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Faster on-line calculation of thermal stresses
by time integration

Zucca S. , Botto D. , Gola M.M.

Politecnico di Torino — Department of Mechanicalgireering
C.so Duca degli Abruzzi 24, 10129 Torino - Italy

Abstract

The Green’s function technique (GFT) is largelyduf@ on-line calculation of thermal stresses irchiaes and
plants, because it allows turning parameters sscHuad temperatures, pressures and flow ratescitljrén
thermal stresses.

Recently the use of the GFT has been extendedéwuthors to thermo-mechanical models having vigriab
convective coefficients. The novel methodology iad of two steps. First of all, boundary tempersare
evaluated by time integration of a reduced thermadlel and then thermal stresses are calculateddaysnof
the GFT using as inputs the boundary temperaturegqusly evaluated. The new approach implies gelar
number of convolution integrals to be solved farthal stress calculation.

In order to reduce computation time it is here psmul to replace the convolution integrals whichratizrise
the GFT with a reduced model of uncoupled firsteordifferential equations, whose coefficients sstneated
fitting the Green’s functions of the thermo-mecltahimodel with a sum of exponential terms. Therstiasses
are obtained by time integration of the model.
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1 Introduction

On-line calculation of thermal stresses is cursep#rformed in machines and structures, charaetéty high

safety requirements and/or expensive maintenarsts ¢e.g. aircraft engines, nuclear power plamsrder to

directly relate the fatigue damage accumulatiotihéoactual load histories.

Ad-hoc low order models are to be developed becdatsgled FE models are too large to be employedrio

line processing.

A largely used methodology is the Green’s Funciiechnique (GFT). The time histories of the outpars

evaluated from the time histories of the inputyisg a set of convolution integrals. The only daégessary to

perform the calculation are the Green's functidnthe thermo-mechanical model, i.e. time histogéshermal

stresses due to unit step inputs.

In linear thermo-mechanical models, the GFT is useglvaluate on-line thermal stresses from the timstory

of fluid temperatures (Figure 1a) around the congmbnby-passing the metal temperature evaluatiefis(R1]-

[3]).

On the contrary, in applications characterised hyiable convective coefficients, the direct caltiola of

thermal stresses from fluid temperatures is nosiptes because the system is not linear and therpapition

principle does not apply.

For this class of applications a novel methodolbgg been recently proposed by the authors [43. based on

two steps:

1. temperature calculation at nodes located at thendemies of the body by time integration of a redlce
thermal model obtained by means of Component Moti¢h®sis (Ref. 5);

2. thermal stress calculation by means of the GFT gusis inputs the time history of the boundary
temperatures (Figure 1b) evaluated at step 1.

This approach allows splitting the thermal probland the thermo-mechanical problem, confining tha-no

linearity within the former.
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The comparison of Figure 1a and Figure 1b showsttigamain implication of this approach is that thenber

of inputs for thermal stress calculation increasitl respect to the linear case.

As a consequence, a large number of convolutiegrats has to be performed at step 2, making tlogllation

very time consuming for applications characterisganany variable convective coefficients.

In order to reduce the numerical burden due toutation of the convolution integrals at step 2this paper a

method is proposed to replace the GFT with a redlupedel made of uncoupled first-order differential

equations. It is a different version of a methodaleped for feedback control in thermal applicasi¢j®]).

The off-line procedure necessary to build the redumodel consists of three parts:

1. calculate, by means of a detailed thermo-mechamizalel, the Green's functions (responses to uegt st
inputs) for thermal stresses that are to be cakedlan-line;

2. fit each Green's function with a sum of exponertgans by means of a non-linear least squaresditti
algorithm based on the method of conjugate grastient

3. evaluate coefficients of the reduced model from lgoges and exponents of series estimated at Roint

Time integration of the reduced model allows calting thermal stresses on-line. The number of djpesper

time unit is one to two orders of magnitude lowwart that necessary to perform convolution integnétls the

GFT.

2 Development of the reduced model
Let's take a thermo-elastic model with a numbesf temperature inputs. If the GFT is used for ioe-|
calculation of thermal stresseet) at a point P(x,y,z) of the model, the equation

o()=5+3 [G(Pt- BLdr (G(P)Er.ﬂe Pt~ rng] (1)

i=10
has to be numerically solved (Ref. 1), where

c . initial steady-state value of thermal stress,

Ti(b) . i" temperature input of the system,

Ti . i"temperature input of the system at time t=0,

G(P,t) : Green's function at point P 8Finput,

Gi (P) . steady-state value of the Green’s function &t of {" input.

The time derivative d(t)/dt can be calculated by an equation having ghee structure, where the Green's
functions G(P, t) are replaced with their time derivative$hit):

doft) _ dG()+sz (Pt- Eld—dz 2)

with do(0)/dt = 0, because the calculation is startedestdy-state condltlons.
Green'’s functions (@, t) of thermal stress are always characteriged transient which leads to a steady-state
asymptotic value. Their analytical expression is

N N
Gi(P.t)= X g;(t)= X n; -, ®)
F1 71
with
Ai: j" thermal eigenvalues of the model (real and negativmbers),
Ni: contribution of the'] thermal eigenvector to thermal stress at point P,
N: number of degrees of freedom of the thermo-meichhmodel.

The key idea of the method described in this papeo replace the analytical expression of the Geee
functions written at Eq. (3) with the approximai@ression

J J; X
Gi(Pt)D _Zlﬁij (t)= _Zlﬁij m-ei"), (4)
= =

where Jis smaller than N.
If Gi(P, t) in Egs. (1) and (2) is replaced by the righbd side of Eq. (4), thermal stress and its tileévative
can be written as

|

oft)= 2 ¥5(1) ©)
i=1 j=1
do(t) _ ZI‘. 3 doj (t) (6)
dt i=1 j=1 dt

with



5 (0= DF|+In., M- eufﬂtﬂ)[Ld @)
dc(;]() _} ulj: [e.,f(l T>BLd (8

If the integral in equation (7)is transformed aﬂaofws

,[Th [-e M- T))["didT I Njj LdT—T] E}ek”mt i EILd =
=7 (T (1) - T5) - 7y E}ez”mt_r) Eldoil—dr
0 t

Gij (t), defined in Eq. (7), becomes

~ X

()= 7y ()~ [7y 2 AT g ©
Comparison of Eq. (8) and Eq. (9) leads to theofmllhg reIatlon betweerfjij (t) and its time derivative
daij (t)/dt:

do;i(t) - -
12 = Oy (1) - &y Oy 15 (1) (10)

Equation (10) is valid for any terrﬁij (t) As a consequence, for any temperature inpat reduced model of

size J

G =a; [6; +B; [T (11)
can be obtained, where

G;: (4 x 1) vector having; (t) at the " position,

G;: (3 x 1) vector havingjaij (t)/dt at the ' position,

a;: (3 x J) diagonal matrix containing thEij ,

B:: (J x 1) vector having thé"jterm equal to Xij ﬁij .

In the case of temperature inputs, tHaeduced models of Eq. (11) can be assembled tegttiorm
G=AG6+B[T (12)
o=1" &

with

a1 a;, 0 O O B, 0 0 O T1 1
. |0 0 a, 0 O 0 0 O T 1
6=1 21 A= a . B=| 0 P D T=1 2k 1=
o o0 . 0 0 O 0 :
(o] 0 0 0 gq 0 0 0 B T 1
If a new state variable
¢=6+A 1B (13)
is introduced, the reduced model of Eq. (12) becme
¢'=Al6'+C[T (14)
o=1" H+G' [T

with

c=A1BandcT=-1"T A ' B. (15)
The new state variable has been introduced in dodseparate and put into evidence the two maistdaents
of thermal stress: the transient pHiis' and steady-state pag{ [T
Verifying that G'T is the steady-state part of thermal stress is Isiniget us suppose to neglefta’ in the
thermal stress calculation, thermal stre@3 would reach instantaneously the steady-staligeveorresponding
to vectorT(t). On the contrary il"[@" is included the delay due to thermal capacityhef material is taken into

account.
These considerations imply that in order to evalumtactly thermal stress at steady-state, therim of the

vectorG has to be equal 1G; (P), i.e. the steady-state thermal-stress due totaamplitude of ' input.



3 Calculation of the coefficients of the model

In the previous section the reduced model has Hegwed and it has been shown how to calculateeitras of

the vectolG.

In order to define completely the model, matrié¢egandC are also to be obtained. As shown in Egs. (10-15)

they both depend on coefficieniﬁj and 7~Vij . This means that once the terms of the seriesdnted at Eq. (4)

are calculated, then the reduced model is compldedined.
In this paper it is proposed to calculate thesdficients by means of a non-linear least-squataijt

In detail, for any Green's function(g, the problem is to find a set of coefﬁcier‘ﬁr? and )Tij which minimises
the function

- K ~
~ _ 2 ~
f(xij"”lij’tk)— kglRi (Mj,nij,tk)* (16)
with residual Rdefined as
- J T
Ri (Mj,mj,tn)=Gi(tn)‘Zlﬂij -e™) 17)
J:

and K equal to the number of samples of the Grdenttion.

The problem is solved using the MATLAB-Isgnonlinmibinear least square fitting algorithm based oe th

methods of conjugate gradients.

The number ;Jof exponential terms necessary to properly fit¢bheve G(t) is not known a priori; therefore a

simple iterative procedure is employed.

For each Green's function(6:

1. The first attempt is made with a series made dfgue term (3= 1).

2. Amplitudes and exponents are found finding the mimn of Eq. (16).

3. If the resulting series does not fit the Greentscfion with the required accuracy, another termadded
(J=J+ 1) and step 2 is performed again. The calculasiops when the series fits properly the Green's
function.

During the fitting procedure some boundaries camipsed to the unknown parameté{iF and 7~Vij to allow

for some physical features of the thermo-mechameadel:
— The exponent range is set by the minimum and maxirigenvalues of the thermal model;
— For any Green’s function ;(® the sum of theiJampIitudesﬁij is imposed equal to the corresponding

steady-state valug; (P) .

4 Application to a thick pipe

A simple application will now be presented. Althbughe method has been developed for applications
characterised by a large number of thermal inpiiiis, simple study case explains better how the quioe
works.

In detall, the case study is a thick pipe subjetbecbnvective boundary conditions at both inneat anter radii.
The critical point of the pipe is placed at itsenmadius and the monitored stress component aiptiat is the
hoop stress.

Geometry, material properties and time historyl@tiftemperatures are plotted in Figure 2. Both eteaf the
pipe, the thermal and the thermo-elastic, are ssgypéo be perfectly axi-symmetric. The variationimne of the
inner and the outer convective coefficients hasitseparately determined and is shown in Table 1.

As stated in the introduction, employment of theTGiBr thermal stress calculation in thermo-mechalnic
models characterised by variable convective cdefits is possible only if boundary temperatures are
previously evaluated and then used as inputs.

In this case boundary temperatures correspondhtpdratures at the inner and at the outer raditkeopipe,
henceforth called {t) and Ty(t) respectively.

The detailed description of the calculation ¢ftjTand T(t) is beyond the scope of this paper. For moraildet
see Ref. [4]. Here the time histories oftfand T,(t) (Figure 3) are given as data and used as irfputhiermal
stress calculation.

The Green's functions;® and G(t), corresponding to unit step variation qftfand Ty(t) respectively, are
evaluated by means of the detailed thermal andnreslastic models (Figure 4). Then they are fittgdneans
of a sum of exponential terms, following the praseddescribed in Section 4. For the proposed dasly 8
terms are necessary for(fpand 2 terms for gt).

The resulting reduced model is



(00475 0 0 0 0 (1424 0
0 069 O 0 0 0411 O .
= 0 0 5920 O 0 |+ 3003 O E{I‘} (18)
0 0 0 -00491 O 0 pas| \'°
0 0 0 0 1114] | 0 0344

c=1" &'+ 1990 - EQOJE{Ti}
To

Time integration of the reduced model allows caltioh of the thermal stress at the critical point.

Figure 5 shows the thermal stress obtained by meéanke detailed FE thermo-mechanical model and the
difference between the results from the reducedeainmadd those from FEM.

The number of operations is reduced with respettié¢dGFT. Time integration of the reduced modefqrened

by an Euler implicit method with a constant timepsiit = 0.5 s requires 34 operations per second, wthiest
solution of the convolution integrals would nee®Qfsee Appendix).

5 Application to a nozzle

The second application is of a more practical ehee. It is a junction between a nozzle and thersgdd head
of a pressure vessel, whose geometry and matedpépies are shown in Figure 6a. The critical tmeaof the
component is the point A and the stress to moisttte hoop stressya.

The component is subjected to convective boundangitions along the boundaries AF and AE. A tramisie
starts from an nitial uniform temperaturg The time histories of the variation of fluid teemptures facing the
component are plotted in Figure 6b.

Convective coefficients are:

- constant and equal tg & 567.4 W/MV/K along the side AF;

— variable according to time history plotted in Figuic along the side AE.

Fluid temperature g5 facing the AF side can be used for thermal steagsulation because the corresponding
convective coefficient-his constant.

On the contrary, in order to take into accountdffect of Ty, it is necessary to evaluate the temperature profil
along the side AE and then use such a distrib@smput for thermal stress.

A detailed description of the procedure adopteehvimuate the time history of the temperature distion along
the AE side is given in [4].

Here it is sufficient to say that the temperatuigtribution along AE is supposed to be piecewigedr. A
Lagrange basis made of 5 first-order polynomiakdjed La, Lg, Lc, Lp and Lg, is used to describe the
temperature distribution. AT Tg, T, Tp and T (Figure 6a) are the amplitudes of the correspandlimgrange
functions.

Time histories of T, Tg, T¢, Tp and T (Figure 7), which represent the inputs for therstaéss calculation
together with T, are evaluated by time integration of a reducedntfal model ([4]) and henceforth are given as
data.

In order to use time histories of\,TTg, Tc, Tp, Te and Ty, as inputs for thermal stress calculation a set of
Green's functions are to be calculated, calledaesly G, Gg, Gc, Gp, G and Gs.

Ga, Gg, G¢, Gp and G are the time histories ofy, due to a unit step input of the Lagrange polyndsiia, Lg,

L¢, Lp and Lg respectively, imposing nullgf. Gy, is the time history o6y, due to unit step input ofyJ and
null temperature along AE.

Once the Green's functions are evaluated, the¥itted with a series of exponential terms. As aulesf the
non linear fitting procedure the exponential seliged in Tab. 2 are obtained and a reduced modele of 10
uncoupled differential equations is built. FEM rés@and error due to time integration of the redunedel are
plotted in Figure 8. Time integration of the reddiceodel, performed with the Euler implicit methdiing step
0.5 s) requires 72 operations per time unit; threesaalculation with the GFT would require 480 ofierss (see
Appendix).

6 Conclusions

A reduced model made of uncoupled first order difftial equations has been proposed as a toolrfdine
calculation of thermal stresses.

The approach here proposed for the definition efrdduced model consists of:

- fitting the Green's functions of the thermo-elagtiodel with a series of exponential terms;

— defining the reduced model by means of the amm#uahd the exponents of the series.

In this paper a non-linear least square fittingcpure based on the method of conjugate gradiestéen
successfully used to estimate amplitudes and expsiod the series.



The methodology has been applied to two study casimck pipe and a nozzle.

Results presented in this paper show that the acgwf stress calculated via the reduced modetefsrence
FE model are very satisfactory.

It has also been shown that the reduced model cemiga the Green's function technique reduces tineber
of operations by between one to two orders of nmadri(34 vs. 1600 and 72 vs. 480 respectively).

References

1. Mukhopadhyay N.K., Dutta B.K., Kushwaha H.S., Ma&mjS.C., Kakodkar A., On line fatigue life
monitoring methodology for power plant componeiris, J. Press. Vessels and Piping 1994; 60: 297-306

2. Maekawa O., Kanazawa Y., Takahashi Y., Tani M., @peg data monitoring and fatigue evaluation
systems and findings for boiling water reactordapan, Nuclear Engng Design 1995; 15: 135-143.

3. Sakai K., Hojo K., Kato A., Umehara R., On-lineigate monitoring system for nuclear power plant,
Nuclear Engng Design 1995, 153; 19-25.

4. Botto D., Zucca S., Gola M.M., A methodology for-lime calculation of temperature and thermal stress
under non-linear boundary conditions. Int. J. Prgsssels and Piping 2003, 80(1): 21-29.

5. Botto D., Zucca S., Gola M.M., Salvano S., A metlimdon-line temperature calculation of aircrafgare
turbine discs, Proceedings of the ASME Turbo Exp02 Amsterdam, NL, 2002.

6. Petit D., Hachette R., Veyret D., A modal identifion method to reduce a high-order model: apptioat
to heat conduction modelling, International Jouwfdilodelling and Simulation 1997; 17: 242-253.

Appendix
The method proposed in this paper reduction, vatipect to the GFT, of the number of operations seag to
perform on-line calculation of thermal stresses.
For each thermal stress which has to be monitéhedamount of this reduction depends on severaiaits:
1. the number | of temperature inputs,
2. the time lengthd of the Green's functions,
3. the time ste@\t chosen for on-line calculations,
4. the size M of the reduced model.
If the GFT is used, the number of operations peoise necessary to perform on-line calculation is
NG =1 do gt -Ile
At At A2
where ¢/At is the length of vectors involved in the conva@atintegrals and M is the frequency at which on-
line calculation occurs.
With reference to Eq. (14), the reduced model megua number of operations per second equal to
RM _ +M + 1 ,
Nop' =(2M +M +N) Ev
where 1At is the frequency at which on-line calculation wscand each term in the parentheses represents the
number of operations necessary to:
— perform time integration of the differential equets with Euler implicit method,
- calculate the transient part of thermal strEss’,
- calculate the steady-state partF
respectively.
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Figure 1: Temperature inputs @) for o(t) calculation with the GFT;
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Figure 4: Green's function G(t) and G(t) of the thick pipe.
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and difference between results from the reduced nael and those from FEM (b)
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Figure 6: Nozzle geometry (a), material propertie¢a),
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Figure 7: Time history of metal temperatures over A side of the nozzle.
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Tables

Table 1: variation of film coefficients of the thik pipe.

time [s] 0| 1600/ 1610 2500
hy [W/mZ/K] 150| 1200/ 150/ 150
ho [W/M?/K] 500/ 600/ 500/ 500

Table 2: Green's function exponents and amplitudes.

fﬁrr]iigr? N1 Ay N2 Az
Ga 0.107 | -1.277| -2.513 -307.5
Gg 0.260 | -1.277| 0.496| -124.1
Ge -0.271| -8.544| 0.202] -1949|0
Gp -0.1896| -5.284 | -0.0125 -895.8
Ge -1.7e-4| -1.277 - -
Gsp 1.921 | -1.277 - -




