
29 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Floorplanning with wire pipelining in adaptive communication channels / Casu, MARIO ROBERTO; Macchiarulo, Luca. -
In: IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS. - ISSN
0278-0070. - STAMPA. - 12:(2006), pp. 2996-3004. [10.1109/TCAD.2006.882590]

Original

Floorplanning with wire pipelining in adaptive communication channels

Publisher:

Published
DOI:10.1109/TCAD.2006.882590

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1399096 since:

IEEE

2996 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 12, DECEMBER 2006

[6] P. Chen, D. A. Kirkpatrick, and K. Keutzer, Static Crosstalk-Noise
Analysis for Deep Sub-Micron Digital Designs. New York: Springer-
Verlag, 2004.

[7] A. Deutsch et al., “On-chip wiring design challenges for gigahertz opera-
tion,” Proc. IEEE, vol. 89, no. 4, pp. 529–555, Apr. 2001.

[8] H. Hidaka et al., “Twisted bit-line architectures for multi-megabit
DRAMs,” IEEE J. Solid-State Circuits, vol. 24, no. 1, pp. 21–27,
Feb. 1989.

[9] K. Itoh, VLSI Memory Chip Design. Berlin, Germany: Springer-Verlag,
2001.

[10] Y. Konishi et al., “Analysis of coupling noise between adjacent bit lines in
megabit DRAMs,” IEEE J. Solid-State Circuits, vol. 24, no. 1, pp. 35–42,
Feb. 1989.

[11] D.-S. Min and D. W. Langer, “Multiple twisted dataline techniques
for multigigabit DRAMs,” IEEE J. Solid-State Circuits, vol. 34, no. 6,
pp. 856–865, Jun. 1999.

[12] M. Redeker, B. F. Cockburn, and D. G. Elliott, “An investigation into
crosstalk noise in DRAM structures,” in Proc. IEEE Int. Workshop Mem-
ory Technol., Des. and Testing, 2002, pp. 123–129.

[13] I. Schanstra and A. J. van de Goor, “Consequences of RAM bitline
twisting for test coverage,” in Proc. Design, Autom. and Test Eur., 2003,
pp. 1176–1177.

Floorplanning With Wire Pipelining in Adaptive
Communication Channels

Mario R. Casu and Luca Macchiarulo

Abstract—The recent shift toward wire pipelining (WP) mandated by
technological factors has attracted attention toward latency-controlled
floorplanning. However, no systematic study has been published so far that
takes into account block and logic-delay limitations. This paper aims at
filling the gap by showing that block delay can limit and possibly prevent
any real gain WP might promise. In this paper, the authors also show
how a modified adaptive WP scheme, on the other hand, allows relevant
gains. They built a SoC floorplanner based on the use of adaptive and
nonadaptive WP, which optimizes the data rate, taking block delay into
account. The results of new and old WP techniques applied on benchmarks
and on an MPEG decoder are compared to the optimal results obtained
when no WP is employed.

Index Terms—Floorplanning, systems-on-chip, wire pipelining (WP).

I. INTRODUCTION

The different scalability of logic and local interconnects on the one
hand, and global wires on the other hand, is a serious concern that
might jeopardize the advantage of CMOS technology scaling [1]. Wire
pipelining (WP) helps facing this problem. In addition to buffer inser-
tion, wires may be segmented by intermediate flip-flops or latches. The
throughput of the connection increases as well as the latency of the
connections, thus possibly jeopardizing the frequency increase.

This new technique has attracted attention toward latency-controlled
floorplanning (see [2]–[6], or the latest [7], for example). However, to
the authors’ knowledge, no systematic study has been published so far
that takes into account block and logic-delay limitations. In this paper,
based on the work we presented at the International Symposium on
Physical Design [8], we aim at partially filling the gap. We show that

Manuscript received June 26, 2005; revised September 17, 2005 and
December 18, 2005. This paper was recommended by Associate Editor
P. H. Madden.

M. R. Casu is with the Dipartimento di Elletronica, Politecnico di Torino,
I-10129 Turin, Italy (e-mail: mario.casu@polito.it).

L. Macchiarulo is with the Department of Electrical Engineering, University
of Hawaii, Honolulu, HI 96822 USA.

Digital Object Identifier 10.1109/TCAD.2006.882590

block delay can limit and possibly prevent any real performance gain
the WP technique, if implemented in a too conservative way, might
promise. We also show how a different WP technique exploiting the
locality of computation of some blocks, which from time to time do
not read data from inputs with added wire latency, can be the key to
fulfill the promise of high data rate of WP. To this aim, we adopted a
floorplan strategy that optimizes the data rate of systems (DR) based
on standard and modified WP using suitable cost functions. We took
into account various models of block delay and compared them to the
optimal results obtained when no WP is employed.

In Section II, we briefly recall the characteristics of a standard WP
technique. Its limits are highlighted in Section III through a mathemat-
ical derivation that takes into account the effect of intellectual property
(IP) block delays. In Section IV, the performance results obtained
with our new floorplanning strategy employing standard WP, with
and without limitations imposed by the blocks delays, are reported.
The foundations of the alternative WP methodology are described
in Section V, while the results of its application using a modified
floorplanner are outlined in Section VI. The effectiveness of the new
technique is highlighted by means of a realistic case study, an MPEG
decoder. Finally, conclusions are drawn in Section VII.

II. PROMISE OF WP

The increased bandwidth of wires guaranteed by WP comes at the
cost of increased wire latency. Such change of paradigm not only opens
way to a number of new opportunities (see, for example, [9] and [10])
but also gives rise to relevant issues that range from functional and
architectural to physical-design aspects (see for a review [3], [11],
and references therein).

Even if from an abstract point of view, it might be possible to run
wires at any desired frequency by simply increasing the number of
pipeline stages, we need to investigate when this is in fact beneficial to
the overall performance of the system. We restrict our analysis to the
case (as that of systems-on-chip) in which designers connect IP taken
from libraries and are not allowed to modify their internal structure,
and no architectural features are present to render their IP indepen-
dently “latency-tolerant.” A class of communication protocols that
allow transparent insertion of arbitrary latency is the so-called Latency
Insensitive Protocols (LIP), which, by means of special wrappers
around the blocks and pipeline elements along the wires, make a sys-
tem with added latency functionally equivalent to a zero-latency sys-
tem [9]. The equivalence is obtained by making the blocks “patient,”
i.e., suspending their operation by suitably gating their clock—if
at least one of their inputs is not ready to be processed because of the
latency.

Latency insensitiveness guarantees a strong form of equivalence
between the original and the pipelined system: all the execution traces
differ in “non-valid” time slots where no computation is allowed. This
means that a one-to-one mapping between the traces is enforced. This
is different from usual functional-level pipelining where there is no
concept of nonvalid slots, and two traces might depend substantially
on the pipelining depth.

To introduce performance measures in such cases, we first give some
definitions.

1) A block is a computational logic element. In our analysis,
a block behaves as a synchronous element.

2) A system is a collection of interconnected blocks. Formally,
it can be represented with a directed graph G = {V,E} whose
vertices V are the blocks, and connections are edges E. The
system is synchronous to a clock frequency F .

0278-0070/$20.00 © 2006 IEEE

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 12, DECEMBER 2006 2997

3) The throughput of a block is its average number of computations
per clock cycle.

4) The throughput of a system (TH) is the worst throughput of its
blocks.

5) The DR is the product of its throughput TH and frequency F ,
that is, the average number of computations per unit time.

According to this set of definitions, the throughput of a non-WP system
is TH = 1 because every block executes exactly one valid computation
per clock cycle.1 DR and F have the same meaning for these non-
WP systems due to the unitary value of TH. On the contrary, since
WP systems may be “patient” and suspended from operating for some
clock cycles, their actual throughput is in general < 1. Therefore,
the correct metric for the performance evaluation is the product of
TH and F , i.e., the DR. In the WP case, differently from the non-WP
one, DR and F have not the same meaning because of the possible
throughput reduction.

Now, it is clear from the previous discussion that if a system with
WP allows a frequency increase of N×, in order to have a significant
DR improvement, and so to make WP meaningful, TH should not
be degraded more than 1/N×. It can be shown that the throughput
limitation of systems using this transparent WP technique arises from
the presence of loops in the system graph [12]. A loop of m blocks
with a total of n pipeline stages along the loop has the following
throughput:

TH =
m

m+ n
=

m

m+
m∑
k=1

nk

(1)

where nk is the number of delays added to the kth branch of the worst
loop. It can also be shown that the system throughput is bounded
by the worst loop, which is the netlist loop having the minimum
ratio m/(m+ n) (for alternative proofs of these properties, see [3]
and [12]). n depends mostly on the physical design, i.e., on how
short we have been able to keep the long wires by an intelligent
floorplan. It is thus possible to insert this cost in a throughput-driven
floorplanning and obtain better TH figures than using wirelength, area,
or a combination of the two cost functions [3].

III. MATHEMATICAL FRAMEWORK

Each of the system graph edges eij ∈ E is annotated with the worst
delay Tij of the connections between block i and block j.2 Tij includes
two contributions.

1) The interconnect delay lij refers to the global wire between the
two blocks and is related to the wire length measured as the
Manhattan distance between two pins.

2) The internal delay dij includes (combinational) logic and local
wire delay of the I/O stages of blocks i and j.

It is well known that if a line of length l is optimally buffered with
standard repeaters, its delay becomes proportional to l [13]. We thus
normalize to one (here and in the rest of this paper) this proportion-
ality coefficient so that “delay” and “length” become synonymous.
The name we gave to the interconnect delay lij derives from this
assumption.

Besides edge delays, each vertex, i.e., each block, is characterized
by an internal critical path Ti that does not depend on its external

1We define valid computations also as those cycles where a gated clock is
possibly used, considering them as “no-operation (NOP).”

2To be general, Tij should also include delays between the system I/O
terminals and blocks. If we consider I/O pins homologous to blocks, the
definition also holds true for these cases.

connections. In a non-WP system, the largest delay among Ti and
Tij , ∀(i, j), is the system critical path Tscp that dictates the system
frequency F = 1/Tscp.

It is obvious that WP can be effectively applied to a non-WP system
only if the system frequency is limited by a slow wire and not by an
internal critical path. In formulas, ∃(i, j) : Tij = Tscp. Otherwise, no
matter how small are made Tij , the system clock will be limited by a
block’s critical path Ti.

Suppose then to start with a non-WP system, which does not meet
a frequency constraint, Fmin = 1/Tmax because of some global inter-
connect limitation; in formulas, ∃(i, j) : Tij = Tscp > Tmax. Suppose
also that lmax is the maximum distance allowed between two pipeline
elements, e.g., two flip-flops, so as to respect the frequency constraint.
Since delays and lengths are synonymous in our derivation, it turns
out that lmax = 1/Fmin = Tmax. For now, suppose that the internal
delays of each connection are negligible, that is, dij � 0,∀(i, j),
and so Tij � lij . Accordingly, there is at least one connection longer
than lmax. Formally, ∃(i, j) : lij > lmax.

Suppose now to insert pipeline stages in each connection of the sys-
tem at stake. Each inserted pipeline element increments the connection
latency of one sequential delay. The number of delays nij in a single
edge of the graph will be given by

nij = �lij/lmax�. (2)

As stated in Section II, the system throughput TH depends on the
total number of delay elements in loops. With reference to our graph
model, a loop is a set of m consecutive edges that start and end in the
same vertex crossing m nodes. If we enumerate the traversed edges
and related length lk, k ∈ [1,m], each edge will contain nk delays
calculated according to (2). The throughput of the loop will be given
by (1) and the system throughput by the worst loop.

Given that the WP system can be clocked at Fmin = 1/lmax, the
DR will be given by

DR =
m

m+
m∑
k=1

⌊
lk
lmax

⌋ · 1

lmax
. (3)

By using the basic property of the floor function x− 1 ≤ �x� ≤ x, we
can easily derive a DR upper bound

DRUB=
m

m+
m∑
k=1

(
lk
lmax

− 1
) · 1

lmax
=

1

1
m

m∑
k=1

lk

=
1

lm
(4)

where lm is the average branch length of the loop, and a lower bound

DRLB =
m

m+
m∑
k=1

lk
lmax

· 1

lmax
=

1

lmax + lm
. (5)

The DR without WP DR0 is simply given by

DR0 = TH0 · F0 = 1.0 ·
1

L
(6)

where TH0 = 1 is the unitary throughput for a system without WP,
and F0 is the maximum allowed frequency. As long as the delays dij
are negligible, F0 is limited by L, which is the longest interconnect
delay in the system, and L = maxi,j(lij). Using WP for this kind of
systems is convenient only if the speedup, i.e., the ratio DR/DR0, is
significantly higher than one, in order to compensate for the increasing
problems of high-frequency clocks and related power dissipation and

2998 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 12, DECEMBER 2006

timing issues. Using (4)–(6), we obtain that the speed-up SU lays
between two bounds

L

lm + lmax
≤ SU ≤ L

lm
. (7)

Interestingly, increasing the frequency in the WP system, and so
augmenting the wire-pipe depth, reduces lmax but cannot further
increase the speedup over L/lm, which merely depends upon the
floorplan strategy used.

If the floorplanner is able to keep close the blocks belonging to the
loops, the average length lm would be reduced, and the effectiveness
of using WP is maximized. Only the cases in which lm is substantially
lower than L are worth, considering the overheads arising from the
increased clock frequency.

A. Effect of Block Delay

So far, we supposed the blocks ideal and attributed all frequency
limits to the interconnects. Let us admit now that each edge in the
system graph is characterized by a nonnegligible delay dij and infer
the corresponding system DR, with and without WP.

For a zero-latency system, the maximum DR becomes

DR0 = 1.0 · Fmax =
1

maxi,j(lij + dij)
(8)

where, in general, maxi,j(lij + dij) is different from L+ dmax,
where L was introduced before, and dmax is the maximum delay,
dmax = maxi,j(dij).

For this case, too, the use of WP makes sense only if the frequency
is limited by global interconnects. We are then supposed to set a
constraint Fmin, and that the lower bound is due to interconnect limits,
viz. Fmin = 1/lmax. The throughput is

TH =
m

m+
m∑
k=1

⌊
lk+dk
lmax

⌋ (9)

and, after a number of easy algebraic steps, it turns out that DR is
bounded as follows:

1

lm + dm + lmax
≤ DR ≤ 1

lm + dm
(10)

where dm is the average delay of various edges (i.e., of the dij type)
belonging to the worst loop

dm =
1

m

m∑
k=1

dk. (11)

Consequently, upper and lower bounds to speed up SU are

maxi,j(lij + dij)

lm + dm + lmax
≤ SU ≤ maxi,j(lij + dij)

lm + dm
. (12)

However, (12) holds true as long as lmax > dmax. The deeper
the WP, the faster is the interconnect, but due to the slowest block,
the frequency limit is 1/dmax. Therefore, even though we reduce the
WP flip-flop distance to lmax = 0, the maximum speedup would be
bounded by

maxi,j(lij + dij)

lm + dm + dmax
≤ SU ≤ maxi,j(lij + dij)

lm + dm
. (13)

In the general case, whether the WP system with delays is worse than
the previous ideal case or not depends on the dij values. However,
it is likely that the real case is worse. Suppose for instance the ideal

TABLE I
GSRC AND MCNC BENCHMARKS. IDEAL CASE

WITHOUT BLOCK’S DELAY

speedup is SU = L/lm = 1.5 according to (7). Suppose also, for the
sake of simplicity, that delays and average length lm are all equal to
dmax. By evaluating (13), we get 0.833 ≤ SU ≤ 1.25, which, in the
worst case (0.833), loses 44% compared to the ideal case (1.5) and
25% in the best case (1.25).

It is clear from the previous discussion that keeping dij as small
as possible is mandatory. Designers are used to break possible critical
paths crossing the boundary between two blocks by preplacing bound-
ary registers at the blocks I/O ports. This practice already limits the
logic gate delays in dij . On the other hand, the blocks’ internal inter-
connects still may play an important role. In Section IV, we present
some DR results obtained using a throughput-driven floorplanner [3],
with and without considering the blocks’ delays.

IV. TH-DRIVEN FLOORPLAN

We now report some results obtained running the floorplanner [3]
over some of the Gigascale Systems Research Center (GSRC) and
Microelectronics Center of North Carolina (MCNC) benchmarks [14].
Our floorplanner is derived from the publicly available PARQUET. We
refer the reader to [16] and [17] for further details on the floorplanner
and to [3] for the modifications to the internal cost functions required
for taking WP into account (but see the brief comparison with the new
floorplanner described in Section V).

For the nonpipelined systems, we ran floorplanning experiments
until we found the shortest possible lmax compatibly with n = 0 and
so TH = 1 in (1) that is a nonpipelined optimum. For the WP system,
we repeated the experiments allowing pipelining and identifying the
maximum DR for higher frequency values. Table I summarizes the
results of throughput and DR for both systems, with WP (DR) and
without (DR0), obtained in the ideal case of no block delay. With
respect to our previous work [8], these results have been improved due
to a better search of the maximum DR.

Lengths are in percentage of the die edge, computed as the square
root of the sum of the blocks’ area. We normalized the die edge
to 17 mm, according to the ITRS’03 estimations for the high-
performance dies [1]. As a result, all benchmarks have the same
total area, regardless of the blocks’ number and size.

Based on L and speed-up SU columns, we can compute the average
length lm of the worst loop branch for the LIP case, according to (7).
For the benchmarks considered, the values, in percentage of the die
edge, are also reported in Table I. They can be suitably compared to the
maximum length L of the case without WP for a better understanding
of the speed-up figure.

It is interesting to notice that if we do not set any constraint on the
minimum delay in the pin-to-pin connections, i.e., dij = 0, as we did
to obtain the results reported in Table I, the maximum DR found by the
successive runs of floorplanner is for lmax → 0 (Fmin → ∞), which
is in strict accordance with the upper bound of (7). According to (2),
nij → ∞ as lmax → 0, and consequently TH → 0 as of (1). In spite

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 12, DECEMBER 2006 2999

TABLE II
BLOCK DELAY PROPORTIONAL TO BLOCK’S EDGE

TABLE III
BLOCK DELAY EQUAL TO 13FO4

of the throughput degradation, the DR increases, like the SU column
in Table I proves. This is an interesting result because it shows that the
floorplanner is able to keep short the average interconnect lm of blocks
in loops. As a result, DR increases because the throughput degradation
is more than compensated by the clock-frequency increase.

The previous case was that of a system wherein all the blocks have
registered inputs and outputs that, although not uncommon, cannot
represent the entire spectrum of applications (especially for high-
performance systems). We then considered two extreme approaches
to take block delays into account. We considered two types of delays
related to internal wires or logic. In the first case, we supposed the
delay barely proportional to the block edge calculated as the square
root of the rectangular block area (i.e., the geometrical average of
the two edges). We assumed the proportionality factor equal to 1.0
to represent a mild dependence on the block size. The second choice
consisted in choosing a “constant” delay, i.e., independent of the block
size. The rationale is that of attributing all the delay to logic stages
whose depth is independent of the block size, and it only relies upon
the designer’s choices. We chose a delay equal to 13FO4, that is,
13 times the delay of an inverter loaded with four identical inverters
(fan out of four). This is the value used in the ITRS for computing
the estimated clock frequency of high-performance microprocessors
[1]. We took the values of logic and interconnect delay from the
roadmap in order to define a proportionality factor between the two.
Again, we supposed that the wire delays increase linearly with wire
length, i.e., the case of buffered wires. It turned out that given the
ITRS predicted die area and die edge, and defined 100% the unitary
delay of a global buffered wire spanning a die edge, a single FO4
delay equals 5% of that wire delay. Therefore, 13FO4 corresponds to
lmax = 13 · 5 = 65% (buffered-wire delay). In other words, 13FO4-
stages logic delay equals the propagation delay of a buffered line of
length 65% of a die edge.

Tables II and III report the results for these two choices. From
Table II, we observe that the delay proportional to the block’s edge
leads to results that are not univocal for all benchmarks. While the
GSRC suite (n10, n30, n50, and n100) shows a similar if worse behav-
ior than the ideal case, some MCNC benchmarks do not experience any
improvement. From Table III, we observe that the impact of a constant

block delay is such that for almost all benchmarks, there is no more
evidence of the effectiveness of using wire pipes.

We observe a trend toward a generalized reduction of the speedup
when the delay becomes relevant, even if there are exceptions for given
values of FO4 or block/edge proportion. From this set of experiments,
we can draw the conclusion that increasing the DR for this type
of transparent WP systems, with respect to a generalized slowdown
solution without added wire latency, is certainly not an easy task. If
the block’s delay is negligible compared with the maximum delay
between pipeline elements lmax, the speedup is, in general, > 1, but
the amount of actual DR increase depends on the circuit geometric and
netlist characteristics. For higher delay values, obtaining a significant
speedup may be a hopeless task.

So far, we have analyzed a class of systems that use WP in a totally
transparent way. Blocks are encapsulated within wrappers that make
them patient when input signals are not ready yet due to the wire
latency. This is the very reason of the throughput reduction expressed
by (1) and in the end of the bad speed-up results reported above for
the blocks’ delay case. In the next section, we introduce a new class of
WP systems where a modification to the protocol aims at breaking this
TH limitation. The degradation shown in Tables II and III, of course,
will not prevent the system from being employed in cases where all
blocks have registered inputs and outputs (as previously mentioned).
The advantages of a modification of the protocol will be even greater
in such cases.

V. DYNAMICALLY ADAPTIVE COMMUNICATIONS

The underlying assumption of our previous derivation and of the
results obtained after floorplanning was that every block reads all its
inputs in every clock cycle. However, it is likely that the computation
within the blocks has some degree of locality because there certainly
exist states where the blocks do not read one or all of their inputs and
execute some local computation. This is certainly peculiar to blocks of
a relevant complexity. As an example, a microprocessor with a local
L1 cache accesses an L2 memory only in case of a miss. In other
words, the content of some input connections is ignored from time to
time. This property can be exploited in order to break the throughput
limitation of (1), as noticed in [15].

It can be shown that an implementation of an extended version of
the latency-insensitive protocol is possible that allows this form of
adaptiveness. Although still falling short of the flexibility of archi-
tectured pipelines as those found in a microprocessor, such protocol
has the advantage of maintaining the same computational traces and,
therefore, the communication profile as the unpipelined system that
can be evaluated up front and conveniently used in the optimization
process.

In order to update (1) to fit this new situation, we first need some
definitions. Suppose that a given task of the blocks belonging to a loop
requires N computations, of which αN is done with “closed” loop
and (1− α)N with “open” loop (α ≤ 1). Each computation takes
one clock cycle when the loop is open and 1/TH clock cycles when
closed. The number of clock cycles required to finish the computation
is M = (1− α)N + αN/TH. The effective throughput, that is, the
average number of computations per clock cycle, will be given by
THe = N/M that turns out to be

THe =
N

M
=

1

1− α+ α
TH

. (14)

When α = 1, we reobtain THe = TH as of (1). When instead α < 1,
we get THe > TH. This might mean that, for a period of a few system’s
clock cycles, a potentially limiting loop is actually open, so that the

3000 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 12, DECEMBER 2006

overall performance of the system is related to the most critical active
loop rather than the most critical loop altogether. This increases the
potentiality for higher overall performance (that, as underlined in the
previous sections, needs to be computed in terms of DR rather than
pure clock cycle and/or throughput).

It is possible to show, although not in the scope of this paper, that
a modified WP could allow such a flexibility at a minimal cost. We
implemented a suitable protocol in a VHDL model, which proved to
be completely compliant with the adaptive requirements.

We try here to develop a physical-design system that takes into
account of minimal information in this respect, namely, the average
channel occupation, to increase the possible throughput of a heavily
WP system beyond the theoretical limits described and analyzed in the
previous sections. We will proceed to deduce some basic cost functions
in this section.

Equation (14) evaluates the effective throughput of a single loop.
A system may entail more than one loop. The case of adaptive
communications differs from the case where all loops are active at all
time, and in which the effective throughput is statically determined by
the worst loop. In the case at stake, the worst loop cannot be statically
determined because it may vary from time to time, depending on the
activation of the channels that connect the various blocks. However,
providing a physical-design system with cost functions based on full
profile information and details of operation is not practical. In order to
derive simpler cost functions, we need some simplifications. A simple
formula can be derived on the basis of an assumption.
Assumption 1: The blocks communicate in such a way that no

physical time is lost in switching between the condition in which a
channel is used and that in which the channel is idle.

The practical scheme we developed shows that, while the context
switching does not entail any overhead for the local node (the wrap-
pers are able to adapt immediately to the change in their inputs),
information has to propagate throughout the loops thus generating a
potential overhead that is related to the loop’s length. However, if
the communication occurs in bursts, the potential overhead of context
switching will be amortized and made negligible. We will work under
this hypothesis and show in the experimental section that is conducive
to relatively predictable behavior.

Under the assumption, the system in each moment will work at a
maximum throughput given by the most critical active loop present,
which is the most critical loop whose branches are all active at the
same time.

Bearing in mind the fact that the adaptive protocol will not modify
the computation details, but only their timing, we can define the logical
time as the number of clock cycles needed to perform a given compu-
tation in the system without pipelining, while the physical time takes
into account possible nonvalid time slots introduced by the protocol.

In order to quantify the performance of the system, let us suppose
thatWi represents the logical period of time in which the ith loop, with
associated throughput THi, dominates the system’s throughput. Then,
the physical period corresponding to Wi computations is given by the
formula Wi/THi, because each data calculation in such conditions
implies a number of clock periods equal to 1/THi. Therefore, the over-
all physical time spent by the system to complete its computations is
obtained by summing the physical periods of alternatively dominating
loops, that is,

∑
i
Wi/THi, while the number of logical time steps is

just Ω =
∑

i
Wi. This gives a value for the overall throughput of the

computation of

∑
i

Wi∑
i

Wi

THi

=

(∑
i

Wi

Ω · THi

)−1

=

(∑
i

wi
THi

)−1

(15)

where wi =Wi/Ω is the time fraction in which the most critical
throughput is THi. Even if this formulation allows us to estimate the
performance of an adaptive system, it is still impossible to use it as a
cost function for any optimization purpose because of the exponential
loop dependence and the exponential number of loops.

In order to render the analysis of such a system manageable,
we propose to define a quantity that defines each channel’s activity
independently of the rest of the system, the channel activation ratio,
which represents the logical time fraction in which a channel is active.
It is impossible to know such quantity without any detail of the
system’s behavior, and an exact evaluation still requires a complete
profiling of the overall system, but the great advantage with respect
to loop quantities is that their number is bounded by the system
graph-edge size. Furthermore, the logical time in which a channel
is used remains the same no matter how many pipeline stages we
introduce and, therefore, can be assessed through a single profiling
experiment (or better, averaging significant profiling) and not repeated
for potentially, each and every different pipelining configuration, as
implied by the techniques described in [4]–[6].

In order to exploit such quantities in a computation, we need to make
the additional assumption.
Assumption 2: The channels’ activation ratios can be considered

statistically independent.
This assumption is of course far from being true in real cases,

as communication channels tend to be strictly correlated from the
functional point of view. However, the independence needed for
our purposes does not imply a complete functional independence,
but rather a single cycle decoupling, which is normally true at the
hierarchical level we are considering. Blocks with high complexity
will normally execute complex tasks internally before communicating
with each other. An example of such cycle-level independence will
be shown in the case of an MPEG decoder whose communication
infrastructure is analyzed as a case study in Section VI.

We also studied cases somewhat between the spectrum of systems
with complete uncorrelated signals (out MCNC and GSRC cases) and
strictly deterministic behavior, such as that of a simple processor core,
that behaves acceptably from this point of view (we cannot report such
simulations for space reasons).

Under the independence assumption, together with assumption 1,
which is enforced by the burst nature of most of the communications,
it is easy to compute the values wi for each loop. In fact, given a loop
with n edges ej , its weight wi is simply the product of the single
edge’s activation αji, that is, wi = Πjαji. This property is valid also
under the less restrictive set of assumptions that allow for nonburst
communication. Wrapping up the previous results

THtot =

(∑
i

∏
j
αji

THi

)−1

. (16)

The formulation is clear, but it allows the computation of the overall
throughput only by analyzing an exponential number of loops.

Given the previous discussion, the necessity for an heuristic com-
putation to embed in existing physical-design environments is more
pressing than ever; in order to perform some technology explorations,
we tried to introduce an approximate calculation of the throughput that
could be easily embedded in a floorplanning environment. We decided
to use the function described in [3], modified in order to include the
effect of channel activity, as detailed in the following steps.

1) For each pin to pin connection, we evaluate the Manhattan
distance between the pins.

2) The distance is divided by the maximum length admissible
between clocked elements.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 12, DECEMBER 2006 3001

TABLE IV
BLOCK DELAY EQUAL TO 13FO4, ADAPTIVE CASE. TH E. AND T. = ESTIMATED AND TRUE TH, ε = PERCENT ERROR, SU = PERCENT SPEEDUP

3) This last number is divided by the length of the smallest loop to
which the connection belongs.

4) The number is multiplied by a weight related to the activity of
the channel.

5) All such values are summed.

Incidentally, the only difference of this cost function with respect to
the one described in [3] consists in the fourth step, here, in boldface:
the algorithm used in [3] is equivalent to this last one when weights
are all set to one (or in general equal to each other). As for the weight
used to take into account the channel activity within the floorplan cost
function, we tested four different strategies. The simplest consisted in
multiplying for the activity ratio of the ith channel, ×αi (function f1
in the following). Another function was ×1/(2− αi), which does not
underestimate the smaller activities (function f2). Another was that
of multiplying for the maximum activation ratio among the channels
belonging to the loop under consideration ×maxi(αi) (function f3).
The last tried function (f4) was rather different. We compute up
front, before optimization, another heuristic multiplicative cost of
passing through a node that takes into account the activities of the
connections. In practice, instead of dividing by the length of the
smallest loop each edge belongs to, as of point 3 of the procedure
outlined in the previous section, we use a cost that is the effective
throughput in (14).

In addition to the floorplan optimization, the tool output consists
also of a system throughput estimation by means of a worst loop
approximation. In practice, the tool finds the worst loop according to
(14), not differently from [3] where (1) was used. As for the evaluation
of the loop activation α in (14), we tested different solutions like
for the cost functions used within the floorplan engine. We found
that a better fit with VHDL simulations is obtained by searching the
loop having minimum THe, calculated using α = maxi(αi) in (14),
with αi being the activities of the edges that belong to such worst
loop. The reason why such choice gives better results has still to be
investigated.

VI. RESULTS AND COMPARISONS

In order to obtain some meaningful figures, we followed a twofold
experimental evaluation: We first considered the MCNC and GSRC
benchmarks of the rest of the paper and try to settle the question
as to whether adaptive WP can provide acceptable advantages under
the most adverse delay model (13FO4) discussed previously, then, we
analyzed the performance of a well-defined system, an MPEG decoder,
using real profiling information to simulate the systems.

A. GSRC Benchmarks

The experiments described here use the same benchmarks of Sec-
tion IV, with a substantial difference: We introduced a number de-
scribing the activity of each channel between blocks, so as to make

Fig. 1. n10: Optimization of DR with no block delay.

it possible to take advantage of adaptive schemes. As no functional
information is given with the benchmarks, we decided to describe
the channels as being used in a burst mode with lengths and relative
phases uniformly distributed (coherently with the assumptions of the
previous section). With respect to our previous work [8], we ran new
experiments with more stringent conditions, i.e., with higher channel
activities, in order not to bias too favorably the results.

After generating (in a suitable format) the “new” benchmarks, we
proceeded to compute two values: an optimized non-WP solution and
an adaptive one. The first is generated in a similar way to Section IV.
The adaptive solution is generated by employing a floorplanner that
optimizes the heuristic cost function described in previous section (we
modified PARQUET in such a way that loop computation and channel
activity annotation are possible). The result is then automatically
translated into a VHDL netlist, which mimics the behavior of the real
system by allowing the adaptive communication between blocks. Each
block functionality is simply that of a counter, which allows tracking
the evolution of the system without the necessity of a full-scale
simulation. Of course, each channel is represented by the appropriate
pipelining delays derived from the floorplanner. The behavior of the
channel is emulated by a simple function, which generates a bit of
information per block input using the activity values derived from their
description. The detailed implementation of the adaptive protocol is
outside the scope of this paper; it is important to note, however, that it
represents a real RTL design, which can be easily turned into a synthe-
sizable description. An incidental result is therefore that of giving an
opportunity to validate such an implementation. This VHDL model is
then simulated and its real performance compared to the nonadaptive
design. Various choices for the systems’ frequencies were simulated in
order to obtain a good approximation of the optimum. However, due to
space reasons, we report only the results obtained for lmax = 13FO4

3002 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 12, DECEMBER 2006

Fig. 2. GSRC n100 heuristic cost f1–f4 versus VHDL simulated cost during and after floorplan optimization.

which, as stated in Section IV, proved to be untractable—at least
for the technological parameters we considered—by the nonadaptive
pipelining shown before.

The results are shown in Table IV. The true DR, as outcome of
the VHDL simulations, is reported along with the estimates from
the floorplanner. The different results obtained using the different
weighting functions (f1–f4) are reported. Since lmax = 65% for all
cases in the table, we did not report DR results, but only throughput,
being the first readily obtained by the second divided by lmax. As the
table shows, but for few cases, the speedup is positive and in some
cases also significantly high. It has to be reminded that, contrarily to
Table III where the maximum DR has been reported varying lmax,
here, all results refer to the case lmax = 65%. Thus, it is likely that
these are not optimal results in terms of speedup. Best SU results, in
average, are obtained with function f1 even though the differences are
small and unfortunately do not help giving a definitive answer about
which function is preferable. The error between tool estimates and
simulated true values of throughput is small and proves the goodness
of the TH estimator described before.

The particularly bad estimation performance in the case of n10
could be explained by the size of the benchmark: The estimation takes
advantage from the averaging out effect of the many loops, which in
this case is simply insufficient.

For a single case n10, we report in Fig. 1 the results obtained using
cost function f4 and varying lmax. Two-DR curves for the nonadaptive
and adaptive WP cases with 0FO4 block delays are reported. The
horizontal line is the DR of the nonwire-pipeline case. We observe that
the DR curves are not monotonic with respect to lmax or equivalently
to the frequency. This implies that DR optimization has to deal with

local optimum points. Nevertheless, the DR increases moving toward
higher clock frequencies (lower lmax). This result was anticipated in
[3] for the nonadaptive case and is confirmed now for the new WP case
considered in this paper. The reason is that the throughput degradation,
both according to (1) and (14), is overcompensated by the increase of
clock frequency (decrease of lmax).

B. Cost-Function Assessment

We report here some results we obtained with the aim of assessing
the quality of our cost functions. Solid lines in Fig. 2 represent
heuristic costs f1–f4 versus real cost, viz. 1-throughput, obtained after
floorplan optimizations of benchmark n100 varying lmax from 65%
to 300%. True costs are estimated by postfloorplan-cycle accurate-
VHDL simulations. Unconnected points represent intermediate floor-
plans before final optimization. Estimated and real costs are positively
correlated, as was expected. All curves show a good behavior, although
unconnected points seem less aligned in f2.

C. Case Study: MPEG

In this section, we will try to validate the methodology with a
real-life example that is the typical (although small) case for which
heavy WP might be appropriate: an MPEG decoder. We follow in this
example the implementation of the decoder described in [18]. In such
implementation, the various blocks of the system communicate with
each other in bursts followed by channel idle periods. Owing to a
useful timing diagram of activation of the various constituent blocks
of the decoder reported in [18], it is possible to quantify exactly the

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 12, DECEMBER 2006 3003

Fig. 3. MPEG: Optimization of DR with 13FO4.

Fig. 4. MPEG: Optimization of DR with no block delay.

duration of the activity periods, like the number of clock cycles to
perform a given task, and relate it to the number of cycles needed
for a complete MPEG frame decoding. It is thus possible to estimate
the channel activation factors and formulate a floorplanning problem,
which is compliant with our description as of Section IV. The only
difference is that the system enforces a strict data communication
dependence that contradicts the randomness hypothesis: However, the
experimental results show that the optimization potential of a pipelined
solution is substantial.

We first described the system in standard format, together with
channel annotations and activities taken from the real behavior. Then,
as a first phase, we optimized the system as detailed for the other
benchmarks, that is, using randomly generated phases of the channel
activities (bursts of real duration but with random beginning). In a
second phase, we used the optimal floorplan thus obtained (both case
0 and 13FO4) and simulated the communication channel with the real
system timing, rather than random bursts using a VHDL simulator.

Figs. 3 and 4 report the DR curves already reported in Fig. 1 for the
n10 benchmark (function f4), now both for 13 and 0FO4 delays. DR
curves obtained with the “real timing” of the MPEG blocks are plotted
as well. The impact of adaptive wire pipelines is more effective in
increasing the overall performance, especially when the block delays
are negligible. In the 13FO4 case, the minimum possible lmax is 65%
of the die edge because of the frequency constraint set by the block
delays. The gains at lmax = 65% are 0% for the nonadaptive case and

85% and 22% for the two adaptive cases, “random” and “real” burst
phases, respectively. In the no-delay case, the gain depends on how low
lmax is kept compatibly with technology and logic block constraints.
As for the latter, we assume that an aggressive gate-level pipelining
is able to push the block frequencies at the 13FO4 case and possibly
more, in such a way that system clock frequency is always limited by
the interconnects. For example, at lmax = 60%, the gains are +35%,
+48%, and +19% for the same three cases, while at 10%, we get 2×,
5×, and 2.2×.

VII. CONCLUSION

In this paper, we focused on the floorplan of systems-on-chip based
on the use of IP blocks and WP interconnects to improve the DR.
We first introduced a mathematical framework to give a sound basis,
which helped understanding the opportunities as well as the limits of
this technique. In particular, we analyzed and modeled the detrimental
effect of the delays of the IP blocks, including internal logic and
interconnect delays. The maths suggested that not keeping such delays
as small as possible would jeopardize the increase of performance that
WP seems to promise. The experimental results on GSRC and MCNC
benchmarks we obtained, by running the floorplanner we presented in
[3] in this new context, confirmed the mathematical intuitions.

In the second part of this paper, we considered the use of “adaptive”
WP, which tries to benefit of the clock-frequency increase of WP while
limiting the reduction of system throughput that is due to the latency
of pipeline elements in the loops of the system netlist. We adapted the
floorplan tool to this new context by changing the cost function used in
the simulated annealing algorithm. Running the experiments over the
same benchmarks and in a realistic case study showed that it is possible
to lessen the impact of block delays and to recover the speedup that the
standard application of WP loses.

In the future, we would like to concentrate on three issues: finding
cost functions that best estimate the real performance, both to be
used inside the optimization loop and for final evaluation; relaxing
the assumptions of this paper, including the analysis of multiclock
domain systems; and comparing the performance of the floorplanner
with other similar contributions [4]–[6] by addressing the somewhat
different problem of microarchitecture planning.

REFERENCES

[1] The International Technology Roadmap for Semiconductors, SIA. 2003.
[2] M. R. Casu and L. Macchiarulo, “Floorplanning for throughput,” in Proc.

ISPD, Phoenix, AZ, Apr. 2004, pp. 62–69.
[3] ——, “Throughput-driven floorplanning with wire pipelining,” IEEE

Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 24, no. 5,
pp. 663–675, May 2005.

[4] M. Ekpanyapong et al., “Profile-guided microarchitectural floorplanning
for deep submicron processor design,” in Proc. DAC, San Diego, CA,
Jun. 2004, pp. 634–639.

[5] C. Long et al., “Floorplanning optimization with trajectory piecewise-
linear model for pipelined interconnects,” in Proc. DAC, San Diego, CA,
Jun. 2004, pp. 640–645.

[6] V. Nookala et al., “Microarchitectural-aware floorplanning using a sta-
tistical design of experiments approach,” in Proc. DAC, Anaheim, CA,
Jun. 2005, pp. 579–584.

[7] J. Wang, P. C. Wu, and H. Zhou, “Processing rate optimization by sequen-
tial system floorplanning,” in Proc. ISQED, 2006, pp. 340–345.

[8] M. R. Casu and L. Macchiarulo, “Floorplan assisted data rate en-
hancement through wire pipelining: A real assessment,” in Proc. ISPD,
San Francisco, CA, Apr. 2005, pp. 121–128.

[9] L. P. Carloni et al., “A methodology for correct-by-construction latency
insensitive design,” in Proc. ICCAD, 1999, pp. 309–315.

[10] M. R. Casu and L. Macchiarulo, “A new approach to latency insensitive
design,” in Proc. DAC, San Diego, CA, Jun. 2004, pp. 576–581.

[11] ——, “On-chip transparent wire pipelining,” in Proc. ICCD, Oct. 2004,
pp. 160–167.

3004 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 12, DECEMBER 2006

[12] L. P. Carloni and A. L. Sangiovanni-Vincentelli, “Performance analy-
sis and optimization of latency insensitive protocols,” in Proc. DAC,
pp. 361–367.

[13] Y. I. Ismail and E. G. Friedman, “Effects of inductance on the propagation
delay and repeater insertion in VLSI circuits,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 8, no. 2, pp. 195–206, Apr. 2000.

[14] W. Dai, L. Wu, and S. Zhang, GSRC T2 Bookshelf at UCSanta Cruz.
2003. [Online]. Available: www.cse.ucsc.edu/research/surf/GSRC/
progress.html

[15] M. Singh and M. Theobald, “Generalized latency insensitive systems for
single-clock and multi-clock architectures,” in Proc. DATE, Paris, France,
2004, p. 21 008.

[16] S. Adya, H. H. Chan, and I. Markov Parquet, Fixed-Outline Floorplanner,
(2006). [Online]. Available: http://vlsicad.eecs.umich.edu/BK/parquet/

[17] S. N. Adya and I. L. Markov, “Fixed-outline floorplanning: Enabling
hierarchical design,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 11, no. 6, pp. 1120–1135, Dec. 2003.

[18] M. Ikeda et al., “A hardware/software concurrent design for real-time
SP@ML MPEG2 video-encoder chip set,” in Proc. Eur. Des. and Test
Conf., Mar. 1996, pp. 320–326.

An Efficient Data Structure for Maxplus Merge in
Dynamic Programming

Ruiming Chen and Hai Zhou

Abstract—Dynamic programming is a useful technique to handle slic-
ing floorplan, technology mapping, and buffering problems, where many
maxplus merge operations of solution lists are needed. Shi proposed an
efficient O(n log n) time algorithm to speed up the merge operation.
Based on balanced binary search trees, his algorithm showed superb
performance with the most unbalanced sizes of merging solution lists. The
authors propose in this paper a more efficient data structure for the merge
operations. With parameters to adjust adaptively, their algorithm works
better than Shi’s under all cases, unbalanced, balanced, and mix sizes.
Their data structure is also simpler.

Index Terms—Data structure, dynamic programming, timing
optimization.

I. INTRODUCTION

Dynamic programming is an effective technique to handle slicing
floorplan [1], technology mapping [2], and buffering [3] problems.
For example, van Ginneken [3] proposed a dynamic programming
method to complete buffer insertion in distributed RC-tree networks
for minimal Elmore delay, and his method runs in O(n2) time and
space, where n is the number of legal buffer positions. An essential
operation in van Ginneken’s algorithm is to merge two candidate lists
into one list where inferior candidates are pruned. Shi [4] proposed
an efficient algorithm that improves Stockmeyer’s algorithm [1] for
the merge operation in slicing floorplan. Based on it, Shi and Li [5]
presented an O(n log2 n) algorithm for the optimal buffer insertion
problem. In these algorithms, a balanced binary search tree is used to
represent a list of solution candidates, and it avoids updating every

Manuscript received April 8, 2005; revised August 19, 2005 and
November 23, 2005. This paper was recommended by Associate Editor J. Lillis.

The authors are with the Department of Electrical Engineering and Computer
Science, Northwestern University, Evanston, IL 60208 USA (e-mail: haizhou@
ece.northwestern.edu).

Digital Object Identifier 10.1109/TCAD.2006.882479

Fig. 1. Flexibility of maxplus-list.

candidate during the merge of two candidate lists. However, as shown
in [4], the merge of two candidate lists based on balanced binary
search trees can only speed up the merge of two candidate lists of
much different lengths (unbalanced situation), but not the merge of
two candidate lists of similar lengths (balanced situation).

Fig. 1 illustrates the best data structure for maintaining solutions
in each of the two extreme cases: the balanced situation requires a
linked list that can be viewed as a totally skewed tree or the unbalanced
situation requires a balanced binary tree. However, most cases in
reality are between these extremes, where neither data structure is the
best. As we can see, the most balanced situation requires the most
skewed data structure while the most unbalanced situation requires the
most balanced data structure. Therefore, we need a data structure that
is between a linked list and a balanced binary tree for the cases in the
middle. We discovered that a skip-list [6] is such a data structure as
it migrates smoothly between a linked list and a balanced tree. In this
paper, we propose an efficient data structure called maxplus-list based
on the skip-list and corresponding algorithms for merge operations in
the dynamic programming. As shown in Fig. 1, we can migrate the
maxplus-lists to suitable positions based on how balanced the routing
tree is; a maxplus-list becomes a linked-list in balanced situations
or it behaves like a balanced binary tree in unbalanced situations.
Therefore, the performance of our algorithm is always very good.
The maxplus-merge algorithm based on maxplus-list has the same
asymptotic time complexity as the merge algorithm used in [4] and [5].
Our experimental results show that it is even faster than the balanced
binary search tree in unbalanced situations, and it is much faster in
balanced situations. Besides, the maxplus-list data structure is much
easier to understand and implement than balanced binary search tree.

The rest of this paper is organized as follows. In Section II, the
general problem of merging two candidate lists is formulated, and the
skip-list data structure is reviewed. In Section III, the maxplus-list data
structure and an efficient algorithm to merge two maxplus-lists are
shown. In Section IV, the approach for finding the optimal solutions
after the bottom-up merge operations is shown. The experimental
results are reported in Section V. Finally, the conclusion and future
work are given in Section VI.

II. PRELIMINARY

A. Maxplus Problem

The following three different problems have the similar algorithmic
structure, the merge of candidate solution lists.

Given a slicing tree representing a floorplan, the problem of area
minimization is to select the size of each module such that the chip
area is minimized [1]. The dynamic programming approach [1] builds
the solutions bottom up. Each solution (hv, wv) at a node v represents
a floorplan at v having hv as the height and wv as the width. As shown
in Fig. 2(a), given the solutions (hm, wm), (hn, wn) of the two
subtrees and a parent node with vertical cut, a candidate solution
at the parent node can be constructed as (max(hm, hn), wm + wn).
The optimal structure of dynamic programming requires that there are
no solutions (h1, w1) and (h2, w2) such that h1 ≤ h2 and w1 ≤ w2
for the same subtree.

0278-0070/$20.00 © 2006 IEEE

