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PRIMES BETWEEN CONSECUTIVE SQUARES

D. BAZZANELLA

Abstract

A well known conjecture about the distribution of primes asserts that be-
tween two consecutive squares there is always at least one prime number. The
proof of this conjecture is quite out of reach at present, even under the assump-
tion of the Riemann Hypothesis. The aim of this paper is to provide a bound
for the exceptional set for this conjecture, unconditionally and under the as-
sumption of some classical hypothesis. We also provide a conditional proof of
the conjecture assuming an hypothesis about the behavior of Selberg’s integral
in short intervals.
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1. - INTRODUCTION.

A well known conjecture about the distribution of primes asserts that

Conjecture 1.
For all integer n the interval [n2, (n+ 1)2] contains a prime.

The proof of this conjecture is quite out of reach at present, even under
the assumption of the Riemann Hypothesis (RH).

At any rate it is not difficult to prove unconditionally that Conjecture 1
holds for almost all integers n and, more precisely, we can prove that in almost
all intervals [n2, (n+ 1)2] there is the expected number of primes.

1This version does not contain journal formatting and may contain minor changes
with respect to the published version. The final publication is available at
http://dx.doi.org/10.1007/s000130050469. The present version is accessible on PORTO,
the Open Access Repository of Politecnico di Torino (http://porto.polito.it), in com-
pliance with the Publisher’s copyright policy as reported in the SHERPA-ROMEO website:
http://www.sherpa.ac.uk/romeo/issn/0003-889X/
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To have some results in the direction of Conjecture 1 we need to assume
hypothesis stronger RH.

Define

J(N, h) =
∫ N

1
(θ(x+ h)− θ(x)− h)2dx,

with θ(x) =
∑
p≤x log p and p prime number, and consider the following strong

form of Montgomery’s pair correlation conjecture

Conjecture 2.

J(N, h) = hN log(N/h)− (γ + log 2π)hN + o(hN) +O(N),

uniformly for 1 ≤ h ≤ N1−ε.

Goldston [4] deduced the validity of Conjecture 1 assuming Conjecture 2.
In this paper we investigate about the exceptional set for the distribution

of primes between two consecutive primes unconditionally and assuming some
classical hypothesis.

The basic idea of this paper is to connect the exceptional set for the distri-
bution of primes in intervals of type [n2, (n+ 1)2] to the exceptional set for the
asymptotic formula of the distribution of primes in short intervals, and using
the properties of this set, see Bazzanella [1] and Bazzanella and Perelli [2], to
obtain the desired results.

Our main unconditional result is the following

Theorem 1 Let ε > 0 then for every [n2, (n + 1)2] ⊂ [1, N ] with O(N1/4+ε)
exceptions we have the expected number of primes.

An immediate consequence of Theorem 1 is the following

Corollary 1 Let ε > 0 then for every n ≤ N with O(N1/4+ε) exceptions the
interval [n2, (n+ 1)2] contains a prime.

Under RH we obtain in a similar way the following

Theorem 2 Assume RH and let f(x)→∞ arbitrarily slowly. Then for every
[n2, (n + 1)2] ⊂ [1, N ] with O(f(N) log2N) exceptions we have the expected
number of primes.

Assuming hypothesis stronger than RH we can obtain a smaller exceptional
set. In order to obtain a conditional proof of Conjecture 1 we are mainly inter-
ested to find the minimal unproved hypothesis to have an empty exceptional
set. With this in mind we state the following conjecture
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Conjecture 3.

J(N + Y, h)− J(N, h) = o(hN),

uniformly for 1 ≤ Y ≤ N1/2 and N1/2 � h� N1/2.

Let ψ(x) =
∑
n≤x Λ(n), where Λ(n) is the von Mangoldt function, and

assuming this conjecture we can obtain the last theorem

Theorem 3 Assume Conjecture 3. Then we have

ψ((n+ 1)2)− ψ(n2) ∼ 2n as n→∞. (1)

We note that Conjecture 3 is weaker than Conjecture 2, nevertheless The-
orem 3 is stronger than result of Goldston [4] which asserts only the existence
of a prime in intervals of type [n2, (n+ 1)2].

2. - PRELIMINARY LEMMAS.

As in author’s paper with A. Perelli [2] we define a set concerning the
asymptotic formula

ψ(x+ h(x))− ψ(x) ∼ h(x) as x→∞ (2)

as

Eδ(X, h) = {X ≤ x ≤ 2X : |∆(x, h)| ≥ δh(x)},
with h(x) increasing function such that xε ≤ h(x) ≤ x for some ε > 0 and

∆(x, h) = ψ(x+ h(x))− ψ(x)− h(x).

It is clear that (2) holds if and only if for every δ > 0 there exists X0(δ)
such that Eδ(X, h) = ∅ for X ≥ X0(δ). Hence for small δ > 0, X tending
to ∞ and h(x) suitably small with respect to x, the set Eδ(X, h) contains
the exceptions, if any, to the expected asymptotic formula for the number of
primes in short intervals.

Moreover we consider the case h(x) = 2
√
x+ 1 and introduce the functions

µδ = inf{ξ ≥ 0 : |Eδ(N, h(x))| �δ,θ X
ξ}

and
µ = sup

δ>0
µδ, (3)

to deal with the problem to estimate the exceptional set. For the proof of
the main unconditional result we need the following estimate for the excep-
tional set for asymptotic formula (2), with h(x) = 2

√
x+ 1.
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Lemma 1 Let µ defined by (3). Then we have

µ ≤ 3

4
.

Proof.
We first reduce our problem to a similar one, but technically simpler. We

begin by observing that if

|{X ≤ x ≤ 2X : |∆(x, h(x))| ≥ 4
√
X

logX
}| � Xα+ε (4)

holds with some α ≥ 0 and every ε > 0, then clearly µ ≤ α. Further, given any
ε > 0, we subdivide [X, 2X] into � Xε intervals of the type Ij = [Xj, Xj + Y ]

with X � Xj � X and Y � X1−ε. Writing ξj = 2X
−1/2
j we have

max
x∈Ij
|h(x)− ξjx| � X1/2−ε

uniformly in j, and hence

∆(x, h(x))− (ψ(x+ ξjx)− ψ(x)− ξjx)� X1/2−ε (5)

uniformly in j and x ∈ Ij.
From (4) and (5) is not difficult to see that if for some α ≥ 0 and any ε > 0

|{X ≤ x ≤ 2X : |ψ(x+ ξjx)− ψ(x)− ξjx| ≥
2
√
X

logX
}| � Xα+ε (6)

holds uniformly in j, then µ ≤ α. Also, it is clear that in order to prove (6)
we may restrict ourselves to the case ξj = ξ = 2X−1/2, the other cases being
completely similar.

In order to prove (6) we use the classical explicit formula, see ch. 17 of
Davenport [3], to write

ψ(x+ ξx)− ψ(x)− ξx =
∑
|γ|≤T

x%c%(ξ) +O(
X log2X

T
), (7)

uniformly for X ≤ x ≤ 2X, where 10 ≤ T ≤ X, % = β + iγ runs over the
non-trivial zeros of ζ(s),

c%(ξ) =
(1 + ξ)% − 1

%
and c%(ξ)� min(X−1/2,

1

|γ|
). (8)

Choose
T = X1/2 log4X, (9)
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and use the Jutila [8] density estimate, which asserts that for every ε > 0 we
have

N(σ, T )� T 2(1−σ)+ε for
11

14
≤ σ ≤ 1. (10)

From (8), (9) and (10) by a standard argument we see that

∑
|γ|≤T

β>11/14+δ

x%c%(ξ)� X−1/2 log2X max
σ>11/14+δ

XσN(σ, T )� X1/2

log2X
, (11)

for every δ > 0 and uniformly for X ≤ x ≤ 2X.
Using Lemma 1 of Heath-Brown [6] we get∫ 2X

X
|

∑
|γ|≤T

β≤11/14+δ

x%c%(ξ)|4dx� X−1+ε max
σ≤11/14+δ

X4σN∗(σ, T ), (12)

and by Theorem 2 of Heath-Brown [7] we have

N∗(σ, T )�



T (10−11σ)/(2−σ)+ε 1

2
≤ σ ≤ 2

3

T (18−19σ)/(4−2σ)+ε 2

3
≤ σ ≤ 3

4

T 12(1−σ)/(4σ−1)+ε 3

4
≤ σ ≤ 1.

(13)

Hence from (9), (12) and (13) we obtain∫ 2X

X
|

∑
|γ|≤T

β≤11/14+δ

x%c%(ξ)|4dx� X11/4+ε,

for every ε > 0 and δ sufficiently small positive constant.
Hence we obtain

|{X ≤ x ≤ 2X : |
∑
|γ|≤T

β≤11/14+δ

x%c%(ξ)| ≥
√
X

logX
}| � X3/4+ε,

and then Lemma 1 is proved.

If we assume RH we have
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Lemma 2 Assume RH. Let h(x) = 2
√
x+1 and g(x)→∞ arbitrarily slowly.

Then we have

|Eδ(X, h)| �δ X
1/2 log2X g(X) for every δ > 0.

Proof.
Let g(x)→∞ arbitrarily slowly, we subdivide [X, 2X] into � g(X) inter-

vals of the type Ij = [Xj, Xj + Y ] with

X � Xj � X and Y � X

g(X)
. (14)

Then we have
|Eδ(X, h)|X �

∫
Eδ(X,h)

|h(x)|2dx

�δ

∫
Eδ(X,h)

|∆(x, h)|2dx�
∑
j

∫
Eδ,j(X,h)

|∆(x, h)|2dx,

where,
Eδ,j(X, h) = {Xj ≤ x ≤ Xj + Y : |∆(x, h)| ≥ δh(x)}.

Writing
ξj = 2X

−1/2
j (15)

we have

∆(x, h(x))− (ψ(x+ ξjx)− ψ(x)− ξjx)� Y√
X

= o(X1/2)

uniformly in j and x ∈ Ij, which implies

∑
j

∫
Eδ,j(X,h)

|∆(x, h)|2dx =
∑
j

∫
Eδ,j(X,h)

|∆(x, ξjx)|2dx+ o(X |Eδ(X, h)|).

Then we have

|Eδ(X, h)| �δ

∑
j

2X∫
X
|∆(x, ξjx)|2dx

X
.

Recalling that Saffari and Vaughan [9] proved, under RH, that∫ 2X

X
|ψ(x+ θx)− ψ(x)− θx|2dx� θX2(log

2

θ
)2, (16)

uniformly in 0 < θ ≤ 1, we get

|Eδ(X, h)| �δ

∑
j X

2ξj log2X

X
,
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and then Lemma 2 follows from (14) and (15).

3. - PROOF OF THEOREMS 1 AND 2.

We define the set

Aδ(N) = {
√
N ≤ n ≤

√
2N : |ψ((n+ 1)2)− ψ(n2)− (2n+ 1)| ≥ δ(2n+ 1)},

that contains the exceptions, if any, to the expected asymptotic formula for
the number of primes in intervals of type [n2, (n + 1)2] in [N, 2N ]. Moreover
define

ηδ = inf{ξ ≥ 0 : |Aδ(N)| �δ N
ξ}

and
η = sup

δ>0
ηδ.

From these definitions we have that the asymptotic formula (1) holds with
O(Nη+ε) exceptions, for every ε > 0.

The main step of the proofs is to prove that for every ε > 0 we obtain

η ≤ µ− 1

2
+ ε. (17)

In order to prove (17) we let n ∈ Aδ(N), x = n2 ∈ [N, 2N ] and h(x) =
2
√
x+ 1. From the definition of the set Aδ(N) we get

|ψ((n+ 1)2)− ψ(n2)− (2n+ 1)| ≥ δ(2n+ 1),

and then
|ψ(x+ h(x))− ψ(x)− h(x)| ≥ δh(x),

which implies x ∈ Eδ(N, h). Using i) of Theorem 1 of [2], with δ′ = δ/2, we
obtain that exists an effective constant c such that

[x, x+ ch(x)] ∩ [N, 2N ] ⊂ Eδ/2(N, h).

Let m ∈ Aδ(N), m > n. As before we can define y = m2 ∈ [N, 2N ] such that

[y, y + ch(y)] ∩ [N, 2N ] ⊂ Eδ/2(N, h).

Choosing c < 1 we get

y − x = m2 − n2 ≥ (n+ 1)2 − n2 = 2n+ 1 = 2
√
x+ 1 > ch(x).

Thus we have
[x, x+ ch(x)] ∩ [y, y + ch(y)] = ∅,
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and then

|Aδ(N)| �δ

|Eδ/2(N, h)|√
N

� Nµ+ε

√
N
� Nµ−1/2+ε, (18)

for every δ > 0 and ε > 0.
Hence we have

ηδ ≤ µ− 1

2
+ ε for all δ > 0,

and then (17) follows.
Using (17) and Lemma 1 we can prove Theorem 1.
Using (18) and Lemma 2 we get

|Aδ(N)| �δ

|Eδ/2(N, h)|√
N

�δ g(N) log2N,

for all δ > 0 and g(x)→∞ arbitrarily slowly and then Theorem 2 follows.

3. - PROOF OF THEOREM 3.

In order to prove Theorem 3 we assume that (1) does not hold. Then there
exists δ0 > 0 and a sequence xj →∞ with |∆(xj, h)| ≥ δ0h(xj) and

h(x) = 2
√
x+ 1. (19)

For xj sufficiently large, choose δ′ = δ0/2 in i) of Theorem 1 of [2]. Hence

|∆(x, h)| ≥ δ0
2
h(x) ≥ δ0

2

√
xj for xj ≤ x ≤ xj +

δ0
20

√
xj.

From our assumption then we get

x
3/2
j �

xj+Y∫
xj

|∆(x, h)|2dx, (20)

where

Y =
δ0
20

√
xj. (21)

From (19) we see that

h(x) = h(xj) +O(1) uniformly for xj ≤ x ≤ xj + Y

and hence∫ xj+Y

xj
|∆(x, h)|2dx =

∫ xj+Y

xj
|ψ(x+h(xj))−ψ(x)−h(xj)|2dx+O(x

1/2
j ). (22)
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From the definition of the functions ψ(x) and θ(x) is not difficult to prove∫ xj+Y

xj
|ψ(x+ h(xj))− ψ(x)− h(xj)|2dx =

∫ xj+Y

xj
|θ(x+ h(xj))− θ(x)− h(xj)|2dx+O(x

1/2
j log2 xj). (23)

From (20), (22) and (23) we get

x
3/2
j �

xj+Y∫
xj

|θ(x+ h(xj))− θ(x)− h(xj)|2dx = J(xj + Y, h(xj))− J(xj, h(xj)).

Assuming Conjecture 3 we obtain that for j sufficiently large we get

x
3/2
j � J(xj + Y, h(xj))− J(xj, h(xj)) = o(x

3/2
j )

a contradiction, and then Theorem 3 follows.
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