann tensor for symmetric spaces:

1 .ca18B h, C
Ruvtsul?AugB = _5.]004 | nd~yC|6D u[,z u§]D7 (6139)

(where we have denoted by f Al BA/C the structure constants of the isometry group of the
symmetric manifold K = G/H, the index h running on the Lie algebra of H, the couple of

indices Aa labelling the coset generators) with its general form in the case of quaternionic

manifolds: )
RY, USAUPE = — %Qfs(ax)ABCaﬁ FROPAB (6.140)
One easily obtains
A i
Qagys = D) (CayCps + CusCpy) — ZEACGBDfC{a\ﬁ}Dmth{Ws}B, (6.141)

where the curly brackets mean symmetrization of the corresponding indices.

Using equation (p.141)), we have explicitly verified the validity of (f.134) in the case
of the omega-tensor appearing in (p.13§). These quaternionic reductions explicitly appear
in some effective lagrangians coming from superstring theory models [53].
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We still have to analyze the effects of the reduction on the hyperini and on the super-
symmetry transformation laws. They become, after putting e = 0:

Ulsg = ¢'el (
ug[(squ _ —(CUZJ'Q (
§¢ = iU C, Vg e + gNte = (6¢1) (6.144
5¢; = U Cjy Vg v"e + gNter = (5@1')*. (
Choosing the normalization in such a way to match the normalization of the kinetic terms
of the N = 1 theory, we set:

j 1
u*c,; = —=ry, 6.146
IJj V2 I ( )

1
Nj = —=Pp,N°® 6.147
I NG 1 ( )
¢ = V2P = V2gTPaty, (6.148)

j 1

2J u s
Uy CrjVug" | mxn = N (6.149)
which implies:

1
—5Prsow’, (6.150)

N

where (® denote chiral left-handed spinors with holomorphic world indices, Prs are the

UZ'C, 56 q" | pprcn =

vielbein of the Kéhler-Hodge manifold MXH and w? its holomorphic coordinates. We
observe that due to the definition (f.146) the 2-form Q3 defined in equation (.123) is one
half the Kihler 2-form on M&H,

In that way we obtain the standard formulae for the N = 1 supersymmetry transfor-
mation laws of the chiral multiplets ({*, w?®), that is:

0¢° = iV, wiye® + Noe,

ow® = (e, (6.151)
where

N* = V2ga) PN} = 22 g PC U KA TS (6.152)
Note that the shift term N® is indeed different from zero, but depends only on the isometries
of the projected out part of the quaternionic manifold.!* The explicit N = 1 form of the

gauging contribution will be given in the next section .4
From equation ([.143), however, we see that the condition U 2I' — 0 implies that the

subset of ny hyperinos (; have to be truncated out.
Consistency of the truncation in equation (p.145) implies

wA s A s A
N} = 2ga)Cp U RRL™ = 29a)C U RALT =0 = gakal =0.  (6.153)

The restrictions on the theory imposed by this constraint will be discussed in the subsec-
tion p.4
HTndeed, the request U1j|M = (Z/{sljdws + h.c. +Z/lt1jdnt) |a4 = 0 implies Uslj = 0 but does not impose

any restriction on the components orthogonal to the retained submanifold.
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6.4 Further consequences of the gauging

The truncation N = 2 — N = 1 implies, as we have seen in the previous subsections, a
number of consequences that we are now going to discuss, and in particular:

e The D-term of the N = 1-reduced gaugino \* = —2fl-A)\i2 is:
DY = Wit = —2g.5) (Imf) % (PE(w®) + PA(z")) . (6.154)
e The N = l-reduced superpotential, that is the gravitino mass, is:
L(z,w) = %g(X)LX (Px —iP%). (6.155)

e The fermion shifts of the N = 1 chiral spinors x! = A coming from the N = 2
gaugini are:
N’ =2¢7V;L. (6.156)

e The fermion shifts of the NV = 1 chiral spinors (* coming from N = 2 hypermultiplets
are: .
N* = —4goo kT U Us; (6.157)

In order for the shifts given in egs. (6.159), (6.156), (f.157) to define the correct trans-
formation laws of the N = 1 theory, we still have to show that the superpotential L is

covariantly holomorphic with respect to the w?® coordinates:
VsL =0 (6.158)

and that the N® shift for the chiral multiplets coming from the quaternionic sector can be
written with the standard expression for an N = 1 chiral multiplets shift, that is as:

N® =29 g°°VsL. (6.159)

These features do indeed follow, as a consequence of the reduction SU(2) — U(1) in the

holonomy group. Indeed:

Vsl = %LAVgPK (%) = ikl L2, (67) 2 . (6.160)
Now, recalling that:
OF (0%),2 = U AU C oy = UL NUPC,; = LU C, jdnt A duw® (6.161)

we immediatly get: Q% (6%),% # 0 while QZ, (6%),% = 0, so that V5L = 0 follows.
Let us now compute N® explicitly:
N* = V2P gN} = dgn) C, 0 U kAT
i _x
=4 g(a) CJj95859f5(0$)12k§(L
. 3 +X . 3 . —X
= —iga) 9~ VsPE(0") 5L = —iga) 9% Vs (Px +iP%) L
=2 ga) 9" VsL, (6.162)

that is it has the right expression for an N = 1 chiral shift, according to eq. (p.30).
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Let us now discuss the implications of the gauging constraints (.37), (F.3§) and (f.153)
on the NV = 1 theory obtained by reduction, that is the consistency of the truncation of
the second gravitino multiplet d¢,2 = 0 and of the spinors (; in the hypermultiplets sector
for the gauged theory:

B2 = 0= gn)A™ (P —iPR) =0 (6.163)
Si2 = 0= ga)LAP3 =0 (6.164)
5C; = 0= gkl = 0. (6.165)

Since the vectors of the N = 2 theory which are not gauged do not enter in the previous
equations we may limit ourselves to consider the case where the index A runs over the
adjoint representation of the N = 2 gauge group. If we call G?) the gauge group of the
N = 2 theory and G C G® the gauge group of the corresponding N = 1 theory, then
we have that the adjoint representation of G?) decomposes as

Adj(G?) = Adj(GM) + R(GW), (6.166)

where R(GM) denotes some representation of (GM)) (the representation R(G() is of
course absent for G = G(Q)). The gauged vectors of the N = 1 theory are restricted to
the subset {A%} generating Adj(G(V) (that is the index A is decomposed as A — (A, X),
with A € Adj(G? and X € R(GW)).

This decomposition of the indices is of course the same as the one used in analyzing
the consequences of the constraint (5.34) in section p.3. In particular, the graviphoton
index A = 0 always belongs to the set X since the graviphoton A° is projected out.

The quaternionic Killing vectors of the N = 2 theory then decompose as

ki = {k}. kR, kas kX, kX ki (6.167)

Obviously, we must have that k5 = 0 since the Killing vectors of the reduced submanifold
have to span the adjoint representation of G M), Viceversa, the Killing vectors with world
index in the orthogonal complement, k%, must obey k% = 0, while k% are in general
different from zero. Indeed, the isometries generated by k%, would not leave invariant the
hypersurface describing the submanifold M&H ¢ M®. These properties will be in fact
confirmed in appendix [H, by a careful analysis of the reduction of the quaternionic Ward
identities.

Coming back to the implications of the constraints (p.163), (b.164)), (b.165]), they can
be rewritten, using the results of section [p.3, as follows:

g AN (P —iP}) =0 (6.168)
9 LX Py =0 (6.169)
gk =0. (6.170)

Since we have found that k% = 0, eq. (6.170) is identically satisfied.
Eqs. (.168) and (6.169) are satisfied by requiring:

Pi=P;=0; P3=0. (6.171)
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Then the superpotential of the theory is given by [[2]-[R2]:

i

L= 2LX(z,z) (Px (w, @) — iP¥ (w, D)) . (6.172)
We are left with an N = 1 theory coupled to nj, vector multiplets (A = 1,...,n{,) and
no+ngy chiral multiplets (X = 0,1,...,n¢) with superpotential (5.172). All the isometries
of the scalar manifolds are in principle gauged since the D-term of the reduced N = 1 theory
depends on PY(z,%) + P3(w,w).

In the particular case where the gauge group G of the N = 1 reduced theory is the
same as the gauge group G® of the N = 2 parent theory, the index X takes only the value
zero and all the scalars are truncated out (L = 0, LY = 1). The vectors A" are retained

in the truncation while A° is projected out. In this case the superpotential reduces to:
L= 3L (B —iFy). (6.173)

Moreover, from eq. () we have that in this case the prepotential P/(\] = 0, and the

D-term depends only on Pﬁ(w,@). We then have an N = 1 theory coupled to ny vector

multiplets and ngy chiral multiplets, with gauged isometries and superpotential (F.173).
Note that when P} —iP? is constant, (f.17J) gives a constant F-term. This case can

only be obtained in absence of hypermultiplets. Indeed, from the general quaternionic

formula [54]
1
ni PR =~ 508, VR (6.174)

we see that if ny # 0 a Fayet-Tliopoulos term, as well as a constant F-term, is excluded [p4],
since a constant P is not compatible with the covariance of the r.h.s. under SU(2) and the
gauge group. Even when the theory is ungauged (k% = 0) a constant Py is still excluded
for ny # 0, since in this case equation (f.174)) reduces to ny Py = 0, implying P}y = 0.

If ng = 0, then a constant Py is possible (N = 2 Fayet-Iliopoulos term) [@],12 provided
the gauge group is abelian (otherwise it breaks the gauge group) and provided it satisfies
the identity

€V PYPs =0 (6.175)

which follows from the general quaternionic Ward identity [p], [1]

%ngkxkvz + %exyngpg - %fAerff =0 (6.176)
in absence of hypermultiplets.

When we reduce the theory to N = 1, a constant value of Pi = ¢ # 0 (i = 1,2)
or P¥ = &} # 0 are both compatible with all the constraints (p.168)—(p.170); in partic-
ular LAfi = 0 and AAgiA = 0 implying the presence of a N = 1 Fayet-Iliopoulos term
corresponding to 5;9’\, or a constant F-term corresponding to {iX.

12An N = 2 Fayet-Iliopoulos term coming from Py is excluded by the Ward identity ()
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6.5 N =2 — N =1 scalar potential

Let us now compute explicitely the reduction of the scalar potential of the N = 2 theory
down to N = 1. The N = 2 scalar potential is given by:

_ = — 1 _
YN=2 — <gﬁk{kg + 4huvl<:,“\k:§) M LE ¢ <—§(ImN_1)AE - LALE> PIPE —
—3Ps P (6.177)

while the N = 1 scalar potential can be written in terms of the covariantly holomorphic
superpotential L as:

- — 1
Y=l —y (ngszg” —3|L|* + 1—61mfAzDAD2> , (6.178)

where the holomorphic index ¢ runs over all the scalars of the theory.
Before performing the reduction it is instructive to work out in detail the supersym-
metry Ward identity involving the scalar potential [p6] F7:

SYN=2 = 1254505 + GrgWHACW 4+ 2NN (6.179)

Instead of taking the trace of (p.179) on the SU(2) indices A, B, thus recovering the po-
tential (p.177), one can alternatively write down the stronger relations:

(5%VN:2 _ VN:2 — _12?10501 + gfywzlcwljc' + QNOIZN{I (6180)
BVN=2 = YN=2 = _195° 500 4 g WOWT, + 2N2 NG (6.181)
and furthermore:
SIVN=2 = 0 = —125°7 S0 + g7 WICPWT, + 2NN (6.182)
—A

When we pass to the truncated theory, the matrix S4p becomes diagonal (S19 ~ P;?’L =0)
and its eigenvalues are the masses of the 2 gravitini:

Sap = (5 %) : (6.183)
where:
L= %LX(P}( —iP%) (6.184)
L= %LX(—P}( —iP%) (6.185)
so that:

1 o
L2 = §;, S = ZLXLY (P4 PE +1(Py P2 — PLPY)]

- 1 o
L] = S8 = JLYT" [PR P —i (PP} - PRPY)]. (6.186)
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The difference between the 2 gravitino mass eigenvalues can be written in terms of the
fermionic shifts as:

i

T —=1C —=2C
IL|* —|L|* = < (PxPy — PxPy) =S " Sc1 =S Seo

— Nl

=1 <gi3WiICW17c + 2N NT* — gigW2CWY, — 2N§N§) . (6.187)

Let us now perform the reduction. Using, e.g., equation (p.180) and recalling that
S12 =0 and N} =0 (see eq. (6.153)), we find :

YVZEEN 1951y + g (WEHWA] + WTRWT ) 4 2NN (6.188)
Using equations (p.44), (p.43), the first two terms of equation (p.I88) give:
— 12518, = =3P\ PLLYXT" +3i (P2 Py — Py P2) LXT" = —12LT (6.189)
gr7WHW = (Pk +iP}) (P} —iPE) UYY = 4"V, LV;L. (6.190)
For the term 917W121W271 we obtain:
gFWIWS] = —2ImNas f2 EZWP W] = —%IHL/\/'AgDADz - ilm fasDADE

(6.191)
where we have reduced the indices according to the results of subsection and used

equations (6.99), (6.97), (6.99).
To compute the last term in eq. (p.18§) we use eq. (p.147) and (p.159)) and we find

ININ! = gsN*N° = 4¢°V,LV,L. (6.192)

Collecting all the terms we find that the reduction of the N = 2 scalar potential gives:
_ _ - - - - 1
YN=22N=1 — 4| _3IT + g"V,LV;L + g**VLV5L + g fasDAD* (6.193)

which coincides with the scalar potential (f.I78) of the N = 1 theory, where we have
decomposed the indices according to the fact that the o-model is a product manifold .

We note that our computation of the reduction of the scalar potential has been per-
formed by first reducing the N = 2 fermionic shifts to N = 1 and then computing the
potential. Of course, we could also have performed the computation by directly computing
the reduction of each term of the N = 2 potential. In the latter case, to obtain the desired
results requires some non trivial computations. In particular, there are some subtleties
related to the observation that the N = 2 potential does not contain “interference” contri-
butions of the form PRPXm: or P["j\P%], while such terms are instead present in the N =1
potential, given the form (5.154) of the D-term and (p.15%) of the superpotential. To solve
the puzzle and recover the precise correspondence between the N = 2 and N = 1 theories,
one has to use several times the reduced forms of the Ward identities of quaternionic and
special-Kihler geometries, the definition of the quaternionic Killing vectors [, b4,
and the expression that the special geometry prepotential gets in the reduction, equation
(6.93)). The explicit computation is given in appendix [.
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N =2 (nv = O), MQ (dimQ = n) N=1 (nv = O), Mg (dimc = n)
U2,nt1) SUT) U(1n)
U@)xU(n+1) U1 = UMxU(n)
SO(4,n+1) <9 SU(1,1) _ SU(1,1) SO(2,n—1)
SO(4)xSO(n+1) (n=2) U1) * "Ua) * SO@)xS0(n-1)
G2 SU(1,1)  SU(,1)

SO(4) [) [)
Fy SU(1,1) _, Sp(6,R)
7usp(%xusp(2) Ua) = Tu@)
6(2) SU(1,1) SU(3,3)
SU6)%xSU(2) U1) ~ SUB)=SU(3)xU)
Er—s) SU(1,1) _, SO*(12)
SO(12)xSU(2) U() U(6)
Eg(—24) su(LD) o E7(—26)
F7xSU(2) U(1) Fgx50(2)

Table 5: N =2 — N =1.

6.6 Examples of truncation to N =1 gauged supergravity

As an application of the formalism developed in this section, we can now consider reduction
on N =8to N =1 or in general of N = 2 theories down to N = 1.

The simplest case is to consider N = 2 special-Kéahler manifolds which are also N =1
Hodge-Kahler, or submanifolds of half the dimension of quaternionic manifolds which are
“dual” (under c-map) to special-Kéahler.

We first consider “dual quaternionic manifolds” which are symmetric spaces; they were
all given in [Bd, table 4]. This immediately gives the N =2 — N = 1 reduction of theories
with only hypermultiplets as follows:

It is interesting to note that if Mg = IG{_Z’ Mgk = SULDXG thep Hg =SU(2) x G,

U(1)xH
where G, is the compact form of G!.

From the previous table we can immediately obtain N = 1 truncations of N = 8
supergravity with (ny,ng) replaced by (n&NZl), nc =ny +nQ).

In all these models (unless ng = 0) the Kéhler-Hodge manifold will be of the form

SU(1,1)

SK(TL\/) X SK(TLQ — 1) X U(l)

(6.194)

As a simple example, motivated by string construction [p3], for the application of the
results of the previous sections, we consider a N = 4, D = 4 matter coupled supergravity
with gauge group SO(n) (n even). The o-model of the scalars in presence of gauging is
given by:

1,1 SO(6, Mt

UM~ 50(6) x SOy’

and the content of the scalar sector can be encoded in the vielbein 1-form P4p; where
the antisymmetric couple AB labels the irrep. 6 € SU(4) and I labels the fundamental
( n(n;l) )

representation of SO

This N = 4 theory is reduced to N = 2 through the action of a Zs group and to N =1
by the action of Zg x Z}. The generators of Zs x Z) in the R-symmetry group SU(4) are
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given by:

10 0 0 1 0 0 0
01 0 0 0 €™ 0 0
— _ — 6.196
=100 e o' "7lo o 1 o (6.196)
00 0 €r 0 0 0 €7

so that two gravitinos are singlets with respect to Zs and one gravitino is invariant with
respect to Zg x Zb.

To obtain charged matter in the N =4 — N = 2 reduction, we implement the action
of Zo on the gauge group. Let us make the following decomposition

SO(n) 22 SO(n4) x SO(np) (6.197)
so that, under the action of Zo:

naA = NA

np = ang (6.198)
and then

Adj(SO(n.4)) 2 Adj(SO(n.4))
Adj(SO(np)) 2> Adj(SO(np))

(na,np) L, a(na,np). (6.199)

Correspondingly, for the group SU(4) we have:

42, 04

2, 22, 2,. (6.200)

The scalars transforming non trivially under Zs are projected out and we are left with the
coset manifold:

na(na—1 np(ng—1)
sua1) SO (2, nalta=l) | nalra-0)) _ SO(4,nanp) (6.201)
UM 50(2) x SO (m(n;fn 4 nB<n23—1>> SO(4) x SO(nang)’

where the first two factors define an N = 2 special-Kahler manifold and the last factor is
a quaternionic manifold.

In order to obtain an N = 1 supergravity theory, the gauge groups SO(n 4) and SO(np)
are further decomposed as follows:

SO(n4) — SO(n1) x SO(n2)

and we define the action of Z) as:

ny=ni, N2 = Fny

ng=mnsg, n4= Fnyg. (6.203)
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This induces an action of Zy x Z/, on the decomposition of the gauge group:

Adj(SO(n)) 22+ Adj(SO(na)) + Adj(SO(np)) + (na,n5)a

2 Adj(80(m)1 + Ai(SO(na)): + Adj(SO(n))1 + Adi(SO(na))s +

+(n1,n2,1,1)5 + (1, 1,n3,14) 5 + (n1,1,n3,1)0 +
+(n15 17 ]-a n4)aﬂ + (17 n2,ns, 1)Ozﬂ + (]-7 nz, 13 n4)a . (6204)

In equation (.204)) we have labelled each representation with indices 1, «, 3, a5 whose
meaning is that the corresponding representation is invariant or transforms under «, (3
or a3 respectively. That is the representations Adj(SO(ny)) are invariant under Zy x Zj,
while the remaining bifundamental representations (ny,n ) transform as follows:

(n1,n3); (n2,ng) transform under «
(n1,n2); (n3,ng) transform under (3

(ng2,n3); (n1,n4) transform under a3 . (6.205)

With the same notation, let us now consider the Zy x Zf, action on the 6 of SU(4):
6 2 do+2

Zio X 7t
2 (20 + 208) + 25 (6.206)

Joining the information coming from the the decomposition of SU(4) and SO (n(n —1)/2)
we see that the scalars which remain invariant under the action of Zy x Zf are given
by the vielbein in the following representations: P (n, ns)il2, (no,na)i Py (n1,n2) 125 (ns na)
P P

a5(n1,m2)i 205 (nanz)- This means that the special-Kéhler manifold reduces to:
na(na—1) np(ng—1)
SU(1,1) " SO <2’ o > SU(1,1) " SO(2,n1n2 + nany)
—
U(l) SO(2) x SO (nA(nzA_l) + nB(nQB_l)) U(l) SO(Q) x SO(ning + n3n4)
(6.207)
while the quaternionic manifold splits as follows:
SO(4,nanp) SO(2,n1n3 + nany) SO(2,n1n4 + nang) (6.208)

SO() x SO(nang)  SO(2) x SO(n1ng + nang)  SO(2) x SO(nina + nang)

Let us now comment this result.

From the analysis in section we have learnt that when we reduce a gauged N = 2
theory to N = 1 (with G® — G()) the surviving scalars from the vector multiplets sector
are those which are in the representation R(G'")) according to eq. (F.166)), while all the
scalars in the adjoint representation of G are truncated out. Precisely this happens in
our case. Indeed, from equation (B.207) the irreps (n1,7n2) and (n3,n4) belong to the left
over representations in eq. (.204). Furthermore, all the other bifundamental rep. belong
to the scalars coming from the quaternionic sector, according to equation (§.208). Note

that the total dimensional of the product manifold of equation (p.20§) is exactly half
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the dimension of the parent quaternionic manifold, according to the general result found
in section B.I]. It is interesting to observe that the same kind of result appears in the
decomposition N = 4 — N = 2 described by eq. (f-201). In fact, the reduced product
manifold in eq. (p.201)) has a o-model whose scalars belong again to the representation
R = (na,np) left over in the reduction of the adjoint representation of the N = 4 gauge
group.

Other examples can be obtained [[]] from heterotic strings compactified on Zy orb-
ifolds with reduced non abelian gauge group Fg.

We finally observe that the N = 2 special-Kihler manifold in the Lh.s. of (§.207) can
be parametrized with the symplectic section (LA, M = nasSL¥) (with LAL®nAs = 0
and nax = (1,1,—1,...,—1)) where a prepotential F' does not exist [f9). In this case the
N = 2 vector kinetic matrix has the form:

LA
VIATA

When we perform the truncation to N = 1, the sections L* become zero, and the N = 1

Nas = (S = 5) (Pa®Ps + Pa®x) + Sax;  Pa (6.209)

vector kinetic matrix takes the form:
Mz = Sias, (6.210)

that is it becomes antiholomorphic in the complex scalar S parametrizing the manifold

SU(1,1)/U(1).
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A. Supersymmetry reduction from superspace Bianchi identities

We want now to show that the constraints found at the level of supersymmetry transfor-
mation laws are actually sufficient to guarantee the closure of the supersymmetry algebra
of the reduced theory.

We prove this statement by considering the reduction of the superspace Bianchi iden-
tities of the N = 8 theory (which, as is well known, is equivalent to the “on-shell” closure
of the supersymmetry algebra). The N = 8 Bianchi identities are [p0] 3] (we omit the
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wedge product symbols among the products of forms):
RPNV, + i 477p" —ipayPy™ = 0

1
Vpa+ Zququ¢A - RABT/JB =0

_ —ASAB_ 1-AxcD —A 1 —ABCD—
VENE =2 figpteP —2f " paus — 5 Papepd P — SfEEPTT davp = 0

I 1
Vﬂhﬂmﬁ—3RMXBQL+ZRW%MAM7=0
VPspcp =0

in terms of the supercovariant field-strengths:

TP = DVP — % B ayPA =0
R = duwP? — wP W™
FAS = dAN 4 pAE P 4 T
pa = Dpa+w, g
L
Vxapc = Pxapco + 3wy, XBc)L

AS|AB —

Ya¥B

RAB = deB —{—wACwCB.

Note that all the fields are actually superfield 1-forms whose restriction at § = df = 0 gives
the ordinary space-time fields.

To show how the Bianchi identities of the N = 8 theory reduce to the Bianchi identities
of the N = N’ theory, we just work out the example of the N = 8 — N = 6 reduction.
The other cases can be analyzed in analogous way.

First of all we see that, by decomposing the R-symmetry indices as in section | and
setting ¢; = 0 (i = 7,8), the supercovariant field-strengths get reduced as follows: the
superspace bosonic vielbein V? and the spin connection wP? (p,q denote space-time flat
indices) remain untouched by the reduction, and the same happens of course for the Lorentz
curvature RP? and supertorsion T7.

As far as the gravitinos are concerned, we find:

pa = Dwd + wabwb

which implies w;* = 0, consistently with what we found in section []. As a consequenc, the
gravitinos Bianchi identities reduce to:

1
Vpa + R pgpa + Ry, =0 (A.2)

which is the correct Bianchi identity for an N = 6 gravitino, while consistency of the
truncation implies:

Vpi =R =0 —R"=0 (A-3)

again in agreement with the o-model results.
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Let us analyze the spin one-half sector. It gives

J A
VXabe = DXabe + 3w[a Xbcld + w[aZXbc]i
J . A
VXabi = DXabi — 2w}, Xbjai + QW[a]Xb]ij + w;%dab + @ Xjab
i
VXaij = DXaij — wadXdij + 2W[Zde}ad + w; ]Xjab . (A.4)

Since wai = 0, we see that the last equation is satisfied only setting xi. = 0, (as already
known from section fl, since they belong to the gravitino multiplets truncated out). What
is left is the spin one-half sector of the N = 6 theory. It is now straightforward to see
that the Bianchi identities for xqu. and x.;; reduce, after imposing again the constraint
wai = 0, to the corresponding N = 6 Bianchi identities, while the Bianchi identity for y .
is, consistently, identically satisfied.

The analysis of the scalar sector P4pcp and its Bianchi identity is identical to what
has been already discussed in section ], and does not deserve further analysis.

Finally, the Bianchi identity for the vector field strengths, with ¢; = p; = 0, reduces to:
1—AScd

5/

1Az

U

VEN = 2 [t Paea® 9 = 5T B0 — ST P y? . (A5)
Here, the scalar vielbein Py = 0 according to the discussion of section [ and f|. Further-
more, the reduction of the couple of indices AY goes according to what we have discussed
in section [J. Since the duality group acts now on the electric and magnetic field-strengths
in the representation 32 of SO*(12), we simply substitute the couple AY with an index
r running from 1 to 16. Note that the corresponding quantities f;, ZZ are 16 x 16 sub-
blocks of the 32 x 32 matrix U, which has exactly the same form of eq. (f.2)), but valued

in Sp(32,R), which gives the embedded coset representative.

B. Consistency of the Bianchi identities for N =2 — N =1 gauged theory
inD=4

In the same spirit of the analysis of section 5.1, it is easy to show that the closure of Bianchi
identities of the NV = 2 theory implies the consistent closure of the reduced N = 1 theory.
The definition of the supercurvatures and superspace Bianchi identities for the N = 2
theory have been given in ref [[j] (appendix [A]).
We have to reduce these objects to their N = 1 expressions, and to show that they
coincide with the definitions of the supercurvatures and superspace Bianchi identities for
the N =1 theory. We quote in the following their standard expression.

Curvatures of N =1 gauged theory.

T% = DV — i) 7%pe = 0

ab __ ab a  .cb
RY = dw®™ —w®w

pe = Vipe = Difu + ;@w.
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R(x') = VX' =Dx' + T/ — %@xi
FA = dAM + %CAZFAEAF
VAN = DI 4 %@AA + O AN
Vel = dz' + gk A" (B.1)
where the gauged connections are defined as:

fij = Fij +g(A)ijf\AA
Q = Q+guPrAt. (B.2)

The ungauged connection () is given by
Q=QiVz'+ Q. V7. (B.3)

Bianchi identities of N =1 gauged theory.

RV — 1)y pa + ity "p® = 0
DR™ = 0

1 RPN
R e

1

A 47abR“in + }A%ijxj + %Exl =0
' VFY =0
1

V2AL + Lo Ratan SRt = Chop AN = 0

4
V22— gykh F* = 0. (B.4)

In the ungauged case, it is straightforward to see that the conditions found in the text from
the analysis of the reduction of the quaternionic sector and of supersymmetry transforma-
tion laws are indeed necessary and sufficient, after setting o = po = 0, for reducing the
N = 2 supercurvatures and Bianchi identities to the corresponding N = 1 expressions.

We only observe that in the covariant differential of (, and its Bianchi identity, after
decomposition of the index a = (I, I ), we get, as integrability condition:

1 i ;
V3 + ZRab'YabCI + §K<I +R,7¢; =0, (since R;7 = 0). (B.5)

This equation can be converted in world indices on M H using equation (p.146)). Using
further the reduction of eq. (6.140) one then recovers the correct N = 1 result, in terms of
the Riemann curvature of the M manifold, with

KWN=1 = xWN=2) L 03 (B.6)

Note that 3 is one half of the Kihler form of the Kihler-Hodge manifold M
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As far as the gauged theory is concerned, we observe that the ungauged conditions
:Rai:wl:w2:QIZQ2:A1J:R1J:0 (B7)
become the corresponding ones for the gauged quantities
= R =p! —0=02=A =R,/ =o0. (B.8)

Recalling the definition of the hatted quantities, we find that the following objects must
be zero:

g ANDkR = ga)FADski =0

gaAMPy —iPR) = gy F™(Py —iPR) =0
gy A OukRU AU, 45 = 0. (B.9)

The previous conditions can be analyzed in the light of the results obtained in section [
and it is straightforward to see that they are actually satisfied. Thus the reduced theory
has the correct integrability conditions.

C. A useful formula for the N = 2 gaugino transformation law

In this appendix we show how to retrieve equation (f.80) from (f.3). To avoid a too heavy
notation, we write in this appendix the world indices and gauge indices without hat and
tilde, since we are not going to perform any reduction. We are interested in trading the
world index i of the gauginos A4 with a gauge index A, through the definition:

MA = _gpAyid, (C.1)

However, the gauge index of the N = 2 theory runs over ny + 1 values (because of the
presence of the graviphoton) while the index ¢ takes only ny values. The extra gaugino,

)\AA

say A, is actually spurious, since, as discussed in section [5.2, satisfies:

TAIM =0, (C.2)

where T is the projector on the graviphoton field-strength, according to equation (f.15)
[Eg]. In order to show that the ny gauginos M\ do appropriately transform into the ny
matter-vector field strengths, let us now calculate the susy transformation law of the new
fermions A, which, up to 3-fermions terms, is:

OAM = 2N = —2f} g7 P ImNps et 1 WA e (C3)

Now we use the following relations of special geometry [[ig]:

95 = —fo\ImNAzf;E (C.4)

5 = g7 g = 27 [Ny £ (C.5)

UM = eV [ = —% [(Imjv)*l}m -7 (C.6)

TN AT = —%. (C.7)
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Eq. ([C.3) can then be rewritten as:

SAM = [2UAZIHngFl:VF6AB — 9fMA T AB 2iUA2P§(ax)AB] 5. (C.8)
Now, using the definition of the special geometry Killing vectors
kY =ig70; Py (C.9)
we have:
2fMATS = 2ifpg o, PRI = —2ifpg" FAPR = —2AUMNT PR, (C.10)

where we have used the special geometry formulae [f]:
PUA =PV T =0, fr=wvit. (C.11)

Therefore eq. (IC.§) becomes:

SAM = —2UM [ImNerF, e +1 (- PP + PE(0*)"P) ] e (C.12)
Let us now set

PA = oUASImAgp = 68 4+ 2ImNps L LT = 68 — v I (C.13)

Pt = 60 4 Te Lt = (P, (C.14)

where T} is defined by equation (b.7§) and satisfies [[ig] :
I =—i;  Tyfr=o0. (C.15)

Then we have:
P\ P =P, T\P}=0. (C.16)

Therefore PAF is the projector orthogonal to the graviphoton, that is it projects the n, +1
vector field-strengths onto the n, field-strengths of the vector multiplets.
We can then rewrite equation ([C.19) as:

ONM = PASF Ry eB UM (— PR + PE(0™)P) e (C.17)
which is the equation given in the text. Note that
MM = pAEA A= PAEE (C.18)

It is useful to write down the explicit decomposition of the field strength F* into the
graviphoton and matter vectors part, that is:

_ A _ _
F N =iL"TsF,” + PSFLY (C.19)
Eq. (C.17) becomes:
NN = PA [FLFV“”EAB +1(ImA) " (= PReP + Pg(ar)AB)] B, (C.20)

where we see, as expected, that the gauginos A*4 do transform only into the matter-vector
field strengths PAEF M_VZ. Hence, equation ([C.2() intrinsically defines only ny independent
gauginos transforming into the N = 2 field strengths (P F M_VZ)
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D. Reduction of special geometry in special coordinates

If we choose special coordinates for special geometry [B| [, fi§, p9), then the indices A =
(A,Y) and Z = (i, ) are identified by the fact that
t* X

=S5, (A=a, ¥ =i (D.1)

and a prepotential F(X) exists such that f(t) = s F(X), with:

X
XOF, = 2f — 2 fy, <fI of )
XFr = orf. (D.2)

Furthermore,
K =ilof =2+ @ - D) (fr+ T (D-3)

The constraints that define the submanifold M g become:

Wija = aiajaaf = 07 Walagag = aalaazaagf =0
oF
XM= — =9, X" =0, XX =0,fr = = D.4
OXA az aoz 6Zf/\ aozfX 0, ( )
where we used the fact that Kq|a, = 0.
In this basis N ax, = Oa0x. f and the Kéhler potential on Mg is:

eFr —ilof — 2 + @ —)(fi + T1)| (D.5)

Note that Fa|amy, = 0 implies Onf|m,, = 0 which in turn implies 040 f|my = 0, Waij =
900;0j f|my, = 0. Therefore the most general form for f is (t7 = (¢%, 2%)):

f(tia Za) = f(t) + Z 20 Zanfozlman (t) ) fa1a2a3 (t) =0. <D~6)

n>2

For the manifold SU(1,1)/U(1) x SO(2,n)/[SO(2) x SO(n)] used in section with
coordinates (0,1, ... ,t”/, 2. .. ,z”*”/), the reduced manifold (2, ...,z = 0 is para-

metrized with coordinates (t°,¢!, ... ,t"/) and the holomorphic prepotential is [53, [

nfn’)

n' n—n'
ft 2% =it <Z ittt — > 5a5z0‘z5> g =(1,=1,...,-1)] (D.7)
i=1 i=1
in accordance to equation (D.§).

E. Reduction of the quaternionic Ward identity

We derive here the conditions on the quaternionic prepotentials and Killing vectors, dis-
cussed in section f.§, from the reduction of the quaternionic Ward identity (f.176), which

,52,



is essential for the validity of the N = 2 supersymmetric Ward identity involving the scalar
potential, that is the relation [fj:

1 1 1
L 2kRRS + S PAPE = S fas PE =0, (E.1)

After projection, and using the just found results P}\ =0; P)3( = 0, it decomposes in a set
of equations

e A=A;X=Y%

1 . 1. . 1 ;
T QukikS: + 5613P}\P§ -3 fast P =0 (E.2)
Xinka% + §€JPAP%: — §fAEI‘P§ = 0 . (E3)

Since P/j\ =0, and since f 5,7 = 0 (because G € G?)), then eq. (EJ) gives
E\=0, (E.4)

as indeed was expected from geometrical considerations.
Then, equation (E.J) becomes
1
A

Setting A = —1 and recalling that —Q s is half of the K&ahler form of the reduced
submanifold, we recognize that eq. ( expresses the poissonian realization of the

S 1.5 1
Q3 k3 kS, — ngEFPf:S =0. (E.5)

Lie algebra of the prepotentials P3 on the Kéhler-Hodge submanifold MEH  namely:

(P}, PeYp = fas' PR (E.6)
e A=A X=Y
Lyi st 1 ij p3 pi 1 Z pi
XQstkAkY — 3¢ PAly - §fAY Py =0 (E.7)
1 1. . 1
L2k kY + S PAPy = S fayt PR = 0. (E.8)

Eq. (E) gives a relation which has to be valid everywhere on the submanifold.

Since Q3, = 0, P¥ = Pi = 0, and considering (E4), then eq. (EJ) is identically
satisfied.

e A=X;¥=Y

1 1 Co1 .
Xletkgfkgf - geling’(ijz - §fXYZP2 =0 (E.9)
1 / 1 .. . . 1

T ukixcky + S PY Py — S fxy B =0. (E.10)

Eq. (E-9) is identically satisfied for fyZ, while eq. (E-I() is a relation to be satisfied
all over the submanifold.
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F. Computation of the N =2 — N =1 scalar potential

We want to solve here a puzzle raised in the text about the scalar potential. In the N =2
theory, the scalar potential has the form [f]:

VN=2 = _125115), + g, (WmWﬁ + WmWfl> +2NIN!
— (977 WKk + Ao ki) TV L® + UNTPEPE — SPRPET L. (1)

which manifestly does not contain contributions antisymmetric in the quaternionic prepo-
tentials or Killing vectors, nor it has interference terms P{ P& between quaternionic and
special-Kéhler isometries.

On the other hand, the N = 1 scalar potential:

- L 1
pN=1 _ 4 (ngszg” —3|L)% + ElmfAEDADE> : (F.2)

does instead contain both kinds of interference contributions, given the form of the super-
potential L = 1LX(Py —iP%) and of the D-term D" = —2(Imf)~1A¥(P2 + P3) which
appear quadratically in (F.2).

The interference contributions in (F.2) have therefore to cancel each other. As we
are going to show, this does indeed happen, in a way which involves non trivially the
properties obeyed by the special-Kahler and quaternionic Killing vectors. Let us analyze
and reduce separately the various contributions to the N = 2 potential, using all the
constraint relations found in section fj.

—128'"8,; = —12|L)?
= —3PYPL I LY — 6iP\ P LXT" (F.3)
grWIWYUAS = 4479, LV,T
= ¢V, LXV,L Py Py — 2P, PLUXY

=

= ¢V, LXV,L Py Py + 2P\ PLLXT" )

(F.
_7 _
gr7WETWy, = (Imf) " (PRP3 + PiPE) + 20 PPE (F.5)

where we have used equation ([C.10)) of appendix [0, the identity of special geometry (§.100])
and the definition of the prepotential P2, equation (B.93).

O2NIN] = 4¢°°V,LV.L
= ¢*V P\ V5Py + 2ig™V, Py VsPy, . (F.6)

The last term in equation (F.6) is transformed using the definition of quaternionic Killing
vectors:

2k3 Q5 = Vo Py (F.7)
the realization of the SU(2) algebra on the curvatures 7:

RO QY = —A20% iy + ANTVEQZ (F.8)
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and the normalization chosen for the metric on M H:

1
hsg = 5 Yss - F.
59 (F.9)

After some calculations we get:
2V Ply V5Pl = 4%kt ht LXTY
. i ATFY
= <4IP[1XP§] -5/ XZP?) IAL
= 4P\ P LXTY — 2PiPY(Imf) 1A%, (F.10)

where we have applied the quaternionic Ward identity ([.176]) discussed in appendix D] to
the present case and the definition of the prepotential PX, eq. (6-93). Collecting together

all the terms in egs. (F.3), (F.4), (E.5) and (F.I0), we find that the antisymmetric parts
in A,Y and the two terms in P[?Pg cancel against each other identically.

G. The N =2 and N =1 lagrangians in D =4

For reference of the reader we give here the lagrangian of the N = 2 theory and of the

N =1 theory as given in reference [[].!3

The N =1 lagrangian is, up to four-fermions terms:
_ 1 — . _
(detV)~1eN=1 = —5R+i (FAsF A F =51 — FAs FENF ) + 955V, 2" VH2T 4+

e,uu)\a e o .
+ﬁ (1%%171/1/1.,\ - ¢.M%Du%) +
1 /= X.A " N ~A m )\.E
+§ <fAE Y V,U)\o - f/\z)‘or}/ v# ) -
1 —i 7 —7 i
—i595 (X7 Vux! + X7 Vux') -
—9i3 (E.w“w”xiv“?j + Py Vuzi) -
—ilmfs (f;VAX?ww” + f,;VAX’EV%g) B
i —AN—i_ uv T —1_ urvye
=5 A FAXA N = 0 F an i X A) +
+2LY, S + 200 v e +
(i e L AT 1 (yeA <A e
+igiz <N]x Yo+ N xjv“w.u) + 50 <A Yo — Ao 'y“%‘) +
+FMiX '+ Mg + MAEX:\)‘? + Mas A AT
+MAZX:\XZ + MZWXA.XT - V(Za 27 q) 5

where the kinetic matrix fas; is a holomorphic function of z?, and the mass matrices
M;j, Mps, My are given by:

Mz‘j = ViVjL (G.l)

13Some misprints of ref. @] have been corrected
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Mps, = éN’@NAz (G.2)

1 1.
My, = —IZIHL/\/’Ag(?Z-DZ - 5k:JAgij, (G.3)

where we have set ]_-ij = %(.7:31, + %GWWFPAU), ]:!/L\V being the field-strengths of the vec-
tors Aﬁ.

Note that, since the scalar manifold is a Kahler-Hodge manifold, all the fields and the
bosonic sections have a definite U(1) weight p under U(1). We have

(Nas) = p(D™) = p(Py) = p(V) =0

p(Vit) = p(AY) = p(z") = p(gi3) = p
p(t) = p(¢) = p(O) = pl(e) = 5
p(¥*) = p(x') = p(A**) = p(e*) = —%
p(L) = p(M;;) = p(Mas) =1
p(L) = p(Mg) = p(Mys) = —1. (G.4)

Accordingly, when a covariant derivative acts on a field ® of weight p it is also U(1) covariant
(besides possibly Lorentz, gauge and scalar manifold coordinate symmetries) according to
the following definitions:

V,® = (82 + %p@ﬂC) P VP = <(9@* — %p@ﬂC) D, (G5)

where K(z,%) is the Kéhler potential.
On the other hand, the N = 2 lagrangian, up to four-fermions terms, is:

_ 1 . _
(detV) 1 £N=2 = —5 R+ 95"V, 7 + hao VgV +

E;u/)\o' A o
+ﬁ <1/Jﬂ YoPAvA — ¢A,ﬂopfx> -

i YA 7 L iA (7Y ) a
— 59 (X900 + N ,01 ) = (99,60 + L V67 +

+2i (NAEJ:;VAJ'LEW - /\/AEJ:IVA]-"*E“”) +
+{ = 9oV EAN = UV P + g5V FN A D +

+ U g C Y D s + h.c.} +
_ —A v SYT
+{fWAImNAz [4L% PPV eap — Aify Ny Plpe? +

1 —iA : _
+ Vil TN N P — Lo GO

—i—h.c.} +
+igi3WiABXf4w¢f§ + QiNo’?Za’y“T/)ff‘ +
+ [M“BZQ% + ML AP + M ABXZA)‘jB + h.c.} ~V(2%,9).(G6)
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Furthermore L?(z, Z) are the covariantly holomorphic sections of the special geometry,

A

= V,;L" and the kinetic matrix Aay; is constructed in terms of L* and its magnetic

dual according to reference [[]. The normalization of the kinetic term for the quaternions

depends on the scale A\ of the quaternionic manifold for which we have chosen the value

A = —1. Finally, the mass matrices of the spin % fermions M®?, Mup ij» M$y (and their

hermitian conjugates) and the scalar potential V are given by:

MOP = 2 AYPB ¢y p VI LA (G.7)

M = —AUR, K} (G.8)
.1

Mup ik = €aB gz*[if;ﬁk‘ﬁ\ + §1PAAB Vifi (G.9)

V(z7.0) = 07| (9okAkE + Ahuokike ) T'L® + g7 ;A PPEPE — ST LEPEPE| . (G.10)
The U(1)-Kéhler weight of the Fermi fields is

P@a) = POG) = PlGa) = 3. (G.1)
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