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WATER RESOURCES RESEARCH, VOL. 32, NO. 2, PAGES 297-306, FEBRUARY 1996 

Impact of concentration measurements upon estimation of flow 
and transport parameters: The Lagrangian approach 

Gedeon Dagan 
Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel 

Ilaria Butera and Elisabetta Grella 

Department of Hydraulic Engineering, Milan Polytechnic, Milan, Italy 

Abstract. Transport of a conservative solute takes place in a heterogeneous formation of 
spatially variable conductivity. The latter is modeled as a random space function of 
stationary lognormal distribution. As a result the velocity field and the concentration are 
also random. Assuming that measurements of concentration of an existing plume are 
available, the problem addressed here is to assess their effect upon identification of log 
conductivity and flow transport variables. The solution is sought in a Lagrangian 
framework in which transport is represented in terms of the random trajectories of 
particles originating from the initial plume. A concentration measurement is equivalent to 
the passage of a trajectory through the measurement point at a given time. The impact of 
measurements is achieved by conditioning any variable of interest on realizations for 
which at least one trajectory satisfies the requirement. It is shown that cokriging of 
concentration and another flow or transport variable leads to the correct conditioned 
mean of the latter. In contrast, the conditional variance based on cokriging is erroneous. 
The procedure is illustrated for two-dimensional flow under a few simplifying assumptions. 
The effect of a concentration measurement upon the expected value and variance of log 
transmissivity and plume centroid are examined in a few particular cases. The procedure 
may improve the solution of the inverse problem and the prediction of transport of 
existing plumes. 

1. Introduction 

Natural porous formations are as a rule heterogeneous, their 
hydraulic conductivity or transmissivity varying in space over 
orders of magnitude. Field studies and theoretical investiga- 
tions have led to the conclusion that these and the associated 

velocity variations constitute the main mechanism of solute 
spreading in subsurface transport. Because of the irregular 
spatial distribution and the uncertainty affecting it, it is com- 
mon to model the conductivity as a random space function and 
similarly for the dependent variables such as water head, ve- 
locity, and solute concentration. 

One of the major aims of transport models is to derive the 
statistical moments of the concentration (mean, variance, and 
spatial and temporal correlation) as functions of the given 
statistics of the conductivity and of given flow and transport 
initial and boundary conditions. Various approximate models, 
of an analytical or a numerical nature, have been developed in 
the past in order to achieve this goal. 

Transport models can be classified as based on uncondi- 
tional or conditional probabilities. In the first case, measure- 
ments of conductivity and heads are used in order to identify 
the statistical moments and their stationary probability distri- 
bution functions, and this is the input information for the 
transport model. In the second case the conductivity and head 
statistical moments are conditioned on the actual measure- 

ments, for example, by cokriging. As a result they are no longer 
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stationary random variables, and the same is true for the con- 
centration. Conditioning is expected to improve prediction by 
reducing its uncertainty, and it is most effective for transmis- 
sivity large-scale variations. 

Another classification relevant to the present study is related 
to the representation of transport within Eulerian and La- 
grangian frameworks. In the first approach the concentration is 
determined by solving the partial differential equation of con- 
vection-dispersion, with the flow velocity being a random space 
function related to the conductivity. In the Lagrangian meth- 
odology, known as particle tracking in its numerical version, 
the solute body is regarded as a collection of particles, and the 
process is represented in terms of their random trajectories. 
Most of the literature on subsurface transport deals with pre- 
diction of concentration distribution or of plume spatial mo- 
ments for given conductivity probability distribution, either 
unconditional or conditional. 

In many applications, field measurements include those of 
concentrations of existing plumes. The question is whether 
these additional data can be employed for better identifying 
the conductivity statistics, in an inverse procedure, or for pre- 
dicting the subsequent evolution of the plume. The aim of the 
present study is to investigate this topic within the Lagrangian 
framework and by using conditional probability. 

To our knowledge the subject has received less attention 
than the prediction based only on conductivity or head data. 
The problem was addressed in an Eulerian framework by Gra- 
ham and McLaughlin [1989a, b]. They truncate the transport 
equations at first order in the conductivity variance and derive 
subsequently partial differential equations for the two-point 
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concentration-velocity cross covariance and for the concentra- 
tion covariance. These equations are integrated numerically in 
the unconditional case [Graham and McLaughlin, 1989a] and 
in association with an extended Kalman filter in the conditional 

mode [Graham and McLaughlin, 1989b]. In the latter case a 
few final results are presented for a two-dimensional particular 
case. 

Although the pioneering work of Graham and McLaughlin 
[1989a, b] sets concentration conditioning in a comprehensive 
and rational framework, there are a few open issues which are 
addressed in a different manner in the present study. First, the 
Eulerian truncation has been found to be questionable, at least 
in a few circumstances IDagan and Neuman, 1991]. Second, the 
procedure is similar to cokriging, and it is mostly appropriate 
for normal variables, which is not the case with concentration 
(see section 3). Last, unlike Graham and McLaughlin [1989a, b], 
we shall try to analyze here in a simple and systematic manner 
the impact of concentration measurements, rather than in a 
particular case of a complex configuration. 

The impact of concentration measurements has been ad- 
dressed under similar basic assumptions by Deng et al. [1993a, b] 
and by Lee et al. [1993]. These authors employ concentration 
measurements in order to identify the underlying statistical 
structure of the conductivity through solute plume spatial mo- 
ments. Though the methodology is somewhat different from 
that of Graham and McLaughlin [1989a, b], the same general 
comments apply to these studies as well. Within the Lagrang- 
Jan approach, conditioning of plume centroid and second spa- 
tial moments has been investigated for conductivity and head 
measurements IDagan, 1984; Rubin, 1991], and similarly for 
travel time to a control plane [Rubin and Dagan, 1992]. 

The present study is an extension of this approach to con- 
centration data. Our main aim here is to develop the method- 
ology and to illustrate it in a simple manner, in order to grasp 
the impact of concentration measurements. Further applica- 
tions to more complex cases are outlined in section 6. 

2. Mathematical Statement of the Problem and 

Its Qualitative Analysis 
We consider a formation of conductivity or transmissivity 

K(x) of stationary lognormal distribution. With Y = In K the 
entire spatial structure of Y is embedded in {Y} = m v and 
Cy.(r) = {Y'(x)Y'(y)) = rr2vpv(r), r = x - y. Here x and y 
are Cartesian coordinate vectors, angle brackets stand for en- 
semble mean, rr2v is the variance, and pv is the autocorrelation. 
The flow is uniform in the mean, with velocity V(x) = U + u(x), 
where U = (V) = const and the random fluctuation u is char- 
acterized in its various moments, e.g., u ii(r ) = (tt/(x)ttj(y)). 
At t -- 0 a solute body of concentration Co = const is injected 
in a volume (area)Ao. The transport problem is to derive the 
random function C(x, t), the concentration distribution in 
space and time. 

In the Lagrangian, or in the particle tracking approach, the 
plume is regarded as a collection of particles moving along 
random trajectories x = Xt(t; a). The basic equations are [e.g., 
Dagan, 1989, section 4.3] 

dXt 
dt ----- U q- u(Xt) q- u d Xt(0 , a) = a (1) 

C(x, t) = C 0 f•4 (•[x - Xt(t; a)] da 0 

(2) 

(a) 

(b) 

Figure 1. Schematic representation of the solute body mo- 
tion: (a) advective transport and (b) plume extent as affected 
by pore-scale dispersion. 

In the first equation, u(x) is the fluctuation of the given 
random velocity field, while ud stands for the velocity of a 
"Brownian motion," i.e., a Wiener process, associated with 
pore-scale diffusion. In equation (2) the Dirac operator 8 stip- 
ulates that at time t a particle of mass Coda originating at t = 
0 is at x = Xt (Figure 1). Since u(x) and ud are random, the 
solution Xt is also random, of the probability density function 
(pdf) f(Xt; t, a). Knowledge of f leads immediately to 

<c(x,,)>=f C(x,t)f(X,)dX,=Cof•(x;t,a)da (3) 0 

2 requires determining f(X t, Yt; t, a, b), while the variance rr c 
the joint pdf of trajectories at time t of two particles originating 
at x = a and x = b within A o at t = 0, respectively. 

The basic equations (1) and (2) may be also employed in 
order to derive the statistical moments of other entities, such 
as the plume spatial moments 

R(t) =•00 xC(x, t) 
(4) 

S,,(t) (x, - &)C(x, t) ax 

where R is the centroid coordinate and S O (ij = 1, 2, 3) are 
second spatial moments. By the same token one may consider 
Cy, c = (Y'(x)C(y, t)), the log conductivity-concentration 
cross covariance, C,,,c = (tt/(x)e(y, t)), the velocity- 
concentration cross covariance, and so on. If the starting point 
in (1) is the stationary velocity u(x), the resulting moments 
(C), •r 2 ß c, (R}, Rii, {Sii}, Cvc, "are the unconditional ones. 

We assume now that measurements of C at a few points x -- 
a,, and times t = % (n = 1, 2,..., N) are available, i.e., 
C (a,,, %) are given. Then the mathematical problem pursued 
here can be stated in a general manner as follows: Determine 
the statistical moments {yc(x a,,, r,,)), o'•'C(xlan, %), 

..., for C satisfying equations (1) and (2), 
conditioned on the values C(a,,, %). In other words, the 
conditional moments are determined by using the subensemble 
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of realizations of the velocity fields for which C has the pre- 
scribed values at an, rn. 

An exact solution of both the unconditional and conditional 

problems is not feasible, and we adopt here a few simplifying 
assumptions. First, we neglect in (1) the effect of pore-scale 
dispersion, rewriting (1) as 

dX 

U + u(X) (S) 

The effect of this far-reaching assumption, together with that 
of steady flow of divergence free velocity, is that the concen- 
tration stays constant and equal to C O and the volume (area)A 
of the solute body is also preserved (Figure la). Thus the 
randomness of the velocity field manifests itself in the trajec- 
tory of the plume centroid and in the change of its shape. In 
the past the justification of this assumption was that the second 
spatial moments S o (4) of the solute body are determined 
mainly by the randomness of u and to a much lesser extent by 
pore-scale dispersion. This assumption has been found to be 
quite accurate for high Pe numbers, depending on the anisot- 
ropy ratio of heterogeneity [Neuman et al., 1987]. However, 
pore-scale dispersion may have an important effect upon 0 '2 C, 

owing to the local dilution effect. Thus, while field measure- 
ments display the irregular spatial variations of C caused by 
heterogeneity, concentrations do not maintain their initial 
value. 

The salient question is whether pore-scale dispersion has a 
significant effect upon the conditioning of the log transmissivity 
Y or the plume centroid R by measurements of C, which is the 
objective of the present study. While a quantitative check of 
this effect is yet to be carried out, we shall try to demonstrate 
in a qualitative manner that it is probably small. As shown in 
the next section, we do not condition a generic variable B, like 
Y or R, by the concentration value itself. Instead, in the La- 
grangian framework, measuring C - Co at a point is tanta- 
mount to the statement that a trajectory of a fluid particle 
originating from the initial solute body has reached that point 
(Figure 1). In practice, because of pore-scale dispersion, mea- 
sured concentrations are smaller than Co, and the volume of 
the plume, defined as the volume in which C > 0, is larger 
than the initial one, which in turn is invariant under the purely 
advective transport [Thierrin and Kitanidis, 1994]. This dilution 
is achieved, however, mainly by solute being diffused into the 
gaps left by the purely advective transport of the various parts 
of the plume and in boundary layers adjacent to them (see 
Figure lb). Indeed, this picture is supported by the finding that 
the centroid of the plume and its second spatial moments are 
little affected by pore-scale dispersion. It is plausible therefore 
that the error incurred by assuming that a fluid particle trajec- 
tory reaches a point where a measurement of C is different 
from zero is relatively small. 

Then, for conditioning purposes the concentration field (2) 
can be rewritten symbolically as follows: 

C(x, t) = CoS(Ala •Ao) (6) 

where H is an indicator function, equal to unity within the 
volume (area)A determined by the manifold of trajectories 
x - X(t, a) originating from a G A o at t -- 0 and equal to zero 
otherwise (Figure la). 

Our next simplification is to consider here conditioning by a 
single measurement C - C o at x = a, t = r. Our main task 
here is to establish the methodology and to examine the impact 

of conditioning in a systematic manner, and these goals can be 
achieved more easily for one measurement (the extension to a 
few an, rn is discussed in section 6). 

Let B(x, t) be a generic notation for a random variable 
correlated to concentration, for example, Y(x), u/(x), Ri(t), 
So(t), ..' (i, j = 1, 2, 3). Then the mathematical problem 
can be stated as follows: Derive the moments of B conditioned 

on a measurement C(t•, r) = Co, with C given by (2) or (6) 
and for X solution of (5). 

We start developing the procedure in a general manner in 
the following section. Additional simplifying assumptions are 
adopted in section 4 in order to effectively evaluate the con- 
ditional statistical moments. 

fC(B, a)- 

3. Conditioning on Trajectories 
In line with the discussion above, the presence of a mea- 

surement C(a, r) = C O is equivalent to the statement that at 
least one trajectory originating from a G A o passes through 
x = a at t = r. In order to give this statement a mathematical 
content we consider the pdff(a; x, t) defined as the probability 
density of trajectory origins a at t = 0 that reach a given x at 
time t. Because of the continuity equation, whose Lagrangian 
form is d a = dX, we have 

f(a; X, t) = f(X; a, t) (7) 

Obviously, f f(a; X, t) d a = 1 for the entire space, since it 
represents the probability of reaching X from anywhere. 

The conditioning of trajectories stems from the finiteness of 
the initial solute body, i.e., from a G A o. In other words the 
subensemble of a value underlying the conditional probability 
is the one for which a G A o. 

The conditional pdf of a random variable B(x, t) correlated 
with X(r, a) is given therefore by the Bayes theorem as fol- 
lows: 

f(B, a; x, t, a, r) 
a•EAo 

fl.4 f(B,a;x,t,a,r) dadB 0 

fC(B, a) = 0 a q• A0 

(8) 

where by (7), f(B, a; x, t, o•, r) = f(B, X = o•; x, t, a, r). 
As a result we get for the conditional moments 

(BC(x, tl., •)) : f BfC(B) dB 

2,c= f (B - (BC))2fC(B) dB 0-B (9) 

fC(B) = 
f(B, a; x, t, a, r) da 0 

fl.4 f(B, a; x, t, a, r) da dB o 

The results (8) and (9) can be easily connected to those of 
cokriging by observing that the integral of the denominator in 
(8) is the marginal that is equal to (C)/C o (3). Similarly, by (2) 
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fC(B, a) = 

and (7)we have f f.4o Bmf( B, a; x, t, a, r) dB da = 
(1/Co)(Bm(x, t)C(a, r)) for any given m. 

Hence we may rewrite 

(•C(x, t •, •)) = (•(x, t)c(•, •))/(c) = (•) + c•/(c) 

(10) 

•?(x, tlc•, .) - (m2(x, t)C(o•, •'))/(C) -- (mC(x, tlc•, .))2 

-([•'(x. •)]•c(.. r))l(C(.. •)) 

- ICrc(x, tlc•, •)/(c(., •))]2 (11) 

It can be shown that (10) is indeed identical to the outcome 
of cokriging B and C (2), whereas the variance (11) has an 
expression different from that resulting from cokriging. The 
reason is that C in (2) and (6) is an indicator function, whereas 
cokriging estimation variance is equal to the exact variance for 
normal variables. 

Along the same lines we can derive the moments of B con- 
ditioned on a measurement C(a, r) = 0. The conditional 
probability in (8) is replaced by 

.4f(B, a; x, t, a, r) da 
1-ff.4f(B,a;x,t,a,r) dadB 
f.4 f(B, a; x, t, ,, r) da 

• - (c(., •))/c0 

fC(B, a) - 0 a CA0 

This leads to the final results: 

(BC(x, t a, r)) = (B) - CBc/(Co- (C)) 

aq•A0 (12) 

C(a, r)=0. 

(•3) 

Equation (13) is identical to the one obtained by cokriging, 
whereas the conditional variance is given by 

(•) (•c) 
•,c = - -- - C(., 1- (c)/Co Co-(C) ((•c))• •)=o 

(14) 

The conditional variance (14) is generally different from (11), 
contrary to the results based on cokriging. 

Equation (9) or equations (10) and (11) will serve in the 
following sections in order to examine the impact of C (a, r) = 
Co upon various random variables B. In view of the previous 
discussion we observe that for A o --> % J' J'.4,, f(B, a) da dB = 1, 
and the conditional pdf in (8) tends to the unconditional one. 
In contrast, for Ao --> 0, fC(B, a) tends to a Dirac function. 

4. Conditioning of Log Transmissivity by a 
Concentration Measurement 

We wish to illustrate first the general approach for the par- 
ticular case B = Y' (x), the log transmissivity fluctuation. In 

2,½ applications the calculation of {Y'C(x)} and try (x) may be of 
interest in the solution of the inverse problem, i.e., identifica- 

tion of the heterogeneous structure with the aid of measure- 
ments of concentration. 

To simplify the procedure we make the following assump- 
tions: 

1. The flow is two-dimensional; i.e., Y = mr + Y' is the 
log transmissivity, and x(x•, x2) are coordinates in the hori- 
zontal plane. As already mentioned, Y is normal and station- 
ary, the flow is driven by an averaged constant head gradient 
-J, and it is uniform in the mean. 

2. A first-order approximation in o-2v is used in order to 
solve the flow problem. This leads [e.g., Dagan, 1984] to the 
following relationships: 

1 U 

U = - exp (mr)J u(x) = UY' (x) f Vh(x) (15) 

where n is the porosity and h (x), the pressure head fluctuation, 
satisfies the equation resulting from V ß u = 0, 

V2h = J. VY' (16) 

These equations permit determining the various covariances 
Cvc(r) : (V'(x)h(y)), CH(r), C,,v(r), uii(r) : 
(ui(x)uj(y)), ..., in a closed form with the aid of the funda- 
mental scalar functions P and Q that satisfy V2p = -Cv, 
V2Q = P. Examples of such calculations for an exponential 
Cv = rr2v exp (-r/Iv) can be found in previous studies 
[Dagan, 1984, 1991; Rubin, 1991]. 

3. The same first-order approximation is adopted for the 
kinematic equation (5) leading in X = a + Ut + X'(t, a) to 

;0 X'(t, a) = u(a + Ut') dt' (17) 

That is, the actual trajectory X(t) is replaced in the argument 
of u in (17) by its mean. Assumptions 1 and 2 have led to closed 
form expression in the past for various moments of X•, for 
example, 

t X,j(t): (X;(t, a)X;(t, a)): u,j[U(t' - t")] dt' dt" 

t : 2 (t- t')u,j(Ut') dt' (i, j: 1, 2) (18) 
) 

It is emphasized that X o in (18) is of the order of o-2v and the 
neglected terms are of higher order; i.e., Xly in (18) is a first- 
order term in a consistent expansion in o-•.. 

4. Since u, h, and X' result from linear operations on Y', 
they are normal under the first-order approximation of as- 
sumptions 2 and 3. As a matter of fact, X' tends to normality 
for large travel times Ut/I r under more general conditions, by 
virtue of the central limit theorem. Under these conditions the 

joint pdf of the trajectory components X•(t, a), X2(t, a) and 
of the other variables of interest are multivariate normal and 

completely characterized by the mean and variance-covariance 
matrix. 

5. Finally, in order to simplify the calculations we select a 
Gaussian Cy(r), 

CCr) = o-• exp (-rrr2/4I•) (19) 
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Figure 2. The dependence of the cross covariance Cvc/Co 
(equation (20)) between the log transmissivity Y(x•, x2) and 
the concentration C(a•, or2, 1') upon a•, ot 2. The values of the 
dimensionless parameters are l• = 12 = 0.5, o'•. -- 0.5, 'r = 
1, andx• = x 2 - 0. 

and a rectangular input zoneA o of side 11, 12, --11/2 
11/2, -12/2 < a 2 < 12/2 (Figure 1). 

The first covariance of interest, Cvc(x, 
is given by (8) as follows: 

Cvc(X•, x2, a•, a2, ,)= Co 

ß Y'f(Y', a•, a2; x•, x2, a•, a2, r)da•da2dY' 
•' -12/2 -ll/2 

(20) 

where f(Y', a•, or2; X•,X2, a•, a2, •') is the trivariate normal 
pdf of Y'(x•, x2), X•(r; a) = a•, and X2(1'; a) = ot 2. The 
latter and the integration over Y' could be computed analyti- 
cally, and the derivation is given in Appendix A. C vc was 
obtained by two numerical quadratures over a • and a 2 (see 
equation (All)). 

To illustrate the results, we depict in Figure 2 lines of con- 
stant Cvc/Co for the following data: l• = 12 : 0.5, .t:• = 
x2 = 0, o-2v = 0.5, and r = 1. Here and in the sequel all 
variables are made dimensionless with respect to Iv in (19) and 
Iv/U, as scales of length and time, respectively. Besides, the 
mean flow is in the direction x •. In Figure 2 we have depicted 
Cvc/Co as a function of the position of the concentration 
measurement point coordinates a• and ot 2. 

To grasp the impact of the measurement C (a •, a 2, r) upon 
Y'(O, 0), we examine first the behavior of C vc for ot 2: 0, i.e., 
along the mean trajectory which passes through the point of 
reference of Y'. It is seen in Figure 3 that Cvc = 0 for a• = 
r = 1, it is negative for a• < 1, and it is positive for a• > 1. This 
is to be expected, since a positive fluctuation Y' causes a 
positive velocity fluctuation u •, which in turn is associated with 
a solute travel time to the observation point smaller than the 
mean travel time, i.e., with z < a• or a• - 1 > 0. On the other 
hand, C vc tends to zero for a concentration measurement 
point far from the Y' reference point; i.e., Cvc has a maximum 
for a• > 1 and a minimum for a• < 1. The stronger condi- 
tioning in the a• < 1 portion is due to the closeness to the Y' 

point in this example. Finally, the decay of C vc with ot 2 is due 
to the drop of correlation between Y' and velocity or trajectory 
with distance from the origin. The values of Cvc/Co may be 
higher than those in Figure 2 for smaller r and a•, i.e., for 
measurement of concentration closer to the Y' reference 

point, for smaller l• and 12, and for larger o-•.. A detailed 
analysis of the impact of these parameters, as well as of the 
coordinates x•, x2 of Y', is beyond the scope of this article. 

We switch now to the discussion of the behavior of 

(Y'C(x•,x2; a•, or2, 1')) -- (yc) _ my, the conditional mean, 
which is given by equation (10) as follows: 

= ,)) 

The mean concentration (C) in (3) could be evaluated in a 
closed form (equation (A12)). Hence (y,c) can be readily 
evaluated with the aid of Cvc and (C). In Figure 3 we have 
represented (y,c) as a function ofx• andx2 for r = 1 and fixed 
a• = 1.2 and ot 2 = 0, other parameters being equal to those of 
Figure 2. In words, Figure 3 shows the impact of measuring 
C = Co at a point on the mean centroid trajectory ot 2 -- 0 and 
at a time z that is smaller than the mean travel time, t = 1.2, 
needed to reach a•. It is clear that this accelerating effect is 
achieved by a positive deviation (y,c), to be added to m r. It is 
also clear from Figure 4 that the impact of C (a, r) is larger for 
log transmissivity at a point x between the source A o and the 
concentration measurement point than downstream of it. It is 
also interesting to note that sufficiently far sidewise, for 
x2 > 1, (y,c) is negative. Physically, this result can be 
attributed to the effect of a block of higher conductivity, which 
slows down particles traveling on streamlines that circumvent 
the block, in contrast with those that cross it. Finally, it is 
interesting to note that for this particular configuration, con- 
ditioning has a significant impact upon (y,c), its maximum 
deviation being of the order of o-v/3. 

Finally, we have examined for the same data as in Figure 3, 
the reduction of the variance of Y owing to conditioning by 
C(a, r) = C o. The computations based on (11) are described 
in Appendix A. They require two numerical quadratures, lead- 
ing to the results displayed in Figure 4. The latter presents the 

<y,C> 
._• 

,• , 

0.:> 
0.15 ..... 

0.1 
0.05 - 

0 
-0.05 ..... 

............ 

0 1 2 3 4 5 

0 x2 

Figure 3. The dependence of the mean conditional log trans- 
missivity fluctuation (Y'C(x•, .t:21ot•, or2, 1')) (equation (21)) 
upon x•, x2 for l• = 12 = 0.5, o-2• = 0.5, 'r -- 1, ot• = 1.2, 
and Ot 2 = O. 
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302 DAGAN ET AL.: CONCENTRATION MEASUREMENTS AND FLOW AND TRANSPORT PARAMETERS 

I-(o-• •/• ) 
0.41 .... 
0.31 ..... 
0.21 
0.11 
0.01 

i I i 

0 1 2 3 5 

o x2 

Figure 4. Same data as in Figure 3 for reduction of log trans- 
missivity variance (equation (11)). 

coefficient of reduction of the unconditional variance rr} = 
0.5 to the conditional one rr} 'c. As in Figure 4, the largest 
impact of the concentration measurement is achieved in the 
region 0 < x • < a • between the source and the concentration 
measurement point. Again, for this configuration, the uncer- 
tainty reduction is quite large, up to 0.5r r}. 

5. Conditioning of Plume Centroid Trajectory 
by a Concentration Measurement 

To further illustrate our general procedure, we have consid- 
ered the impact of a measurement C(a, ,) = Co upon B = 
Ri(t) or B = R2(t), where x = R(t) in (4) is the plume 
centroid trajectory. We have adopted the same simplifying 
assumptions 1-5 of section 4, and the methodology is similar to 

2,½ that leading to (y,c} and rrv . 
The joint pdf f(Ri, or1, or2; t, r, a l, a2) , of Ri(t ) and 

Xl(•-, a) =otl, X2(•- , a) : ot 2 is trivariate normal. For Ao 
centered at the origin (R•} = t, (R2} = 0, whereas (X•(r, a)} = 
a• + ,, (X2(,, a)) = a2. 

The conditional mean centroid trajectories are given by (10), 

(g7(tl,•, ,))-- (g,(t)) + 

The cross covariance, 

C R•C -- CO 

CR,c(t, a, •') 
(C(a, (22) 

ß Rlf(R' ot or2; t a a ,) da da2 dR' t, 1, , 1, 2, 1 t 

-1•/2 •' -1•/2 

is evaluated in Appendix B. Ultimately, it requires four 
quadratures over a •, a2, but for a sufficiently small input zone 
(l• = 12 % 0.6) the integrations can be reduced to two. 
Similarly, the conditional variance (see equation (11)) requires 
computing 

(R;2(t)C(a, •')) = Co 

-12/2 -l•/2 

R;2f(R' a a2; t, a a2,,)da da2dR' t, 1, 1, 1 t 

which is again accomplished in Appendix B in terms of four 
quadratures, or two for l• = 12 % 0.6. 

To illustrate the impact of a concentration measurement, we 
have chosen to compute (R•(t)) and rr2'Ctt c R2 k ) • R22(t) for 
data similar to those of Figures 3 and 4. Thus we have selected 
l• = 12 = 0.5, rr} = 0.5 and, = 1. The concentration 
measurement is supposed to be at a• = ß = 1 and a2 = 0.5. It 
is emphasized that the latter value implies a relatively large 
sidewise deviation of the plume from its main trajectory, and 
we chose it in order to better illustrate the conditioning effect. 

In Figure 5 we have represented both the unconditional 

1.5 • 

0.5 

-0.5 

Ao R2 

-0.5 0 0 5 1 1.5 2 2.5 
t (DIMENSIoNLESS) 

Figure 5. The dependence of the unconditional moments of the plume centroid trajectory (R2) , rr•2(t ) and 
the conditional ones, (RS(tlc•, c•2, ,))2(equation (36)) and rr]•'[(t a•, a2, *) (equation (11)), upon time. 
Parameter values are l• = 12 -- 0.5, try = 0.5, •' = l, ot• = l, and ot 2 = 0.5. 
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1.5 , 

0.5 

-0.5 

I i 

-0.5 0 

Figure 6. 

-. 

~. 

<R2> 

I I I I 

0.5 1 1.5 2 2.5 

(DIMENSIONLESS) 

Same as Figure 5 for 11 = 12 = 0.1. 

(R2) = 0, 0-•2(t) = R22(t ) (equation (B2)) and the condi- 
tional (R•(t)) (22), 0-•'•c(t) = R•2(t ) as functions of time. 
First, the relatively large 0-R2 implies lack of ergodicity, which 
is quite expectable for the relatively small plume size [Dagan, 
1991]. The most dramatic effect of conditioning is indeed the 
sidewise deviation of the mean centroid trajectory. This is to be 
expected, since C(a, ,) = Co reduces the subensemble of 
realizations to those for which at least one trajectory emanat- 
ing from A o passes through the conditioning point at t = ,. 
The same constraint causes a significant reduction of the vari- 
ance from its unconditional 0 -2 2,c The R2 to the conditional 0-a2' 
impact is larger upstream of the measurement point and dis- 
sipates as the solute body moves past the conditioning point. 

To further illustrate the impact of the solute body size, we 
have computed 0-•2, (R•) 0-c for same parameter values, • R 2 

except that 11 = 12 = 0.1, and have represented them in 
Figure 6. Such a small solute body is convected but does not 
disperse [Dagan, 1991]. Since conditioning by C(1, 1, 1) = Co 
forces the solute body to pass through a I = 1, a 2 = 1 at t -- 
•' = 1, the trajectory (R•) is strongly conditioned by this 
constraint, and the same is true for the variance 0-,•2, which is 
reduced practically to 12/2 or less, upstream of the concentra- 
tion measurement point, and starts to increase quickly for t > 1. 

6. Summary and Conclusions 
The present study is concerned with the effect of concentra- 

tion measurements upon identification of aquifer properties 
and upon predicting the further evolution of the plume. By 
adopting a Lagrangian approach, concentration is related to 
particle trajectories, and conditioning by a measurement is 
converted into limiting the realizations of the trajectory fields 
to those for which at least one trajectory passes through the 
measurement point x = a at the given time t = ,. This 
statement is cast in a mathematical form by defining first the 
pdf of the initial coordinates a of all trajectories that pass 
through x = a at t = r (the so-called backward probability). 
Thus, conditioning by a concentration measurement is equiv- 
alent to limiting the random variable a to be confined in the 
initial solute body A o. Along this line, any random variable 

B(x, t) (e.g., log conductivity, head, velocity, and plume cen- 
troid) that is correlated to trajectories can be conditioned by a 
concentration measurement. It is shown that this approach 
leads to the same conditional mean as the one obtained by 
cokriging B with concentration, whereas the conditional vari- 
ance of B derived by cokriging is not correct. For instance, the 
conditional variances derived here differ depending on 
whether the measured concentration is equal to that of the 
plume or is zero, whereas cokriging does not discriminate 
between the two. This discrepancy is attributed to C having a 
binomial pdf for fixed x, t or to C being an indicator function 
of x for a fixed t. By adopting a few simplifying assumptions we 
were able to illustrate the procedure by deriving the expres- 
sions of the conditional mean and variances of the log trans- 
missivity and of the plume centroid trajectories and to grasp a 
few of their proprieties. 

The present study is only a first step toward a more com- 
prehensive assessment of the impact of concentration mea- 
surements. Future theoretical developments have to address a 
few issues such as the presence of a few measurement points, 
continuous time monitoring, the influence of pore-scale dis- 
persion, three-dimensional flow and transport, and effect of 
space averaging of concentration. 

It is emphasized that conditioning has a significant impact 
for large heterogeneity scales compared to the plume scale and 
for scarce measurements. In contrast, for the field experiments 
carried out in the past, in which plumes were monitored ex- 
tensively in space and time, the identification of the formation 
structure and of plume spatial moments achieved by a best fit with 
unconditional transport solutions was simple and quite accurate. 

Appendix A: Derivation of the Log Transmissivity 
Conditional Moments , 

With x • the direction parallel to the mean flow• we ha•½ 

Xi(t, a) = ai + Ut + X[(t, a) X2(t, a) = a2 + X•(t, a) 

The conditional joint pdf of Y'(x) = Y(x) - m•., X•(r, a) 
and X2(,, a) was assumed to be trivariate normal. It is com- 
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304 DAGAN ET AL.: CONCENTRATION MEASUREMENTS AND FLOW AND TRANSPORT PARAMETERS 

pletely defined by the mean (Y') = O, (X1) = a I + U'r, 
(X2) = a2 and the variance-covariance matrix 

Cx, r Xi• 

Cx:r 0 X22l 

where 

Xll(T ) = (X•2(T, a)) = Ull[$(t t - t"), 0] dt' dt" 

(A1) 

IoIo ß X22('r ) = u22[$(t' - t"), 0] dt' dt" X12(*) = 0 

are the trajectory variances and u o are the velocity covari- 
ances. Xll and X22 were computed analytically for a Gaussian 
log conductivity covariance Cv = 0-2v exp (-rrr2/412v) by the 
procedure outlined in previous studies for an exponential co- 
variance [Dagan, 1982]. The final result is written with the aid 
of dimensionless variables Ut/Ir, x/I v, '" as follows: 

20- •-erf •- +--exp - 

1 dq(,, 0)] + p(,, 0) +- 

X22(*) = _0-•2, 2 dq(,, O) 

(A2) 

(A3) 

where 

-- Ei - r 2 -E p (rl, r2) = ,r • - In 7 r2 

dr q(rl, r2) = ,r 5 Ei •- r 2 In • r 2 E 

r 2 [ ( _•)]} +5-r• 1-exp - 

with 

(A4) 

(A5) 

fz +• e -t E,(-z) = - •- dt E = 0.577216 r = (rl 2 + r22) 1/2 

The cross covariance Cvx, = (X[ (,, a)Y' (x)) is expressed in 
terms of the velocity-log conductivity cross covariance 
Culy(Ol 1 q- T -- Xl, O• 2 -- X2) = (/,tl(O• 1 q- T, ol2)gt(Xl, X2)) 
as follows: 

Cx, v(x, a, ,) = Cu,v(al + t- xs, a2- x2) dt (A6) 

The velocity-log conductivity covariance can be computed with 
the aid of the Y and H (the head) covariance by the procedure 
outlined previously [Dagan, 1984; Rubin, 1991]. For a Gaussian 
C v the final result is 

4 1 
F 2 ,n.p4j 

2rl 2 r 2- 2rl 2 dp(rl, r2)} (A7) + -- + r 3 3TF 4 dr 

,/T1/2F1 71-1/2 

Cx, v(x,a,,)=0-}{e-•/4[erf(2 ) - erf(•-(al-x0) ] 
r, dp(rl, r2) 

+ (r21 + r22) 1/2 dr 

(O• 1 -- X,) dp(Oll -- Xl, r2) } (A8) [(O• 1 --Xl) 2 q- r22] 1/2 dr 

with 

P 1 = O• 1 q- T- X 1 /'2 = 0•2- X2 

By a similar procedure, 

Cu2v(x, a •') = 0-•2,{ 2rlr2 ' 7FF 4 

rlr2 dp(rl, r2) } (A9) r 3 dr 

}{Op(•l+•'-Xl, 1'2) Op(ol 1 --Xl, P2)} Cx2½X , Ol, '•') = 0- Or2 - Or2 
(A10) 

After these preparatory steps, to obtain Cvc(X, a, ,) = 
(Y'(x)C(a, ,)) in (20), we have to integrate the trivariate 
normal f(Y', a 1, a2; X, a, 'r) over Y' and a. The first integra- 
tion could be done analytically, yielding the final result 

,) 

= 2rr(X1•X22)u 2 exp - 5 • + •222J 
a-l•/2 -12/2 

Cx, r , Cx2r ] ß •-• ai +•222 a• dalda2 (All) 

where a [ = a 1 - •' - a 1 and a • = a2 - a 2. Two numerical 
quadratures in (All) led to the results displayed in Figure 2. 

To obtain the conditional mean (Y'C(xl., r)) in (21), we 
need to divide Cvc in (All) by (C(a, ,)). This is given by (3) 
and has the simple expression 

• l•/2 f 12/2 (C(a, ,)) = Co f(as, a2; *, a•, a2) dal da2 
" -1•/2 •' -12/2 

ls ls = 1• erf •-(2•y•)V2- j - erf •-•2•y•)¾2 j 

ß erf • •-•2)i• j - erf • (2-•22)-17•/] (A12) 
where f(c•l, c•2; % al, a2) is the joint pdf of Xi(,, a), 
X2(,, a) for X 1 = al, X2 = a2. Equations (21), (3), (All), 
and (A12) were used for plotting (Y'C(xla, t)) in Figure 3. 

Finally, to derive the conditional variance 0-2FC(x a, t) in 
(11), we need to integrate the trivariate f(Y', a•, a2; % a l, 
a2) over Y' 2, the result being now 
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DAGAN ET AL.: CONCENTRATION MEASUREMENTS AND FLOW AND TRANSPORT PARAMETERS 305 

(Y'2(x)C(a, 

C0 

2 •-(XllX22) 1/2 

ß tr• X• X22 + • otl+ • ot• da• da2 
(A13) 

After numerical quadratures, (A10), (All), and (A13) were 
used to calculate the values of tr2v 'c displayed in Figure 5. 

1'1/2 ] - (a•-b•+t- z) erf •--(a•-b•+t- z) 

[ •.1/2 ] +(a•-b•+t) erf •-(a•-b•+t) 

I T/.1/2 - (a•-b•) erf -•-(a• 

I (al- b•- '1') 2 + 2 - (a•- b•- '1') 2 -3- (a•- b•) 2 
ß p(ai- b•- z, a2- b2) 

Appendix B: Derivation of the Plume Centroid 
Trajectory Conditional Moments 

With the centroid coordinates defined by (4), i.e., (R •) = t, 
(R2> = 0, 

]fll/2fl2/2 = X;(t, b) db• db2 (B1) R ;(t) l--•2 '•-ll/2 a-12/2 

(a•- b• + t) 2 ] + 2 - (a•- b• + t) 2 + (a•- b•) 2 
ß p(a•- b• + t, a2- b2) 

-[2- (a•- b• + t - '1') 2 ] (a•- b• + t- '1') 2 q- (a•- b•) 2 

ß p(a•- b• + t - z, a2- b2) - 2p(a•- b•, a2- b2) 

we must first evaluate the trivariate normal pdf of R[(t), Xi(z, a), 
X2(r, a). The pdf is defined by the mean (Rj) = 0, (X1) = a• 
+ ST, (X2) -- a 2 and the variance-covariance matrix 

g ii C R•Xi C R•X2 

CR,Xi X• 0 

C R,X2 0 X22 

Again, adopting the Gaussian Cv leads to X• • and X22 in (A1) 
and (A2). The centroid covariance is given by 

1 

Ro(t) = 2 2 l•12 

ofll/2f12/2fll/2II2/2 a-lff2 a-12/2 " -l•/2 -12/2 

Xij(t, t, a, b)da•da2db•db2 (B2) 

(a2- b2) 2- (al- bl- '1') 2 
{[(a•- b•- T) 2 q- (a2- b2)211/2} 3 

d 

dr q(ai- bi - z, a2- b2) 

(a2- b2) 2- (a•- b• + t) 2 
{[(a•- b• + t) 2 + (a2- b2)2]•/2} 3 

d 

dr q(a•- b• + t, a 2 -- b2) 

(a2- b2) 2- (a•- bl + t - '1') 2 
{[(a•- b• + t- '1') 2 -3- (a 2 -- b2)211/2) 3 

d 

dr q(a• - b• + t - z, a2- b2) 
where 

I0t I0 •' Xij(t, % a, b) = (X;(t, a)X;(z, b)> = uo[$(t' - t") 

+ al- b•, a2- b2] dt' dt" (B3) 

The two-point covariance X•i and X22 in (A3) could be de- 
rived in a closed form as follows: 

) X•(t, z, a, b) = exp -• (b2- a2) 2 

ß -- exp - (a - b - 7) 2 T/' -•- 1 1 

+ exp -• (a•- b• + t) 2 - exp -• (al- b0 2 

-exp -•(a•-b•+t-z) 2 

+(a•-bl- z) erf •-(al-bl- z) 

(a2- b2) 2- (a•- b0 2 
{[(a•- b•) 2 + (a2- b2)2]'/2) 3 

d 

dr q(a• - bi, a2- b2) (B4) 

(a2- b2) 2 
X22(t, % a, b) = - (a•- b• - '1') 2 -3- (a•- b•) 2 

ß p(a•- b•- z, a2- b2) 

(a2- b2) 2 
(a•- b• + t) 2 + (a•- b•) 2p(a• - b• + t, a2- b2) 

(a2- b2) 2 
(al- b• + t- '1') 2 -3- (a•- b•) 2 

ß p(ai- bi + t- z, a2- b2) 

(a2- b2) 2 
(a•- b•) 2 + (a•- b•) 2p(a• - b•, a2- b2) 

(al- b•- '1') 2- (a2- b2) 2 
{[(a,- b•- z) 2 + (a2- b2)2]•/2} 3 
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306 DAGAN ET AL.: CONCENTRATION MEASUREMENTS AND FLOW AND TRANSPORT PARAMETERS 

d 

'd• q(a•- b•- r, a2- b2) 

(a•- b• + t) 2- (a2- b2) 2 
{[(a•- b• + t) 2 + (a2- b2)2]•/2} 3 

d 

ß d• q(ai- bi + t, a2- b2) 

(a•- b• + t - 7') 2- (a2- b2) 2 
{[(a•- b• + t- 7')2 q_ (a2- b2)211/2} 3 

d 

dr --q(ai- b• + t- 7', a2- b2) 

(a•- bl) 2- (a2- b2) 2 
{[(a•- bl) 2 q_ (a2- b2)211/2} 3 

d 

dr q(a• - b•, a2- b2) X12 = 0 (B5) 

(R•2(t)C(ot, 

-ll/2 -12/2 

R•2f(R•, a•, O/2; t, 7', a) da• da2 

2 7-/'(XllX22 ) 1/2 exp - 5 • 
-ll/ 2 '• -12/ 2 

CR,x, 
ß R,,-• 1-• da•da2 (B9) 

The numerical quadrature in (B9) led to the conditional vari- 
ances illustrated for R•2(t, a, 7') in Figures 5 and 6. 

Acknowledgments. The work was conducted during the visit of I. 
Butera and E. Grella at the Tel Aviv University. Thanks are extended 
to U. Maione and M. G. Tanda of Milan Polytechnic for initiating the 
visit and to the host institution. 

whereas R o in (B2) requires numerical quadratures. However, 
for l• - 12 < 0.6 it was found that R 0 is given accurately by 

1 •ll/2 f 12/2 = Xij(t, t, a, O) dai da2 R ø( t ) I-•2 ., -l•/ 2 -12/2 
The centroid-trajectory covariance, CR,x,(t, a, 7') = 
(R•(t)Xj(7', a)), is given by 

l•ll/2f 12/2 = Xo(t , % a, b) db• db2 (B6) CR,x•(t, ,, 7-) I-•2 .'-h/2 -12/2 
and C R x, could be determined only numerically, except for 
11 = 12'< 0.6, for which the above approximation applies. 

The covariance C&c(t, a, 7-) = (R•(t)C(7', a)) needed for 
determining the conditional mean (22) is formed from the 
trivariate f(R•, al, or2; t, 7', a). Thus, by using the above 
results and after integrations over R• we get 

C•,c(t, •, r) 

= R•f(R[, a•, a2; t, % al, a2) da• da2 dR'• 
'• -ll/2 "-12/2 

i • ll/2 f 12/2 2 '/T (ml 1X22 ) 1/2 
" -l•/2 -12/2 

1 [ O/[2 q- O/• 2 ] exp { - • [•-• •-•22J } 
CR•X• 

a '• da • da 2 (B7) X• 

1 

C•2c(t, a, 7-) = 2•r(XllX22)l/2 

•r'l,/2•-12/2 { •[O•S20/•21 } CR2X 2 ß exp -5 L+22J -•-•22 a•da'da2 
" -lff 2 "-12/2 

(B8) 

These two covariances had to be determined by numerical 
quadratures in order to compute (R •c) (Figures 5 and 6). In a 
similar manner the moments for evaluating 2,c 7-) = O'R• (t 19/, 
R•i(tla, 7') in (11) are related to 
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