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Faster on-line calculation of thermal stresses 
 by time integration 

 

Zucca* S. , Botto D. , Gola M.M. 
Politecnico di Torino – Department of Mechanical Engineering 

C.so Duca degli Abruzzi 24, 10129 Torino - Italy 
 
Abstract 
The Green’s function technique (GFT) is largely used for on-line calculation of thermal stresses in machines and 
plants, because it allows turning parameters such as fluid temperatures, pressures and flow rates directly in 
thermal stresses. 
Recently the use of the GFT has been extended by the authors to thermo-mechanical models having variable 
convective coefficients. The novel methodology is made of two steps. First of all, boundary temperatures are 
evaluated by time integration of a reduced thermal model and then thermal stresses are calculated by means of 
the GFT using as inputs the boundary temperatures previously evaluated. The new approach implies a large 
number of convolution integrals to be solved for thermal stress calculation. 
In order to reduce computation time it is here proposed to replace the convolution integrals which characterise 
the GFT with a reduced model of uncoupled first order differential equations, whose coefficients are estimated 
fitting the Green’s functions of the thermo-mechanical model with a sum of exponential terms. Thermal stresses 
are obtained by time integration of the model. 
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1  Introduction 
On-line calculation of thermal stresses is currently performed in machines and structures, characterised by high 
safety requirements and/or expensive maintenance costs (e.g. aircraft engines, nuclear power plants) in order to 
directly relate the fatigue damage accumulation to the actual load histories. 
Ad-hoc low order models are to be developed because detailed FE models are too large to be employed for on-
line processing. 
A largely used methodology is the Green’s Function Technique (GFT). The time histories of the outputs are 
evaluated from the time histories of the inputs solving a set of convolution integrals. The only data necessary to 
perform the calculation are the Green's functions of the thermo-mechanical model, i.e. time histories of thermal 
stresses due to unit step inputs. 
In linear thermo-mechanical models, the GFT is used to evaluate on-line thermal stresses from the time history 
of fluid temperatures (Figure 1a) around the component, by-passing the metal temperature evaluation (Refs. [1]-
[3]). 
On the contrary, in applications characterised by variable convective coefficients, the direct calculation of 
thermal stresses from fluid temperatures is not possible, because the system is not linear and the superposition 
principle does not apply. 
For this class of applications a novel methodology has been recently proposed by the authors [4]. It is based on 
two steps: 
1. temperature calculation at nodes located at the boundaries of the body by time integration of a reduced 

thermal model obtained by means of Component Mode Synthesis (Ref. 5); 
2. thermal stress calculation by means of the GFT using as inputs the time history of the boundary 

temperatures (Figure 1b) evaluated at step 1. 
This approach allows splitting the thermal problem and the thermo-mechanical problem, confining the non-
linearity within the former. 
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The comparison of Figure 1a and Figure 1b shows that the main implication of this approach is that the number 
of inputs for thermal stress calculation increases with respect to the linear case. 
As a consequence, a large number of convolution integrals has to be performed at step 2, making the calculation 
very time consuming for applications characterised by many variable convective coefficients. 
In order to reduce the numerical burden due to calculation of the convolution integrals at step 2, in this paper a 
method is proposed to replace the GFT with a reduced model made of uncoupled first-order differential 
equations. It is a different version of a method developed for feedback control in thermal applications ([6]). 
The off-line procedure necessary to build the reduced model consists of three parts: 
1. calculate, by means of a detailed thermo-mechanical model, the Green's functions (responses to unit step 

inputs) for thermal stresses that are to be calculated on-line; 
2. fit each Green's function with a sum of exponential terms by means of a non-linear least squares fitting 

algorithm based on the method of conjugate gradients; 
3. evaluate coefficients of the reduced model from amplitudes and exponents of series estimated at point 2. 
Time integration of the reduced model allows calculating thermal stresses on-line. The number of operations per 
time unit is one to two orders of magnitude lower than that necessary to perform convolution integrals with the 
GFT. 
 
2  Development of the reduced model 
Let's take a thermo-elastic model with a number I of temperature inputs. If the GFT is used for on-line 
calculation of thermal stresses σ(t) at a point P(x,y,z) of the model, the equation 
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has to be numerically solved (Ref. 1), where 

σ  : initial steady-state value of thermal stress, 
Ti(t) : ith temperature input of the system, 

iT  : ith temperature input of the system at time t=0, 
Gi(P, t) : Green’s function at point P of ith input, 

( )PGi  : steady-state value of the Green’s function at point P of ith input. 

The time derivative dσ(t)/dt can be calculated by an equation having the same structure, where the Green's 
functions Gi(P, t) are replaced with their time derivatives Hi(P, t): 
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with dσ(0)/dt = 0, because the calculation is started at steady-state conditions. 
Green’s functions Gi(P, t) of thermal stress are always characterised by a transient which leads to a steady-state 
asymptotic value. Their analytical expression is 
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with 
λij: jth thermal eigenvalues of the model (real and negative numbers), 
ηij: contribution of the jth thermal eigenvector to thermal stress at point P, 
N: number of degrees of freedom of the thermo-mechanical model. 
The key idea of the method described in this paper is to replace the analytical expression of the Green's 
functions written at Eq. (3) with the approximate expression 
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where Ji is smaller than N. 
If Gi(P, t) in Eqs. (1) and (2) is replaced by the right hand side of Eq. (4), thermal stress and its time derivative 
can be written as 
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If the integral in equation (7) is transformed as follows: 
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Comparison of Eq. (8) and Eq. (9) leads to the following relation between ( )t~
ijσ  and its time derivative 

d ( )t~
ijσ /dt: 
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Equation (10) is valid for any term ( )t~
ijσ . As a consequence, for any temperature input Ti a reduced model of 

size Ji  
 iTˆˆ ⋅+⋅= iiii ββββσσσσαααασσσσ&  (11) 

can be obtained, where 

iσσσσ̂ : (Ji x 1) vector having ( )t~
ijσ  at the jth position, 

iσσσσ&̂ : (Ji x 1) vector having ( ) dt/t~d ijσ  at the jth position, 

ααααi: (Ji x Ji) diagonal matrix containing the ijλ
~ , 

ββββi: (Ji x 1) vector having the jth term equal to - ijλ
~

ijη
~ . 

In the case of I temperature inputs, the I reduced models of Eq. (11) can be assembled together to form 
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If a new state variable  

 TBAσσ' ⋅⋅+= −1ˆ  (13) 
is introduced, the reduced model of Eq. (12) becomes  
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with 

 BAC ⋅= −1  and BA1G ⋅⋅−= −1TT . (15) 
The new state variable has been introduced in order to separate and put into evidence the two main constituents 
of thermal stress: the transient part 1T⋅σσσσ'  and steady-state part GT⋅T. 
Verifying that GT⋅T is the steady-state part of thermal stress is simple. Let us suppose to neglect 1T⋅σσσσ'  in the 
thermal stress calculation, thermal stress σ(t) would reach instantaneously the steady-state value corresponding 
to vector T(t). On the contrary if 1T⋅σσσσ'  is included the delay due to thermal capacity of the material is taken into 
account. 
These considerations imply that in order to evaluate exactly thermal stress at steady-state, the ith term of the 
vector G has to be equal to )P(Gi , i.e. the steady-state thermal-stress due to a unit amplitude of ith input. 



 
3  Calculation of the coefficients of the model 
In the previous section the reduced model has been derived and it has been shown how to calculate the terms of 
the vector G. 
In order to define completely the model, matrices A and C are also to be obtained. As shown in Eqs. (10-15) 
they both depend on coefficients ijη

~ and ijλ
~ . This means that once the terms of the series introduced at Eq. (4) 

are calculated, then the reduced model is completely defined. 
In this paper it is proposed to calculate these coefficients by means of a non-linear least-square fitting. 
In detail, for any Green's function Gi(t), the problem is to find a set of coefficients ijη

~  and ijλ
~  which minimises 

the function 
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with residual Ri defined as 
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and K equal to the number of samples of the Green's function. 
The problem is solved using the MATLAB-lsqnonlin non-linear least square fitting algorithm based on the 
methods of conjugate gradients. 
The number Ji of exponential terms necessary to properly fit the curve Gi(t) is not known a priori; therefore a 
simple iterative procedure is employed. 
For each Green's function Gi(t): 
1. The first attempt is made with a series made of just one term (Ji = 1). 
2. Amplitudes and exponents are found finding the minimum of Eq. (16). 
3. If the resulting series does not fit the Green's function with the required accuracy, another term is added 

(Ji = Ji + 1) and step 2 is performed again. The calculation stops when the series fits properly the Green's 
function. 

During the fitting procedure some boundaries can be imposed to the unknown parameters ijη
~  and ijλ

~  to allow 

for some physical features of the thermo-mechanical model: 
− The exponent range is set by the minimum and maximum eigenvalues of the thermal model; 
− For any Green’s function Gi(t) the sum of the Ji amplitudes ijη

~  is imposed equal to the corresponding 

steady-state value ( )PGi . 

 
4  Application to a thick pipe 
A simple application will now be presented. Although the method has been developed for applications 
characterised by a large number of thermal inputs, this simple study case explains better how the procedure 
works. 
In detail, the case study is a thick pipe subjected to convective boundary conditions at both inner and outer radii. 
The critical point of the pipe is placed at its inner radius and the monitored stress component at that point is the 
hoop stress. 
Geometry, material properties and time history of fluid temperatures are plotted in Figure 2. Both models of the 
pipe, the thermal and the thermo-elastic, are supposed to be perfectly axi-symmetric. The variation in time of the 
inner and the outer convective coefficients has been separately determined and is shown in Table 1. 
As stated in the introduction, employment of the GFT for thermal stress calculation in thermo-mechanical 
models characterised by variable convective coefficients is possible only if boundary temperatures are 
previously evaluated and then used as inputs. 
In this case boundary temperatures correspond to temperatures at the inner and at the outer radius of the pipe, 
henceforth called Ti(t) and To(t) respectively. 
The detailed description of the calculation of Ti(t) and To(t) is beyond the scope of this paper. For more details 
see Ref. [4]. Here the time histories of Ti(t) and To(t) (Figure 3) are given as data and used as inputs for thermal 
stress calculation. 
The Green's functions Gi(t) and Go(t), corresponding to unit step variation of Ti(t) and To(t) respectively, are 
evaluated by means of the detailed thermal and thermo-elastic models (Figure 4). Then they are fitted by means 
of a sum of exponential terms, following the procedure described in Section 4. For the proposed case study 3 
terms are necessary for Gi(t) and 2 terms for Go(t). 
The resulting reduced model is  
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Time integration of the reduced model allows calculation of the thermal stress at the critical point. 
Figure 5 shows the thermal stress obtained by means of the detailed FE thermo-mechanical model and the 
difference between the results from the reduced model and those from FEM. 
The number of operations is reduced with respect to the GFT. Time integration of the reduced model performed 
by an Euler implicit method with a constant time step ∆t = 0.5 s requires 34 operations per second, whilst the 
solution of the convolution integrals would need 1600 (see Appendix). 

 
5  Application to a nozzle 
The second application is of a more practical relevance. It is a junction between a nozzle and the spherical head 
of a pressure vessel, whose geometry and material properties are shown in Figure 6a. The critical location of the 
component is the point A and the stress to monitor is the hoop stress σHA. 
The component is subjected to convective boundary conditions along the boundaries AF and AE. A transient 
starts from an nitial uniform temperature T0. The time histories of the variation of fluid temperatures facing the 
component are plotted in Figure 6b. 
Convective coefficients are: 
− constant and equal to h2 = 567.4 W/m2/K along the side AF; 
− variable according to time history plotted in Figure 6c along the side AE. 
Fluid temperature Tfl2 facing the AF side can be used for thermal stress calculation because the corresponding 
convective coefficient h2 is constant. 
On the contrary, in order to take into account the effect of Tfl1 it is necessary to evaluate the temperature profile 
along the side AE and then use such a distribution as input for thermal stress. 
A detailed description of the procedure adopted to evaluate the time history of the temperature distribution along 
the AE side is given in [4]. 
Here it is sufficient to say that the temperature distribution along AE is supposed to be piecewise-linear. A 
Lagrange basis made of 5 first-order polynomials, called LA, LB, LC, LD and LE, is used to describe the 
temperature distribution. TA, TB, TC, TD and TE (Figure 6a) are the amplitudes of the corresponding Lagrange 
functions. 
Time histories of TA, TB, TC, TD and TE (Figure 7), which represent the inputs for thermal stress calculation 
together with Tfl2, are evaluated by time integration of a reduced thermal model ([4]) and henceforth are given as 
data. 
In order to use time histories of TA, TB, TC, TD, TE and Tfl2 as inputs for thermal stress calculation a set of 
Green's functions are to be calculated, called respectively GA, GB, GC, GD, GE and Gfl2. 
GA, GB, GC, GD and GE are the time histories of σHA due to a unit step input of the Lagrange polynomials LA, LB, 
LC, LD and LE respectively, imposing null Tfl2. Gfl2 is the time history of σHA due to unit step input of Tfl2 and 
null temperature along AE. 
Once the Green's functions are evaluated, they are fitted with a series of exponential terms. As a result of the 
non linear fitting procedure the exponential series listed in Tab. 2 are obtained and a reduced model made of 10 
uncoupled differential equations is built. FEM results and error due to time integration of the reduced model are 
plotted in Figure 8. Time integration of the reduced model, performed with the Euler implicit method (time step 
0.5 s) requires 72 operations per time unit; the same calculation with the GFT would require 480 operations (see 
Appendix). 
 
6  Conclusions 
A reduced model made of uncoupled first order differential equations has been proposed as a tool for on-line 
calculation of thermal stresses. 
The approach here proposed for the definition of the reduced model consists of: 
− fitting the Green's functions of the thermo-elastic model with a series of exponential terms; 
− defining the reduced model by means of the amplitudes and the exponents of the series. 
In this paper a non-linear least square fitting procedure based on the method of conjugate gradients has been 
successfully used to estimate amplitudes and exponents of the series. 



The methodology has been applied to two study cases: a thick pipe and a nozzle. 
Results presented in this paper show that the accuracy of stress calculated via the reduced model vs. reference 
FE model are very satisfactory. 
It has also been shown that the reduced model compared to the Green's function technique reduces the number 
of operations by between one to two orders of magnitude (34 vs. 1600 and 72 vs. 480 respectively). 
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Appendix 
The method proposed in this paper reduction, with respect to the GFT, of the number of operations necessary to 
perform on-line calculation of thermal stresses. 
For each thermal stress which has to be monitored, the amount of this reduction depends on several elements: 
1. the number I of temperature inputs, 
2. the time length tG of the Green's functions, 
3. the time step ∆t chosen for on-line calculations, 
4. the size M of the reduced model. 
If the GFT is used, the number of operations per second necessary to perform on-line calculation is 

2
GGGFT

op
t∆

tI

t∆

1

t∆

t
IN

⋅
=⋅⋅= , 

where tG/∆t is the length of vectors involved in the convolution integrals and 1/∆t is the frequency at which on-
line calculation occurs. 
With reference to Eq. (14), the reduced model requires a number of operations per second equal to 

( )
t∆

1
NMM2N RM

op ⋅++⋅= , 

where 1/∆t is the frequency at which on-line calculation occurs and each term in the parentheses represents the 
number of operations necessary to: 
− perform time integration of the differential equations with Euler implicit method, 
− calculate the transient part of thermal stress 1T⋅σσσσ' , 
− calculate the steady-state part GT⋅F 
respectively. 
 



Figures 
 

 
Figure 1: Temperature inputs (♦♦♦♦) for σσσσ(t) calculation with the GFT; 
linear models (a) and models with variable convective coefficients (b). 

 
 

 
Figure 2: Thick pipe geometry, material properties (a) and boundary conditions (b) 

 
 



 
Figure 3: Temperature at the inner and outer radius of the pipe. 

 

 
Figure 4: Green's function Gi(t) and Go(t) of the thick pipe. 

 

 
Figure 5: Hoop stress at the inner radius of the pipe; FEM results (a) 

 and difference between results from the reduced model and those from FEM (b) 
 



 
Figure 6: Nozzle geometry (a), material properties (a), 

fluid temperatures (b) and heat transfer coefficient over AE side (c) 
 
 



 
Figure 7: Time history of metal temperatures over AE side of the nozzle. 

 
 
 

 
Figure 8: hoop stress at point A of the nozzle; FEM results (a) 

 and difference between results from the reduced model and those from FEM (b) 



Tables 
 
 

Table 1: variation of film coefficients of the thick pipe. 

time [s] 0 1600 1610 2500 

hi [W/m2/K] 150 1200 150 150 

ho [W/m2/K] 500 600 500 500 

 
 

 
Table 2: Green's function exponents and amplitudes. 

Green's 
function η1 λ1 η2 λ2 

GA 0.107 -1.277 -2.513 -307.5 

GB 0.260 -1.277 0.496 -124.1 

GC -0.271 -8.544 0.202 -1949.0 

GD -0.1896 -5.284 -0.0125 -895.8 

GE -1.7e-4 -1.277 - - 

Gfl2 1.921 -1.277 - - 

 


