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1. Introduction

Let ψ(x) =
∑
n≤x Λ(n), where Λ(n) is the von Mangoldt function. A

well known conjecture asserts that

ψ(x+ h(x))− ψ(x) ∼ h(x) as x→∞ (1)

for every increasing function h(x) satisfying xε ≤ h(x) ≤ x with any
fixed ε > 0. It is known that (1) holds with x7/12+ε ≤ h(x) ≤ x, see

Huxley [10], and the wider range x7/12−o(1) ≤ h(x) ≤ x has been
obtained by Heath-Brown [8] at the cost of a much more difficult

proof. It is also known that (1) holds with x1/2+ε ≤ h(x) ≤ x under
the assumption of the Riemann Hypothesis (RH). In the opposite

direction, Maier [11] showed that (1) does not hold when
h(x) = logc x with any constant c ≥ 2.

In this paper we investigate the exceptional set for the asymptotic
formula (1). Let X be a large positive number, δ > 0, | | denote the
modulus of a complex number or the Lebesgue measure of a set or the

cardinality of a finite set, h(x) be an increasing function such that
xε ≤ h(x) ≤ x for some ε > 0,

∆(x, h) = ψ(x+ h(x))− ψ(x)− h(x)

and

Eδ(X, h) = {X ≤ x ≤ 2X : |∆(x, h)| ≥ δh(x)}.

1This version does not contain journal formatting and may contain mi-
nor changes with respect to the published version. The final publica-
tion is available at http://dx.doi.org/10.1006/jnth.1999.2429. The present
version is accessible on PORTO, the Open Access Repository of Politec-
nico di Torino (http://porto.polito.it), in compliance with the Pub-
lisher’s copyright policy as reported in the SHERPA-ROMEO website:
http://www.sherpa.ac.uk/romeo/issn/0022-314X/
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2 THE NUMBER OF PRIMES IN SHORT INTERVALS

It is clear that (1) holds if and only if for every δ > 0 there exists
X0(δ) such that Eδ(X, h) = ∅ for X ≥ X0(δ). Hence for small δ > 0,
X tending to ∞ and h(x) suitably small with respect to x, the set
Eδ(X, h) contains the exceptions, if any, to the expected asymptotic
formula for the number of primes in short intervals. Moreover, we

observe that

Eδ(X, h) ⊂ Eδ′(X, h) if 0 < δ′ < δ.

We will consider increasing functions h(x) of the form h(x) = xθ+ε(x),
with some 0 < θ < 1 and a function ε(x) such that |ε(x)| is decreasing,

ε(x) = o(1) and ε(x+ y) = ε(x) +O(
|y|
x

).

A function satisfying these requirements will be called of type θ. It is
easy to see that functions like xθ logc x with c ∈ R, and similar
functions, are of type θ. We are mainly interested in the case

h(x) = xθ, in which case we allow also θ = 1 and write

Eδ(X, h) = Eδ(X, θ).

Hence, in particular, it is a consequence of the above results that for
any δ > 0 and X sufficiently large we have Eδ(X, θ) = ∅ provided

7/12 ≤ θ ≤ 1 and, under RH, provided 1/2 < θ ≤ 1.

Our first result provides the basic structure of the exceptional set
Eδ(X, h).

Theorem 1. i) (inertia property) Let 0 < θ < 1, h(x) be of type θ, X
be sufficiently large depending on the function h(x) and 0 < δ′ < δ

with δ − δ′ ≥ exp(−
√

logX). If x0 ∈ Eδ(X, h) then Eδ′(X, h) contains
the interval [x0 − ch(X), x0 + ch(X)] ∩ [X, 2X], where c = (δ − δ′)θ/5.

In particular, if Eδ(X, h) 6= ∅ then

|Eδ′(X, h)| �θ (δ − δ′)h(X).

ii) (decrease property) Let 0 < θ′ < θ < 1, h(x) be of type θ and h′(x)
of type θ′, X be sufficiently large depending on the functions h(x)
and h′(x), and let 0 < δ′ < δ with δ − δ′ ≥ exp(−

√
logX). Then

max(|Eδ′(X, h′)|, |Eδ′(
3

2
X, h′)|)�θ′ (δ − δ′)|Eδ(X, h)|.

Several deductions can be made from Theorem 1, but prior to that we
introduce the functions

µδ(θ) = inf{ξ ≥ 0 : |Eδ(X, θ)| �δ,θ X
ξ}

and

µ(θ) = sup
δ>0

µδ(θ),

the latter function being well defined since clearly µδ(θ) ≤ 1 for every
δ > 0 and 0 < θ ≤ 1. For convenience we define µδ(θ) and µ(θ) for
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0 < θ ≤ 1, although these functions are of interest only for
0 < θ < 7/12. Clearly

µδ(θ) ≤ µδ′(θ) if δ′ < δ

and

µ(θ) = 0 for 7/12 ≤ θ ≤ 1 and, under RH, µ(θ) = 0 for 1/2 < θ ≤ 1.

A first consequence of Theorem 1 is the following

Corollary 1. i) The function µ(θ) is non-increasing.
ii) µ(θ0) < θ0 for some 0 < θ0 < 1 if and only if (1) holds with

h(x) = xθ for every θ0 ≤ θ ≤ 1. Moreover, in this case µ(θ) = 0 for
every θ0 ≤ θ ≤ 1.

It follows in particular that if µ(θ) were piecewise continuous with
jumps of height < θ at any discontinuity point θ ∈ (0, 1), then (1)

would hold with h(x) = xθ for every 0 < θ ≤ 1, and in fact µ(θ) = 0
in the same range.

The same principle underlying Corollary 1 can be used to infer (1)
from suitable mean value estimates. One out of several similar

statements in this direction is the following

Corollary 2. Let 0 < θ < 1, h(x) be of type θ, c > 0 and Y = ch(X).
Assume that for any 0 < c < 1/2 and X sufficiently large depending

on c we have∫ X+Y

X
|∆(x, h)|2dx ≤ 20

θ2
Y 3. (2)

Then (1) holds. The opposite implication holds too.

From Corollary 2 we can deduce the validity of (1) for suitable
functions h(x). We deal mainly with conditional results. Although

similar statements, here and at later occasions, can be obtained under
similar hypotheses such as the Density Hypothesis, we will work out
our results only under RH and, in addition, under certain forms of

Montgomery’s pair correlation conjecture. A form of it, see
Goldston-Montgomery [4], states that∫ X

0
|ψ(x+H)− ψ(x)−H|2dx ∼ HX log

X

H
(3)

uniformly for X1/2−ε ≤ H ≤ X1−ε for any fixed ε > 0. Moreover,
Goldston [3] deduced the validity of a classical conjecture asserting
the existence of primes between consecutive squares from a certain

stronger form of the following refinement of (3)∫ X

0
|ψ(x+H)− ψ(x)−H|2dx = HX log

X

H
+O(HX), (4)

uniformly in the same range as above. We have
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Corollary 3. i) Assume RH. Then (1) holds for any function of type
1/2 of the form h(x) = F (x)x1/2 log x with F (x)→∞.

ii) Assume RH and (3). Then there exists a function of type 1/2 of
the form h(x) = f(x)(x log x)1/2 with f(x) = o(1) for which (1) holds.
iii) Assume RH and (4). Then (1) holds for any function of type 1/2
of the form h(x) = F (x)x1/2 with F (x)→∞. Moreover, there exists
a constant c > 0 such that the interval [x, x+ cx1/2] contains a prime

for x sufficiently large.

It is not difficult to see that in fact there exist functions h(x) as in i)
and iii) above with F (x)→∞ arbitrarily slowly. Part i) of Corollary
3 should be compared with Cramér’s [1] classical result asserting that

under RH

pn+1 − pn � p1/2
n log pn,

where pn denotes the n-th prime. Moreover, ii) of Corollary 3 should
be compared with Heath-Brown - Goldston [9], which contains the

proof that under RH and a slightly weaker version of (3)

pn+1 − pn = o((pn log pn)1/2).

We remark that the above results can be proved by our method too,
see the proof of the second part of iii) of Corollary 3. Moreover, the
latter result is not far from the above quoted conjecture on primes
between consecutive squares. We observe that the constant c in iii)
depends in a simple way on the implicit constant in (4) and on the

constant in the Brun-Titchmarsh theorem.
Turning to unconditional results, we only observe that Heath-Brown’s
[8] result is equivalent to the validity of (2) with some function h(x)
of type 7/12. We remark here that in the conditional treatment of
our problem, we in fact do not need to have a ”short” mean value

estimate of ∆(x, h), the ”long” one being strong enough in this case.
Contrary to that, in the unconditional case it is apparently necessary
to work with short mean values of ∆(x, h), see the discussion below.

Mean value estimates can also be used to bound the function µ(θ),
and hence the size of the exceptional set. A well known consequence
of Huxley’s [10] density estimate is that (1) holds for almost-all x if
h(x) ≥ x1/6+ε, and this is essentially the best known result at present.

Hence we expect non-trivial bounds for µ(θ) in the range
1/6 < θ < 7/12. For sake of simplicity we will explicitly work out the
bound for µ(θ) only in a right neighborhood of θ = 1/6 and in a left
neighborhood of θ = 7/12. However, it will be clear from the proof
that the same method allows to obtain an explicit bound, strictly

decreasing and continuous, in the whole range 1/6 < θ < 7/12. The
situation is much simpler under RH where, due to Selberg’s [14] well
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known result, we have to consider only the interval 0 < θ ≤ 1/2. We
have the following

Theorem 2. i) Let ∆ > 0 be sufficiently small. Then there exists a
constant c > 0 such that

µ(
1

6
+ ∆) ≤ 1− c∆ and µ(

7

12
−∆) ≤ 5

8
+

7

4
∆ +O(∆2).

ii) Assume RH. Then

µ(θ) ≤ 1− θ for 0 < θ ≤ 1

2
.

For sake of simplicity we will not provide a numerical value to the
constant c. Moreover, the density estimates we use in the proof are

not necessarily the best known in order to get a good numerical value
for c. Our technique for the proof of Theorem 2 is similar to the
methods used by Wolke [16] and Heath-Brown [6] for a related
problem. In fact, we will use second power moments, and hence

estimates for

N(σ, T ) = |{% = β + iγ : ζ(%) = 0 , β ≥ σ and |γ| ≤ T}|,

when θ is around 1/6, and fourth power moments, and hence
estimates for

N∗(σ, T ) = |{(%1, %2, %3, %4) : %j is counted by N(σ, T ) and |γ1+γ2−γ3−γ4| ≤ 1}|,

when θ is around 7/12 .

A defect of our method is that we are unable to prove that

lim
θ→7/12−

µ(θ) ≤ 7

12
, (5)

which, according to i) of Theorem 1, would indicate that even if the
asymptotic formula (1) were to fail just beyond the range where it is
presently known to hold, it does so, in some sense, minimally. This

also reflects the fact that, for instance, we are unable to reprove
Huxley’s [10] theorem via long mean values of primes in short
intervals. We remark here that (5) can be proved under the

”heuristic” assumption

N∗(σ, T )� N(σ, T )4

T
, (6)

see at the end of section 3.
However, the observation that, for instance, Huxley’s theorem is
equivalent to suitable short mean value estimates suggests the

introduction of the functions

ηδ(θ) = inf{ξ ≥ 0 : b− a�δ,θ X
ξ for every [a, b] ⊂ Eδ(X, θ)}
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and

η(θ) = sup
δ>0

ηδ(θ),

where δ > 0 and 0 < θ ≤ 1. The functions η are a ”short intervals”
analogue of the functions µ above, and it is easy to prove that (5)

holds for η(θ). In fact, our last result is the following

Corollary 4. For 0 < θ < 1 we have

η(θ) ≤ 7

12
.

We wish to thank Prof. Jörg Brüdern for a stimulating discussion on
this subject.

2. Proof of Theorem 1 and Corollaries 1,2 and 3

We will always assume that x and X are sufficiently large as
prescribed by the various statements, and ε > 0 is arbitrarily small

and not necessarily the same at each occurrence.
We first observe that from the definition of function of type θ we have

that if y = O(xα+ε) with some 0 < α < 1, then

h(x+ y) = h(x) +O(xθ+α−1+ε) (7)

for every ε > 0. Moreover, h(2x)� h(x).
From the Brun-Titchmarsh theorem, see Montgomery-Vaughan [13],

we have that

ψ(x+ y)− ψ(x) ≤ 21

10
y

log x

log y
(8)

for 10 ≤ y ≤ x. From (8) we easily see that

ψ(x+ y)− ψ(x) ≤ 9

4α
cY (9)

for X ≤ x ≤ 3X and 0 ≤ y ≤ cY , where 0 < α < 1, Xα−ε ≤ Y ≤ X
and

α

5
exp(−

√
logX) ≤ c ≤ 1.

We first prove i) of Theorem 1. Let h be of type θ, x0 ∈ Eδ(X, h) and
x ∈ [x0 − ch(X), x0 + ch(X)] ∩ [X, 2X], where c satisfies the above

restrictions. We have

|∆(x, h)| = |∆(x0, h) + ∆(x, h)−∆(x0, h)| ≥

|∆(x0, h)|−|ψ(x+h(x))−ψ(x0+h(x0))|−|ψ(x)−ψ(x0)|−|h(x)−h(x0)|.
But from (7) with α = θ we get

h(x0) = h(x) +O(X2θ−1+ε),
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hence from (9) with α = θ we obtain

|∆(x, h)| ≥ δh(x)− 9

2θ
ch(X)+O(X2θ−1+ε) ≥ δh(x)− 5

θ
ch(X) ≥ δ′h(x)

by choosing c = (δ − δ′)θ/5, since h is increasing. Hence x ∈ Eδ′(X, h)
and i) follows.

Now we turn to the proof of ii) of Theorem 1. Let X ≤ ξ ≤ 2X.
From (7) with α = θ we have∫ ξ+h(ξ)

ξ
(ψ(x+h′(x))−ψ(x))dx =

∫ ξ+h(ξ)

ξ
(ψ(x+h′(ξ))−ψ(x))dx+O(X2θ+θ′−1+ε)

= h′(ξ)(ψ(ξ + h(ξ))− ψ(ξ)) +O(Xmax(2θ′,2θ+θ′−1)+ε)

and hence, again by (7) with α = θ,∫ ξ+h(ξ)

ξ
(ψ(x+ h′(x))− ψ(x)− h′(x))dx

= h′(ξ)(ψ(ξ + h(ξ))− ψ(ξ)− h(ξ)) +O(Xmax(2θ′,2θ+θ′−1)+ε).

Dividing both sides by h′(x) and using once again (7) with α = θ we
get∫ ξ+h(ξ)

ξ

∆(x, h′)

h′(x)
dx = ∆(ξ, h) +O(Xmax(θ′,2θ−1)+ε). (10)

Assume now that Eδ(X, h) 6= ∅, otherwise ii) is trivial, and let x1 be
the smallest element of Eδ(X, h), which we may clearly assume to

exist. Suppose first that

[x1, x1 + h(x1)] ⊂ [X, 2X]. (11)

Then from (10) with ξ = x1 we get

δh(x1) ≤ |∆(x1, h)| ≤
∫ x1+h(x1)

x1

|∆(x, h′)|
|h′(x)|

dx+O(Xmax(θ′,2θ−1)+ε)

and hence, writing

A1 = {x1 ≤ x ≤ x1 + h(x1) : |∆(x, h′)| < δ′h′(x)}
and

B1 = {x1 ≤ x ≤ x1 + h(x1) : |∆(x, h′)| ≥ δ′h′(x)},
from (9) with α = θ′, c = 1 and Y = h′(x) we obtain

δh(x1) ≤ δ′|A1|+
9− 4θ′

4θ′
|B1|+O(Xmax(θ′,2θ−1)+ε).

Therefore

|B1| � (δ − δ′)h(x1) (12)

since |A1| ≤ h(x1) and h(x1) ≥ h(X)� Xθ−ε. Moreover,
B1 ⊂ Eδ′(X, h

′).
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Let x2, if it exists, be the smallest element of
Eδ(X, h) ∩ (x1 + h(x1), 2X] and, in addition, satisfy

[x2, x2 + h(x2)] ⊂ [X, 2X]. If such an x2 does not exist, then ii)
clearly follows by (12) , under the assumption (11), since

|Eδ(X, h)| � h(x2) in this case and h(x2)� h(x1). If x2 exists, we
apply the same argument leading to (12) to the interval

[x2, x2 + h(x2)], thus getting a set B2 ⊂ Eδ′(X, h
′) ∩ [x2, x2 + h(x2)]

with |B2| � (δ − δ′)h(x2). We proceed in the same way denoting by
x3, if it exists, the smallest element of Eδ(X, h) ∩ (x2 + h(x2), 2X]

and, in addition, satisfying [x3, x3 + h(x3)] ⊂ [X, 2X], and so on until
we find an xk, with k ≥ 1, but not an xk+1 by this procedure.

Applying to each interval [xj, xj + h(xj)], j ≤ k, the argument leading
to (12), we obtain k sets B1, . . . , Bk, with Bi ∩Bj = ∅ if i 6= j, having

the property that

k⋃
j=1

Bj ⊂ Eδ′(X, h
′) and

k∑
j=1

|Bj| � (δ − δ′)|Eδ(X, h)|,

and ii) follows, under the assumption (11).
If (11) does not hold, then |Eδ(X, h)| ≤ h(2X) and

[x1, x1 + h(x1)] ⊂ [
3

2
X, 3X]. Hence we apply the first step of the

previous argument to obtain that

|Eδ′(
3

2
X, h′)| � (δ − δ′)h(x1),

and since h(x1)� h(2X), ii) follows in this case too, thus proving
Theorem 1.

The proof of Corollary 1 is very simple. In order to prove i), let
0 < θ′ < θ < 1 and choose h(x) = xθ, h′(x) = xθ

′
and

δ′ = δ/2 ≥ exp(−
√

logX) in ii) of Theorem 1. We get

max(|E δ
2
(X, θ′)|, |E δ

2
(
3

2
X, θ′)|)� δ|Eδ(X, θ)|,

hence µ δ
2
(θ′) ≥ µδ(θ) and so µ(θ′) ≥ µ(θ).

To prove ii), let first assume that µ(θ0) < θ0 for some 0 < θ0 < 1 and
observe that from i) we have µ(θ) < θ for every θ0 ≤ θ < 1. Hence for
every δ > 0 we have µδ(θ) < θ in the same range. If (1) fails to hold

for h(x) = xθ with some θ0 ≤ θ < 1, then there exists δ0 > 0 and
arbitrarily large values of X such that Eδ0(X, θ) 6= ∅. Hence from i)

of Theorem 1 with h(x) = xθ and δ′ = δ0/2 we have, for such values of
X, that

Xθ � |E δ0
2

(X, θ)| � X
µ δ0

2

(θ)+ε
,



THE NUMBER OF PRIMES IN SHORT INTERVALS 9

a contradiction for X sufficiently large and ε > 0 sufficiently small.
Hence (1) holds with h(x) = xθ, θ0 ≤ θ < 1, and µ(θ) = 0 in the same

range.
The opposite implication is trivial since, as we have already observed

in the Introduction, the validity of (1) with h(x) = xθ implies that
Eδ(X, θ) = ∅ for every δ > 0 and X sufficiently large.

In order to prove Corollary 2 we assume that (1) does not hold. Then
there exists δ0 > 0 and a sequence xj →∞ with |∆(xj, h)| ≥ δ0h(xj).

For xj sufficiently large, choose X = xj and δ′ = δ0/2 in i) of
Theorem 1. Hence

|∆(X, h)| ≥ δ0

2
h(x) ≥ δ0

2
h(X) for X ≤ x ≤ X +

θδ0

10
h(X).

Choosing Y = θδ0
10
h(X), from our assumption we get

θδ0

10
h(X)(

δ0

2
h(X))2 ≤

∫ X+Y

X
|∆(x, h)|2dx ≤ 20

θ2
(
θδ0

10
h(X))3,

a contradiction. The opposite implication is trivial.

To prove i) of Corollary 3 we recall that Selberg [14] proved, under
RH, that∫ 2X

X
|ψ(x+H)− ψ(x)−H|2dx� XH log2X (13)

for H ≥ 10. Choosing h(x) as in i), Y = ch(X) and H = h(X) we get∫ X+Y

X
|ψ(x+ h(X))− ψ(x)− h(X)|2dx� Xh(X) log2X.

(14)

From (7) with α = θ = 1/2 we see that

h(x) = h(X) +O(Xε) uniformly for X ≤ x ≤ X + Y

and hence∫ X+Y

X
|∆(x, h)|2dx =

∫ X+Y

X
|ψ(x+ h(X))− ψ(x)− h(X)|2dx+O(X1/2+ε).

(15)

From (14) and (15) we have∫ X+Y

X
|∆(x, h)|2dx� Xh(X) log2X,

and the result follows from Corollary 2.
The proof of ii) and of the first part of iii) is very similar. We only

have to observe that from (3) and (4) by difference we get∫ X+ch(X)

X
|ψ(x+H)− ψ(x)−H|2dx = o(HX logX)

and∫ X+ch(X)

X
|ψ(x+H)− ψ(x)−H|2dx� HX
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respectively, uniformly for X1/2−ε ≤ H ≤ X1−ε. The results follows
then arguing as before, by choosing, when proving ii), a suitable

function f(x) = o(1) such that h(x) = f(x)(x log x)1/2 is of type 1/2.
The second part of iii) can be proved along similar lines, observing

that in this case it is enough to show that
ψ(x+ cx1/2)− ψ(x) ≥ c′x1/2 for some constants c, c′ > 0 and x

sufficiently large. Supposing that this is not true, we obtain that for
any c, c′ > 0 there exists a sequence xj →∞ such that

ψ(xj + cx
1/2
j )− ψ(xj) < c′x

1/2
j

and hence, choosing c′ = c/2, δ = 1/2, δ′ = 1/4 and h(x) = cx1/2, we
obtain

[xj, xj +
c

40
x

1/2
j ] ⊂ E 1

4
(xj, h)

by i) of Theorem 1. Therefore∫ xj+
c
40
x
1/2
j

xj
|ψ(x+ cx1/2)− ψ(x)− cx1/2|2dx ≥ c3

640
x

3/2
j

(16)

for any constant c > 0. On the other hand, from (4) by difference we
get∫ xj+

c
40
x
1/2
j

xj
|ψ(x+ cx1/2)− ψ(x)− cx1/2|2dx� cx

3/2
j , (17)

and the second part of iii) follows from (16) and (17) if c is large
enough.

3. Proof of Theorem 2 and Corollary 4

We only give a sketch of the proof, since the arguments involved are
fairly standard. We first reduce our problem to a similar one, but

technically simpler. We begin by observing that if for a given
0 < θ < 1

|{X ≤ x ≤ 2X : |∆(x, xθ)| ≥ 4Xθ

logX
}| � Xα+ε (18)

holds with some α ≥ 0 and every ε > 0, then clearly µ(θ) ≤ α.
Further, given any ε > 0, we subdivide [X, 2X] into � Xε intervals of

the type Ij = [Xj, Xj + Y ] with X � Xj � X and Y � X1−ε.
Writing ξj = Xθ−1

j we have

max
x∈Ij
|xθ − ξjx| � Xθ−ε

uniformly in j, and hence

∆(x, xθ)− (ψ(x+ ξjx)− ψ(x)− ξjx)� Xθ−ε (19)
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uniformly in j and x ∈ Ij.
From (18) and (19) is not difficult to see that if for some α ≥ 0 and

any ε > 0

|{X ≤ x ≤ 2X : |ψ(x+ ξjx)− ψ(x)− ξjx| ≥
2Xθ

logX
}| � Xα+ε

(20)

holds uniformly in j, then µ(θ) ≤ α. Also, it is clear that in order to
prove (20) we may restrict ourselves to the case ξj = ξ = Xθ−1, the

other cases being completely similar.
In order to prove (20) we use the classical explicit formula, see ch. 17

of Davenport [2], to write

ψ(x+ ξx)− ψ(x)− ξx =
∑
|γ|≤T

x%c%(ξ) +O(
X log2X

T
) =

∑
(x) +O(

X log2X

T
),

(21)

say, uniformly for X ≤ x ≤ 2X, where 10 ≤ T ≤ X, % = β + iγ runs
over the non-trivial zeros of ζ(s),

c%(ξ) =
(1 + ξ)% − 1

%
and c%(ξ)� min(Xθ−1,

1

|γ|
).

(22)

We first prove the bound for µ(1/6 + ∆), and hence we write
θ = 1/6 + ∆. We use Theorem 3 of Halász-Turán [5], which asserts

that there exists a constant c1 > 0 such that

N(σ, T )� T (1−σ)3/2 log3 1
1−σ (23)

for 1− c1 ≤ σ ≤ 1. Choose

T = X1−θ log4X. (24)

From (22) - (24) and Vinogradov’s zero-free region, see ch. 6 of
Titchmarsh [15], by a standard argument we see that there exists a

constant c2 > 0 such that

∑
|γ|≤T

1−c2≤β≤1

x%c%(ξ)� Xθ−1 log2X max
1−c2≤σ≤1

XσN(σ, T )� Xθ

log2X (25)

uniformly for X ≤ x ≤ 2X.
We bound the remaining part of

∑
(x) in mean square, using the

density estimates of Ingham, see ch. 12 of Montgomery [12], and
Huxley [10], which imply that

N(σ, T )� T
12
5

(1−σ)+ε (26)
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for 1/2 ≤ σ ≤ 1. Again by a standard argument, from (22), (24) and
(26) we obtain∫ 2X

X
|

∑
|γ|≤T

0≤β<1−c2

x%c%(ξ)|2dx� X2θ−1+ε max
1/2≤σ≤1−c2

X2σN(σ, T )� X2θ+1− 12
5
c2∆+ε,

and hence

|{X ≤ x ≤ 2X : |
∑
|γ|≤T

0≤β<1−c2

x%c%(ξ)| ≥
Xθ

log2X
}| � X1− 12

5
c2∆+ε.

(27)

From (21), (24), (25) and (27) we see that (20) is satisfied with
α = 1− 12

5
c2∆, and the first bound of Theorem 2 is proved with

c = 12
5
c2.

In order to bound µ(7/12−∆) we proceed along similar lines, using
fourth power moments instead of mean square estimates. Here we
need the precise version of Ingham’s and Huxley’s results quoted

above, namely

N(σ, T )�


T

3(1−σ)
2−σ logk T if

1

2
≤ σ ≤ 3

4

T
3(1−σ)
3σ−1 logk T if

3

4
≤ σ ≤ 1

(28)

where k is an absolute constant.
We write θ = 7/12−∆, with ∆ sufficiently small, and

I = [3/4− 3∆, 3/4 + (1 + ε)∆]. From (24), (28) and Vinogradov’s
zero-free region we see that

∑
|γ|≤T
0≤β≤1
β 6∈I

x%c%(ξ)� Xθ−1 log2X max
1/2≤σ≤1
σ 6∈I

XσN(σ, T )� Xθ

log2X (29)

uniformly for X ≤ x ≤ 2X.
We bound the remaining part of

∑
(x) by a fourth power moment

estimate. To this end we use Lemma 1 of Heath-Brown [6] to get∫ 2X

X
|
∑
|γ|≤T
β∈I

x%c%(ξ)|4dx� X4θ−3+ε max
σ∈I

X4σN∗(σ, T ). (30)

From Theorem 2 of Heath-Brown [7] we have

N∗(σ, T )�

T
(36−8σ)(1−σ)

5 logk T if 1
2
≤ σ ≤ 3

4

T
12(1−σ)
4σ−1 logk T if 3

4
≤ σ ≤ 1,

(31)
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where k is an absolute constant. Hence from (24), (30) and (31) we
obtain∫ 2X

X
|
∑
|γ|≤T
β∈I

x%c%(ξ)|4dx� X4θ+ 5
8

+ 7
4

∆+O(∆2)+ε

and hence

|{X ≤ x ≤ 2X : |
∑
|γ|≤T
β∈I

x%c%(ξ)| ≥
Xθ

log2X
}| � X

5
8

+ 7
4

∆+O(∆2)+ε.
(32)

From (21), (24), (29) and (32) we see that (20) is satisfied in this case
with α = 5

8
+ 7

4
∆ +O(∆2), and the second bound of Theorem 2 is

proved.

The result under RH follows immediately from Selberg’s bound (13),
and Theorem 2 is proved.

The remark that (5) can be proved under the assumption (6) can be
easily checked arguing as before, using only mean square estimates,

i.e., by means of (6) and (28) instead of (31).

Finally, we prove Corollary 4. Choose h(x) = xθ with θ > 0. It is
clear that if an interval of type I = [y, y + Y ] is contained in Eδ(X, θ),
with 0 < θ ≤ 7

12
, then ∆(x, h) has the same sign for all x ∈ I. In fact,

|∆(x, h)| has jumps of height � log x and log x = o(xθ). Therefore,
the asymptotic formula (1) does not hold for the interval I itself.

Hence by [8] we have Y � X7/12, and Corollary 4 follows.
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