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Numerishe Mathematik manusript No.(will be inserted by the editor)
Robustness in a posteriori error analysis forFEM ow modelsStefano BerroneDipartimento di Matematia, Politenio di Torino, Corso Dua degli Abruzzi 24,10129 Torino, Italy, e-mail: sberrone�alvino.polito.itAbstrat We derive a residual-based a posteriori error estimatorfor a stabilized �nite element disretization of ertain inompressibleOseen-like equations. We fous our attention on the behaviour of thee�etivity index and we arry on a numerial study of its sensitive-ness to the problem and mesh parameters. We also onsider a salarreation-onvetion-di�usion problem and a divergene-free proje-tion problem in order to investigate the e�ets on the robustness ofour a posteriori error estimator of the reation-onvetion-di�usionphenomena and, separately, of the inompressibility onstraint.Key words A posteriori error estimators { inompressible ows {bounds on the e�etivity index.Mathematis Subjet Classi�ation (1991): 65N30, 65N15, 65N50,76D05, 76M10.1 IntrodutionThe use of adaptive methods for the numerial disretization of owmodels is a subjet of strong interest from both a theoretial and anappliative point of view. From the pioneering work of Babu�ska andRheinboldt [2℄, many important problems have been solved and inter-esting results have been ahieved. Many other questions, onerning,e.g., saddle point problems and singularly perturbed problems withparameter beoming very small or very large, are still open. One ofthem is to �nd robust a posteriori error estimates. The robustness of



2 Stefano Berronean a posteriori error estimate onerns the upper and lower boundsfor the e�etivity index de�ned as the ratio between the error esti-mator and the true error. The ideal situation is when the e�etivityindex is uniformly bounded from above and from below with respetto any mesh-size and any parameter of the problem. Suh a strongrobustness implies that one an easily build an adaptive algorithmwhih guarantees reliability, by ontrolling the error in the solutionfrom above, and eÆieny, by ontrolling the error from below.In [3℄, we onsidered the stationary Oseen equations and we ob-tained a uniform lower bound for the inverse of the e�etivity indexand an upper bound whih grows linearly with the Reynolds number.Here, we onsider the generalized stationary Oseen equations ob-tained by adding a zero-order term in the veloity to the momen-tum equation. This model has already been onsidered by severalauthors, e.g. [13℄, [15℄. A zero-order term an be produed by a semi-disretization in time. Another soure is a shift of the operator toeÆiently deal with the non-linearity of the momentum equation ofthe Navier-Stokes problem by a Newton-like method. A third mo-tivation is a shift of the spetrum of the operator in the numerialomputation of eigenvalues and eigenfuntions.For this model, we analytially derive an error estimator and wereport many numerial tests. Our goal is to arefully study the de-pendene of the bounds for the e�etivity index from above and frombelow on all the parameters of the problem (the physial as well asthe mesh parameters). We arefully ontrol the oeÆients appear-ing in eah inequality and our �nal estimates an be onsidered assharp as possible. Sharpness is proved by the fat that our numerialtests essentially on�rm the predited theoretial behaviour of thee�etivity index.Furthermore, we highlight the e�et of the di�erent physial phe-nomena modeled by the Oseen equation upon the robustness of thea posteriori error estimate. One of these phenomena is the mix-ing of di�usion and transport. Therefore we ompare our tehniqueswith those presented in [20℄ for a salar reation-onvetion-di�usionmodel. From this omparison, we see that our tehniques leads toestimates as sharp as those in [20℄ whih an be onsidered the stateof the art for residual based a posteriori errors estimates for reation-onvetion-di�usion models. Another important phenomenon is theinompressibility of the ow. To study its e�et upon robustness weonsider a redued model obtained from the Oseen model by neglet-ing the di�usion and onvetion terms. This leads to a divergene-free projetion model [4℄, useful also in linear elastiity theory [5℄,



Robustness in a posteriori error analysis for FEM ow models 3for whih we derive several a posteriori error estimators. Then, weharaterize those norms for the true error that yield a robust errorestimator.2 Linear inompressible ow model2.1 The ontinuous problemWe onsider the following steady-state, Oseen-like problem:� 1Re 4u+(a �r) u+ z u+r p = f in 
; (2.1)r� u = 0 in 
; (2.2)u = 0 on �
; (2.3)where: Re is the Reynolds number; z � 0 is a onstant in the wholedomain; 
 is a bounded Lipshitz ontinuous domain in R2 ; a 2[H1(
)℄2 \ [L1(
)℄2 with r� a = 0 in 
; f 2 [L2(
)℄2.Let us �rst derive a weak formulation of problem (2.1)-(2.3). Thefuntional spaes we deal with are the usual Sobolev spaes H1(
),H10(
) and Lebesgue spaes L2(
), L20(
). Moreover we set V def=[H10(
)℄2 and Q def= L20(
). The weak formulation of the problem is:Find [u; p℄2V�Q suh that 8[v; q℄2V�Q1Re (ru;r v)+ ((a �r) u; v)+ z (u; v)� (p;r� v) = (f; v); (2.4)(q;r �u) = 0; (2.5)where (:; :) denotes the usual inner produt in L2(
) or in [L2(
)℄2.As usual k : k0 denotes the L2-norm, k : k1 the H1-norm and j : j1 theH1-seminorm. We de�ne our energy norm for the veloity on some! � 
 in the following manner:jjju jjj2! def= 1Re j u j21;! + z k u k20;! : (2.6)Existene and uniqueness of the solution for all positive Re followsfrom the lassial oerivity and inf � sup inequality:infq2Qnf0g supv2Vnf0g (q;r� v)k q k0 j v j1 � � (2.7)(see, e.g., [10℄, [13℄, [14℄).



4 Stefano Berrone2.2 The disrete problemIn order to disretize problem (2.1)-(2.3), we assume 
 to be a polyg-onal domain and we introdue a regular family of partitions fThgh of
 into triangles whih satis�es the usual onformity and minimal-angle onditions [6℄. It is useful to introdue the diameter hT ofthe element T 2 Th. Then, the parameter h of the family fThghis h = maxT2Th hT :In what follows, we are going to use ontinuous �nite elements forthe veloity and the pressure:Vh def= nvh2V \ �C0(
)�2 : vhjT 2 [Pk(T )℄2;8T 2Tho ; (2.8)Qh def= nqh 2 Q \ C0(
) : qhjT 2 Pl(T );8T 2 Tho ; (2.9)where Pi(T ) is the spae of polynomials of degree i � 1 on the ele-ment T 2 Th. In the disretization of the problem, we also onsiderapproximations of the data a, f by some projetions �Ta, �Tf ,whose de�nition will be given later on.With an arbitrary hoie of k and l these spaes need not satisfythe disrete inf-sup ondition for the bilinear form (ph;r� vh) [4℄,[10℄. However, this may be avoided by resorting to a onsistentlymodi�ed approximation of the problem known as the StreamlineUpwind/Petrov Galerkin (SUPG) method [8℄, [9℄: Find [uh; ph℄ 2Vh�Qh suh that 8[vh; qh℄ 2 Vh�Qh1Re (ruh;r vh) + ((�Ta �r) uh; vh) + z (uh; vh)� (ph;r� vh) ++XT2Th�T�� 1Re 4uh+(�Ta �r)uh+ z uh+rph; (�Ta �r) vh�T+ XT2Th ÆT (r� uh;r � vh) = (�T f; vh)+ XT2Th �T (�T f; (�Ta �r) vh)T ; (2.10)(qh;r �uh) ++XT2Th �T �� 1Re 4uh+(�Ta �r) uh+ z uh+rph;rqh�T == XT2Th �T (�T f;rqh)T ; (2.11)The parameters �T and ÆT depend on the loal onditions of the owin eah element, i.e., following [8℄:



Robustness in a posteriori error analysis for FEM ow models 5�T def= mk h2T8 Re and ÆT def= �mk k�T a k1;T h2TRe4 if ReT < 1, whereas�T def= hT2 k�T a k1;T and ÆT def= � k�Ta k1;T hT if ReT � 1. HereReT def= mk k�T a k1;T hTRe4 and mk def= minn13 ; 2C�o, C� being theonstant of the inverse inequality [11℄: h2T k4vh k20;T � C� krvh k20;T ,8vh 2 Vh : For linear elements, obviously, mk = 13 . We take � either1 or 0, respetively if we want onsider the Æ � terms or not.Throughout the paper, we often use the following notations:Notation 1 For eah �; � > 0: � - � () 9C > 0 : � � C �;� � � () � - � and � - �. Without further spei�ation, weintend the onstant C independent of the mesh-size and the Reynoldsnumber. Moreover for eah � � 0; � > 0: � � � () 9C1 � 0 :� � C1 � with a onstant C1 at most of the order of magnitude of theunity.Remark 1 We assume that problem (2.1)-(2.3) has been written innon-dimensional variables. This implies j
 j � 1 so that hT � 1,8T 2 Th; moreover, k a k1;!T � 1 and k�Ta k1;!T � 1, 8T 2 Th.3 A residual-based error estimatorIn this setion, we derive a residual-based error estimator for ourmodel problem following Verf�urth's works [16℄, [17℄, [18℄, [19℄, [20℄.Partiularly, we shall derive a global upper bound and a loal lowerbound for the error measured in an energy-like norm. At �rst, weintrodue some notation whih will be used for the onstrution ofthe estimator.3.1 De�nitions and general resultsFor any T 2Th we denote by E(T ) the set of its edges; we denote byEh def= ST2Th E(T ) the set of all edges of the triangulation. Moreover,we de�ne Eh;
 def= fE2Eh : E 6��
g. For eah triangle T 2 Th andfor eah side E 2 Eh we de�ne: !T = SfT 0: E(T )\E(T 0)6=;g T 0, !E =SfT 0: E2E(T 0)g T 0, ~!T = SfT 0: �T\�T 0 6=;g T 0, ~!E = SfT 0: E\�T 0 6=;g T 0.Note that the sets !T and !E are unions of triangles that shareat least one edge with T or E respetively, whereas the sets ~!T and~!E are unions of triangles that share at least one point with T or E.For eah edge E 2Eh we onsider a unit vetor n̂E suh that n̂Eis orthogonal to E. Given any E 2 Eh;
 and any ' 2 L2(!E ) with



6 Stefano Berrone'jT 0 2 C0(T 0 ) 8T 0 2 !E , we denote by [['℄℄E the jump of ' aross Ealong the orientation of n̂E.If the minimal angle of the family fThgh is bounded away fromzero, there exist onstants only dependent on the smallest angle in thetriangulation suh that: jT j � h2T ; 8T 2 Th, hT � hE ; 8E 2 E(T ),jT j � h2E ; 8T 2 !E . Let us denote by T̂ the referene triangle, byÊ the referene edge, i.e. the edge of T̂ between the verties 0 and 1.Moreover, let b̂T̂ (x̂; ŷ) be the usual referene triangle bubble funtionand let b̂Ê be the usual referene edge bubble funtion [16℄, [17℄, [18℄.Let FT : T̂ ! T be the invertible aÆne mapping that maps thereferene triangle T̂ onto the triangle T . Then we de�ne the trianglebubble funtion bT by: bT def= b̂T̂ ÆF�1T : Given any E2Eh;
 with !E =T℄ [T[ let us enumerate the verties of T℄ and T[ ounterlokwise insuh a way that the verties of E are numbered �rst. Then we de�nethe edge bubble funtion bE by pathing the two bubble funtions:bE;T℄ def= b̂Ê Æ F�1T℄ and bE;T[ def= b̂Ê Æ F�1T[ , eah one being not zeroonly inside T℄ and T[, respetively. Moreover, for the referene edge Êwe de�ne the extension operator P̂ Ê : Pi(Ê)! Pi(T̂ ) whih extendsa polynomial of degree i de�ned on the edge Ê to a polynomial of thesame degree de�ned on T̂ with onstant values along lines orthogonalto the edge Ê. Then, we de�ne the extension operator PE : Pi(E)!Pi(!E) whih extends a polynomial of degree i de�ned on the edgeE to a pieewise polynomial of the same degree de�ned on !E bypathing the two operators: PE(:)jT℄ def= P̂ Ê �: Æ FT℄ jÊ� Æ F�1T℄ jE andPE(:)jT[ def= P̂ Ê �: Æ FT[ jÊ� Æ F�1T[ jE .Besides, we denote by Ih : V! Vh the quasi-interpolation opera-tor of Cl�ement [7℄ whih satis�es the following approximation prop-erties [6℄:Lemma 1 Let T 2Th and E2Eh be arbitrary, thenj v � Ihv jl;T - hk�lT j v jk;~!T ; 0 � l � k � 2; 8v 2 Hk( ~!T );(3.1)k v � Ihv k0;E - hEk� 12 j v jk;~!E ; 1 � k � 2; 8v 2 Hk( ~!E ); (3.2)j Ihv jk;T - j v jk;~!T ; 1 � k � 2; 8v 2 Hk( ~!T ); (3.3)where the onstants depend only on the smallest angle in the trian-gulation.De�nition 1We de�ne�1;S def= min�pRe hS ; 1pz� ; S = T 2 Th or S = E 2 Eh; (3.4)



Robustness in a posteriori error analysis for FEM ow models 7�1 def= min�pRe h; 1pz� = maxT2Th �1;T ; (3.5)�2 def= 1pRe +�k a k1;
+ z�min�pRe; 1pz�: (3.6)Lemma 2 Let T 2Th be arbitrary, thenk v� Ih v k20;T - �21;T jjj v jjj2~!T ; 8 v 2 �H1( ~!T )�2 : (3.7)Proof. The proof is a onsequene of inequality (3.1) of Lemma 1and de�nition (2.6). 2Lemma 3 Let E2Eh be arbitrary, thenk v� Ih v k20;E - pRe�1;E jjj v jjj2~!T ; 8 v 2 �H1( ~!T )�2 : (3.8)Proof. The proof follows from Lemma 3.1 in [20℄ and Lemma 1. 2De�nition 2We de�ne the following useful notation� def= uh�u; 	 def= ph � p;RT;h def= � 1Re 4uh+(�Ta �r)uh+ z uh+r ph ��T f ����T ;JE;h def= ��n̂E �� 1Re ruh�ph I���E :3.2 Global upper boundWe deal separately with the veloity error � and the pressure error	 to derive a global upper bound for the error.Lemma 4 Let T 2Th be arbitrary. The following inequality holdsk (�Ta �r) (Ih � ) k0;T - k�Ta k1;T �1;ThT jjj� jjj~!T :Proof. We use Lemma 1 and the loal inverse inequalitykr (Ih � ) k0;T � kr (� � Ih � ) k0;T + kr� k0;T - pRe jjj � jjj~!T ;kr (Ih � ) k0;T - h�1T k Ih � k0;T - h�1T k � k0;~!T � 1hT z jjj� jjj~!Tto onlude that kr (Ih � ) k0;T - �1;ThT jjj� jjj~!T :Then the thesis omes immediately. 2



8 Stefano BerroneProposition 1 There exists a positive onstant C� suh that, foreah k1 > 0, the following upper bound for the veloity error holdsjjj� jjj
 � 1pk1 k	 k0+pk1 kr � uh k0+C� 0�vuutXT2Th �21;T  1 + �2T k�Ta k21;Th2T ! kRT;h k20;T+vuutXT2Th �21;T Æ2Th2T kr �uh k20;T+�1 k�Ta� a k1 j uh j1+�1 k�T f�f k0) : (3.9)Proof. From the ontinuous momentum equation (2.1) we get:1Re (r� ;r v)+ ((a �r) � ; v) + z (� ; v)� (	;r� v) = 1Re (ruh;r v)+ ((a �r)uh; v)+ z (uh; v)� (ph;r� v)� (f; v); 8 v2V: (3.10)Now we take v = � as a test funtion in this equation and we addto it equation (2.10) with vh = Ih � as a test funtion. We applyrepeatedly the Cauhy-Shwarz inequality and we use the inequalitiesof Lemmas 2, 3, 4, de�nition (2.6) and Young's inequality to obtainjjj� jjj2
� 12k1 k	 k20�k12 kr �� k20 � C�� 0�XT2Th 12k2 �21;T kRT;h k20;T+ XT2Th k22 jjj� jjj2~!T + XE2Eh;
 12k3 �1;E pRe k JE;h k20;E+ XE2Eh;
 k32 jjj � jjj2~!E + XT2Th 12k4 ��T k�Ta k1;T �1;ThT kRT;h k0;T�2+ XT2Th k42 jjj � jjj2~!T + XT2Th 12k5 �ÆT �1;ThT kr � uh k0;T�2+ XT2Th k52 jjj � jjj2~!T + 12k6 �21 k�Ta� a k21 juh j21+k62 jjj� jjj2
+ 12k7 �21 k�Tf�f k20+k72 jjj� jjj2
� :The thesis follows hoosing the onstants k2; k3; k4; k5; k6; k7 smallenough and realling that r�u = 0. 2



Robustness in a posteriori error analysis for FEM ow models 9Proposition 2 There exists a positive onstant C	 suh that the fol-lowing upper bound for the pressure error holds�k	 k0�C	8<:�2jjj � jjj
+vuutXT2Thh2T 1+ �2T k�Ta k21;Th2T !kRT;h k20;T+vuutXT2Th h2T Æ2Th2T kr � uh k20;T +s XE2Eh;
 hE k JE;h k20;E+ k�Ta� a k1 j uh j1+ k�T f�f k0g : (3.11)Proof. From the ontinuous inf-sup ondition and equation (3.10)we get� k	 k0 � supv2Vnf0g (	;r� v)j v j1 = supv2Vnf0g 1j v j1 � 1Re (r� ;r v)+ ((a �r)� ; v)+ z (� ; v)� 1Re (ruh;r v)� ((a �r) uh; v)� z (uh; v) + (ph;r� v)+ (f; v)g :Now we bound the supremum of the expression in brakets by thesum of the suprema of the �rst, the seond and the remaining terms;next, we integrate by parts the term � 1Re (ruh;r v) and we addthe disrete version of the momentum equation as before. Finally,we apply Poinar�e-Friedrihs inequality, Cauhy-Shwarz inequality,Lemma 1 and we get� k	 k0� 1Re j� j1� (k a k1+ z) k� k0 �� C	 supv2Vnf0g 1j v j1 8<:sXT2Th h2T kRT;h k20;T sXT2Th j v j21;~!T+s XE2Eh;
 hE k JE;h k20;Es XE2Eh;
 j v j21;~!E+sXT2Th �2T kRT;h k20;T k�Ta k21;T sXT2Th j v j21;~!T+sXT2Th Æ2T kr � uh k20;T sXT2Th j v j21;~!T+ k�Ta� a k1 j uh j1 j v j1+ k�Tf�f k0 j v j1g :Then, it is easy to get (3.11). 2



10 Stefano BerroneWith a suitable hoie of k1, expressions (3.9) and (3.11) may bemerged to get independent upper bounds for � and 	 .Proposition 3 The following upper bounds holdjjj � jjj
 -vuutXT2Th�h2T�22 + �21;T� 1 + �2T k�Ta k21;Th2T ! kRT;h k20;T+vuutXT2Th�h2T�22 + �21;T� Æ2Th2T kr � uh k20;T + �2 kr �uh k0+vuut XE2Eh;
�hE�22 + �1;E pRe� k JE;h k20;E+� 1�2 + �1� (k�Ta� a k1 j uh j1+ k�T f�f k0) (3.12)andk	 k0 - �28<:vuutXT2Th�h2T�22 + �21;T� 1 + �2T k�Ta k21;Th2T ! kRT;h k20;T+vuutXT2Th�h2T�22 + �21;T� Æ2Th2T kr �uh k20;T + �2 kr �uh k0+vuut XE2Eh;
�hE�22 + �1;E pRe� k JE;h k20;E+� 1�2 + �1� (k�Ta� a k1 j uh j1+ k�Tf�f k0)� : (3.13)3.3 Loal lower bound3.3.1 Residual of the momentum equation Now we onsider an ar-bitrary triangle T 2Th and we show how the residual of the momen-tum equation an bound the error from below on T . Let us de�ne:wT def= RT;h bT , where bT is the triangle bubble funtion. We will alsoapply the results olleted in the following lemmas:



Robustness in a posteriori error analysis for FEM ow models 11Lemma 5 For any T 2 Th we havekRT;h k20;T � (RT;h; wT )T ; (3.14)kwT k0;T � kRT;h k0;T ; (3.15)krwT k0;T � h�1T kwT k0;T � h�1T kRT;h k0;T : (3.16)Proof. The proof of these inequalities follows the guidelines of [18℄,[19℄, [20℄. 2Lemma 6 The following bound holdsj((a �r) � ;wT )T j - k a k1;T �1;ThT jjj� jjjT kRT;h k0;T : (3.17)Proof. We observe that((a �r)� ;wT )T = � (� ; (a �r)wT )Tand j((a �r) � ;wT )T j � k a k1;T pRe jjj� jjjT kRT;h k0;T ;j(� ; (a �r)wT )T j � 1pz jjj� jjjT k a k1;T h�1T kRT;h k0;Tso the thesis follows realling De�nition 1. 2Proposition 4 The following lower bound on eah element T holdshT kRT;h k0;T - � 1pRe + k a k1;T �1;T +hTpz� jjj � jjjT+ k	 k0;T +hT �k�Ta� a k1;T juh j1;T + k�Tf�f k0;T� :(3.18)Proof. We have(RT;h; wT )T = � 1Re (4uh; wT )T +((�Ta �r) uh; wT )T+ z (uh; wT )T +(rph; wT )T � (f; wT )T � (�T f�f; wT )TIntegrating by parts the seond order term and subtrating the on-tinuous momentum equation (2.4), we get(RT;h; wT )T = 1Re (r� ;rwT ) + ((a �r)� ;wT ) + z (� ;wT )� (	;r�wT )+ (((�Ta�a) � r) uh; wT )� (�T f�f;wT ) :Next, we introdue the previous bound (3.17) and we apply theCauhy-Shwarz inequality and inequalities of Lemma 5. At last, weobtain (3.18) 2



12 Stefano Berrone3.3.2 Inter-element jumps Next, we show how the jumps JE;h boundthe error from below. We onsider an arbitraryE2Eh;
 and we de�ne:wE def= PE (JE;h) bE, where bE is an edge bubble funtion and PE(:) isthe extension operator. Let T 0 denote any triangle belonging to !E.Lemma 7 For any E 2 Eh;
 we havek JE;h k20;E � (JE;h; wE)E; (3.19)kwE k0;T 0 -phE k JE;h k0;E ; (3.20)krwE k0;T 0 - h�1T kwE k0;T 0 - h� 12E k JE;h k0;E : (3.21)Proof. The proof of these inequalities follows the guidelines of [18℄,[19℄, [20℄. 2Lemma 8 The following bound holds���((a �r) � ;wE)!E ��� - XT 0�!E k a k1;T 0 �1;T 0phE jjj� jjjT 0 k JE;h k0;E : (3.22)Proof. We start from the identity((a �r)� ;wE)!E = � (� ; (a �r)wE)!Eso that using (3.20) and (3.21) we have���((a �r) � ;wE)!E ��� - XT 0�!E k a k1;T 0 pRe jjj� jjjT 0phE k JE;h k0;E ;���(� ; (a �r)wE)!E ��� - XT 0�!E 1pz jjj � jjjT 0 k a k1;T 0 h� 12E k JE;h k0;Eso the thesis follows realling De�nition 1. 2Proposition 5 The following lower bound on eah internal edge E2Eh holdsphE kJE;h k0;E - XT 0�!E �� 1pRe + k a k1;T 0 �1;T 0 +hEpz� jjj� jjjT 0+ k	 k0;T 0 +hE �k�Ta� a k1;T 0 j uh j1;T 0 + k�T f�f k0;T 0�i : (3.23)



Robustness in a posteriori error analysis for FEM ow models 13Proof. We integrate JE;h against wE on E and we apply the diver-gene theorem. Then, we subtrat the ontinuous momentum equa-tion (2.4). We get(JE;h; wE)E = XT 0�!E ZT 0 r��� 1Re ruh�ph I�wE�d
= 1Re (r� ;rwE)!E + z (� ;wE)!E � (	;r �wE)!E� (RT;h; wE)!E +(((�Ta�a) � r) uh; wE)!E+((a �r) � ;wE)!E � (�Tf�f; wE)!E : (3.24)We apply the Cauhy-Shwarz inequality, inequalities (3.20), (3.21)and (3.22) on (3.24). Then, using (3.19) and relation (3.18) withhT � hE , we get the thesis. 23.3.3 Residual of the ontinuity equation Finally, we onsider againan arbitrary T 2Th and we show how the residual of the ontinuityequation bounds from below the error for the veloity on eah triangleT . Let us de�ne wT def= [r�uh℄ bT .Proposition 6 The following lower bound on eah element T holdskr �uh k0;T - �1;ThT jjj � jjjT : (3.25)Proof. As in the previous ases, we havekr �uh k20;T - pRe jjj � jjjT kr �uh k0;Tor kr � uh k20;T - (r�� ;wT )T - 1pzhT jjj� jjjT kr �uh k0;T ;and this yields the thesis. 23.4 Final resultsEstimates (3.12) and (3.13) and inequalities�2T k�Ta k21;Th2T � 14 ; Æ2Th2T � �2 k�Ta k21;T � 1suggest the de�nition of the following a posteriori error estimator onthe element T :



14 Stefano BerroneDe�nition 3 �2R;T def= �h2T�22 + �21;T� kRT;h k20;T+ ��22+�h2T�22 + �21;T� �2 k�Ta k21;T� kr �uh k20;T+12 XE2E(T )\Eh;
�hE�22 + �1;E pRe� k JE;h k20;E : (3.26)Now we ollet the results of all the previous subsetions. In thefollowing theorem we introdue a stritly positive parameter �3 thatwe will exatly de�ne in the sequel.Theorem 2 There exists a onstant C" suh that, for eah �3 > 0,the global upper bound holds�3 jjj � jjj
+ k	 k0 � C" (�3+�2)8<:sXT2Th �2R;T+� 1�2 + �1� (k�Ta� a k1 juh j1+ k�Tf�f k0)� : (3.27)Proof. It follows from estimates (3.12), (3.13) and de�nition (3.26).2De�nition 4 Let us de�ne for eah T 2 Th�4;T def= 1pRe +�1;T k a k1;!T +hTpz: (3.28)Theorem 3 There exists a onstant C 0# suh that the loal lowerbound holds �2R;T � C 0#((�hT�22 + �1;T pRe� �24;ThT + �21;Th2T ��22+�h2T�22 + �21;T��2 k�Ta k21;T�� jjj � jjj2!T+�hT�22 + �1;T pRe� 1hT k	 k20;!T +�hT�22 + �1;T pRe�hT��k�Ta� a k21;!T j uh j21;!T + k�T f�f k20;!T�o :(3.29)
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Re = 10 Figure 3.2. �26;T versus hT ,k a k1;T = 1, z = 1, � = 0Proof. We use de�nition (3.28) and equations (3.18), (3.23), (3.25).We ombine these equations and we note that�h2T�22 + �21;T� 1h2T � �hE�22 + �1;E pRe� 1hE ; 8E 2 E(T ); 8T 2 Th;via the regularity assumption hE � hT , we get (3.29). 2Remark 2 Here we have not onsidered the modi�ed edge bubble fun-tions used in [19℄ and [20℄ beause these funtions give no advantagedue to the presene of the pressure term in the momentum equation(2.1). In fat, the modi�ed edge bubble funtions depend on a parame-ter �T � 1 that an be hosen to balane the di�erent ontributions ofthe veloity terms to the lower bound of the error estimator. But, tobalane the ontribution of the pressure term we should take �T � 1,so the best hoie results in �T = 1 whih orresponds to the lassialde�nition of the edge bubble funtions.Now we will investigate the expressions that appear in (3.29). At�rst, let us de�ne ~ def= 1pRepz .De�nition 5 For eah triangle T 2 Th, let us de�ne�25;T def= �hT�22 + �1;T pRe� 1hT : (3.30)The parameter �25;T as a funtion of hT � 1 has the onstant value��25 def= 1�22 + Re on the interval (0; ~℄ and then it stritly dereases(see Figure 3.1); thus, ��25 is the absolute maximum of �25;T . We alsode�ne the following quantity on the onsidered triangulation Th�25 def= maxT2Th �25;T : (3.31)



16 Stefano BerroneSetting �h def= minT2Th hT ; (3.32)we have �25 = ��25 if �h � ~, whereas �25 < ��25 if �h > ~.De�nition 6 Let us set�26;T def= �25;T �24;T+�21;Th2T ��22+�2�h2T�22 +�21;T�k�Ta k21;T� : (3.33)The parameter �26;T as a funtion of hT takes its maximum value ��26for hT = ~ (see Figure 3.2). We de�ne�26 def= 8>><>>:maxT2Th �26;T ; if h < ~;��26; if �h � ~ � h;maxT2Th �26;T ; if ~ < �h : (3.34)The following Corollary is based on Theorem 3 and the previousde�nitions.Corollary 1 There exists a onstant C# suh that the loal lowerbound �2R;T � C2# n�26;T jjj � jjj2!T +�25;T k	 k20;!T+�25;T h2T k�Ta� a k21;!T j uh j21;!T +�25;T h2T k�Tf�f k20;!To (3.35)and the global lower bound1�5sXT2Th �2R;T � C#��6�5 jjj� jjj
+ k	 k0�+C# h8<:XT2Thk�Ta� a k21;!T juh j21;!T +XT2Th k�Tf�f k20;!T9=;12 (3.36)hold true.Now estimate (3.36) suggests the following hoie for the, up tonow, generi onstant �3 whih appears in (3.27).
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� 1pRe + k a k1;
pRe h+hpz�2 + Re�421 +Re�22+�2 k�Ta k21;
Reh2; if h < ~;� 1pRe + k a k1;
pRe ~+ ~pz�2 + Re�421 +Re�22+�2 k�Ta k21;
Re~2; if �h � ~ � h;� 1pRe +k a k1;
pz + �hpz�2 + �42z �h2+�22pz Re �h+�2 k�Ta k21;
 z �h2+�22z �z �h2+�22pz Re �h� ; if �h > ~:(3.37)The parameter �23 is de�ned suh that the inequality �26�25 � �23 holdstrue. The behaviour of �23 as a funtion of hT and Re is shown inFigures 3.3 and 3.4.Corollary 1 and De�nition 3.37 yield the following orollary.Corollary 2 There exists a onstant C# suh that the following globallower bound holds 1�5sXT2Th �2R;T � C# (�3 jjj� jjj
+ k	 k0)+C#h8<:XT2Thk�Ta� a k21;!T juh j21;!T+XT2Thk�Tf�f k20;!T9=;12: (3.38)



18 Stefano Berrone4 Equivalene between the true error and the errorestimatorNow we de�ne the true error for our problemt:e: def= �3 jjj� jjj
+ k	 k0 (4.1)and we de�ne the global error estimator�
 def= sXT2Th �2R;T : (4.2)For a pratial and simple use of the error estimator in the onstru-tion of a sequene of adapted Delaunay triangulations, we assumethat the data f , a are interpolated by polynomials �T f , �Ta ofdegree n1; n2 � 1 respetively, satisfying the following estimates:k�T f�f k0;!T - hn1+1T j f jn1+1;!T ; (4.3)k�Ta� a k0;1;!T - hn2+1T j a jn2+1;1;!T : (4.4)We assume that n1; n2 are large enough and hT , 8T 2 Th, is smallenough so that the errors due to the approximation appearing ininequalities (3.27), (3.38) an be made negligible with respet to theglobal error estimator �
 . For this topis we refer to [1℄, [12℄. Then,inequalities (3.27), (3.38) imply the following proposition.Proposition 7 Under the above assumption on the data approxima-tion, there exist two onstants  and C, dependent upon the onstantsC" and C#, suh that the following bounds for the true error in termsof the global error estimator hold 1�5 �
 � �3 jjj � jjj
+ k	 k0 � C (�3+�2) �
 : (4.5)The e�etivity index [1℄e:i: def= �
�3 jjj� jjj
+ k	 k0 (4.6)plays a fundamental role in the study of the equivalene relationbetween the error estimator and the true error. We have the followingbounds for the inverse of the e�etivity index 1�5 � 1e:i: � C (�3+�2) : (4.7)In the optimal situation the two bounds in (4.7) should be indepen-dent of any mesh-size.



Robustness in a posteriori error analysis for FEM ow models 195 Sensitiveness to the problem parametersDue to the omplexity of the de�nitions of the oeÆients �2; �3 and�5, we study a ase of partiular interest and we make all the onsider-ations for it. First of all we �x z � 1, Re � 1 and we reall Remark 1.Moreover we assume � = 0 (ÆT = 0). We are interested in observ-ing the behaviour of the oeÆients �2; �3 and �5 when Re beomesvery large and �h beomes small. Under the previous hypotheses, itis easy to get: �2 = O(1); �3 = O(1); ��5 = O(pRe); �5 =O � 4pRe minn 4pRe; 1p�ho� : Hene, the double inequality (4.7) be-omes  14pRe max� 14pRe;p�h� - 1e:i: - C; (5.1)showing a moderate loss of robustness of our estimates when Re be-omes very large.The ase with z = 0 and Re � 1 was onsidered in [3℄. Theorresponding result in the urrent setting is 1pRe - 1e:i: - CpRe: (5.2)We note the improvement of robustness due to the presene of thezero-order term.Remark 3 The lower bound in (5.1) involves �h, so it is not indepen-dent of the mesh-size. This is a onsequene of our de�nitions (3.31),(3.34) and (3.37) for the quantities �25, �26 and �23. Another possibilityis to set �25 = ��25, �26 = ��26 (i.e., take the largest values independentlyof any mesh-size) and �23 = ��26��25 . In this ase we have 1pRe - 1e:i: - C : (5.3)This bound is independent of the mesh-size, but is less sharp than(5.1) for high Reynolds numbers.In the next subsetions we want to perform some numerial inves-tigations on the bounds of the estimates (4.5), (4.7).5.1 The test problemIn order to test our error estimator we onsider problem (2.1), (2.2)in the unit box 
 def= (0; 1)2 with homogeneous boundary onditions.
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Robustness in a posteriori error analysis for FEM ow models 21assuming n1 = n2 = 3 in (4.3), (4.4); this is ahieved by omputingthe integrals with suitable quadrature formulas on eah triangle. Aquadrature formula of order 5 on eah element is used for omput-ing the norms in the true error. The parameter � appearing in thestabilizing parameter ÆT in (2.10) is set to 0.5.2 Numerial results on uniform triangulationsWe study how the e�etivity index e:i:, varies with respet to themesh-size and the Reynolds number on a uniform grid. In our testproblem we onsider the foring funtion that orresponds to thesolution whih has the entre of the vortex on the horizontal liney0 = 0:5125 (R2 = 0:1) and the distane from the right-hand vertialwall equal to 14pRe . We report the behaviour of �4 + �3, 1e:i: , 1�6 onuniform grids with respet to �h = h in Figures 5.3, 5.5, 5.7 and withrespet to Re in Figures 5.4, 5.6, 5.8. We see that the dependene of1e:i: on the Reynolds number is not far from 1�6 as expeted for thelower bound in (4.7). Figures 5.9, 5.10 show the diret omparison ofthe upper bound �3+�2, of the lower bound 1�5 with respet to 1e:i: ,for the oarsest and the �nest uniform grids we onsider. The parallelbehaviour of 1e:i: and 1�5 , shown in these �gures, on�rm our opinionthat the asymptoti behaviour of 1e:i: , for Re beoming very large, islose to the one predited by the lower bound of (4.7). We note thatour estimates are not robust beause the oeÆients depend on theReynolds number, but we an say that they are sharp beause forour test problem the dependene of 1e:i: upon Re is very lose to thedependene of 1�5 upon the Reynolds number.6 Comparisons with error estimators forreation-onvetion-di�usion problemsWe like to apply the priniples of our analysis to the reation-onve-tion-di�usion equation and ompare the results so obtained to theanalogous ones derived in [20℄. Here, we speialize the analysis ofSubsetion 3.3 to the following problem� 1Pe 4u+ a �ru+ z u = f; in 
; (6.1)u = 0 on �
; (6.2)where Pe � 1 is the P�elet number; z 2 L1(
); a 2 [H1(
)℄2 \[L1(
)℄2 with r� a = 0 in 
; k a k1 = O(1); k z k1 = O(1); f 2
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Figure 5.6. 1e:i: versus Re
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Figure 5.10. �3+�2, 1e:i: , 1�5 versusRe, h = 5:5243E � 03= (f; vh)+ XT2Th �T (f; a �rvh)T : (6.3)Following [9℄, we set �T def= mk h2T4 Pe if 0 � mk k a k1;T hTPe2 < 1,whereas �T def= hT2 k a k1;T if mk k a k1;T hTPe2 � 1 where mk is de�nedin Subsetion 2.2. For the sake of simpliity, we do not onsider anyapproximation of the onvetive veloity a and of the funtion z.Moreover the funtion f is not approximated for solving the problem.We will onsider an approximation of f only in the de�nition of theelement residual bubble funtion wT . This is to make omparisonswith [20℄ as easy and diret as possible.Let us de�ne our energy norm for the solution u on ! � 
 in thefollowing manner: jjj u jjj2! def= 1Pe ju j21;!+ k u k20;! : (6.4)Remark 4 De�nition (6.4) does not inlude any dependene on z, fol-lowing [20℄ and di�erently from (2.6); this is justi�ed by the assump-tion k z k1 = O(1).De�nition 8 Let us set�1;S def= minnpPe hS ; 1o ; S = T 2 Th or S = E 2 Eh :We give the de�nitions of the equation-residual RT (uh) and of thestress-jump JE(uh) for this reation-onvetion-di�usion problem.De�nition 9RT;h def= � 1Pe 4uh + a �ruh+ z uh ��Tf ����T ;



24 Stefano BerroneJE;h def= 1Pe �� �uh� n̂E ��E :De�nition 10 Let us introdue the error indiator�2R;T def= �21;T kRT;h k20;T +12 XE2E(T )\Eh;
�1;E pPe k JE;h k20;E : (6.5)6.1 Global upper boundFollowing the guidelines of Setion 3.2, one gets the same upperbound for the error as in [20℄:jjjuh � u jjj
 -sXT2Th �2R;T +8<:XT2Th �21;T k�Tf�f k209=;12 : (6.6)6.2 Loal lower boundNow following the same analysis of Subsetion 3.3 applied to thisproblem we �nd how �R;T bounds the error from below.De�nition 11 Let us de�ne for eah T 2 Th�4;T def= 1pPe +�1;T k a k1;!T +hT k z k1;!T : (6.7)Then we have the following proposition:Proposition 8 The following loal lower bound holds�2R;T -pPe�1;ThT �24;T jjjuh � u jjj2!T+�1;ThTpPe k�Tf�f k20;!T : (6.8)We de�ne C21;T def= pPe �1;ThT �24;T (6.9)and we write the lower bound (6.8) as�2R;T - C21;T jjjuh � u jjj2!T +�1;T hTpPe k�Tf � f k20;!T : (6.10)We ompare this inequality with the equivalent one given in [20℄�2R;T - C22;T jjjuh � u jjj2!T +�21;T k�Tf � f k20;!T ; (6.11)where C2;T def= 1 + �1;T k a k1;!T pPe+ k z k1;!T : (6.12)
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Figure 6.2. C1;T and C2;T versus Pe,hT = 0:1Remark 5 Inequality (6.11) is obtained taking �T def= minn 1pPe hT ; 1oin the de�nition of the modi�ed edge bubble funtion [20℄. This hoieis done with the target to make the ontribution of onvetion to theloss of robustness (C2;T ) as lose to 1 as possible. If one does not applyintegration by parts in the proof of inequality (3.17) but simply takesj(a �r(uh � u); wT )j � k a k1;T pPe jjjuh � u jjjT kwT k0;T(and one proeeds similarly in proving inequalities (3.22)), then oneneeds the modi�ed ut-o� bubble funtions to get (6.11).We onsider the omparison between C1;T and C2;T very inter-esting for analyzing the robustness of our estimates. The di�erenebetween the two fators multiplying the term k�Tf � f k20;!T in thetwo previous equations is less interesting; indeed, we assume to hoosethe approximation �Tf suh that the data approximation terms arenegligible with respet to the error indiator.It is easy to verify thatC1;T � 1+ k z k1;T +PeT and C2;T � 1+ k z k1;T +PeT ;where PeT def= k a k1;T hTPe is the loal mesh-P�elet number.Figures 6.1, 6.2 allow us to ompare C1;T , C2;T and 1+k z k1;T+PeT .We observe that our analysis leads to an estimate as sharp as the onegiven in [20℄ even if we do not take advantage of the modi�ed ut-o�funtions. Furthermore, we note a slight improvement in the numer-ial values of the oeÆients.Going bak to the Oseen problem, we onlude that the estimatesderived in Subsetions 3.2, 3.3 for the hosen energy-like norm of theerror in the veloity are qualitatively as sharp as the ones given in[20℄ for the salar reation, onvetion and di�usion equation.



26 Stefano Berrone7 Divergene-free projetionIn order to disuss the sharpness of our estimate (3.18) with respet tothe error in pressure and the e�et of the inompressibility onstraintalone, we propose to onsider the following model problem, obtainedfrom our Oseen model by setting Re =1, a = 0, z = 1 and enforingadmissible boundary onditions:u+rp = f; in 
; (7.1)r� u = 0; in 
; (7.2)u � n̂ = 0; on �
: (7.3)The problem an be written in two di�erent variational formulations.To this end, we introdue the spae H0(div;
) = fv 2 �L2(
)�2 :r� v 2 L2(
) and v � n̂ = 0 on �
g (see, e.g. [4℄, [10℄), equipped withthe norm k v kdiv = �k v k20+ kr � v k20� 12 .The �rst variational formulation of (7.1)-(7.3) we onsider is thelosest one to the formulation used for the previous problems:Find [u; p℄2H0(div;
)�L20(
) suh that(u; v)� (p;r� v) = (f; v); 8 v 2 H0(div;
); (7.4)(q;r�u) = 0; 8q 2 L20(
) : (7.5)Note that u is preisely the orthogonal projetion of f upon the losedsubspae of H0(div;
) of the divergene-free vetor �elds. As usual,p an be interpreted as the Lagrange multiplier assoiated with thedivergene-free onstraint. The variational formulation (7.4), (7.5) isalso related to the mixed formulation of the Poisson problem for p(see, e.g., [4℄, Chapter IV).Problem (7.1)-(7.3) an also be formulated as follows:Find [u; p℄2�L2(
)�2�[H1(
)\L20(
)℄ suh that(u; v) + (rp; v) = (f; v); 8 v 2 �L2(
)�2 ; (7.6)(rq; u) = 0; 8q 2 H1(
)\L20(
) : (7.7)Note that, here, the boundary ondition (7.3) is enfored as a naturalboundary ondition, impliitly in (7.7) after integration by parts of(7.2).



Robustness in a posteriori error analysis for FEM ow models 277.1 Well-posedness of the ontinuous problemWell-posedness of problem (7.4), (7.5) follows from lassial ondi-tions on saddle-point problems. Preisely, the bilinear form a(u; v) =(u; v) is trivially oerive, with respet to the H0(div;
)-norm, on thesubspae K def= �v 2 H0(div;
) : (q;r� v) = 0; 8q 2 L2(
)	 :Here, we reall a Poinar�e-Friedrihs inequality for zero meanvalue funtions:k q k0 - krq k0; 8q 2 H1(
) suh that Z
 qd
 = 0: (7.8)Moreover, we have the following lemma [10℄:Lemma 9 On the spae H0(div;
)�L20(
), the bilinear form b(q; v)=�(q;r� v) satis�es the following inf -sup onditionsupv2H0(div;
) nf0g (q;r� v)k v kdiv � 1� k q k0; 8q 2 L20(
) : (7.9)As a onsequene, the solution of (7.4), (7.5) satis�es the estimatek u kdiv+ k p k0 - k f k0 : (7.10)Remark 6 From equation (7.1), we get rp = f �u 2 L2(
), whenep 2 H1(
) with k p k1 - k f k0.We an easily get the well-posedness of problem (7.6), (7.7). Infat, the bilinear form a(u; v) = (u; v) is trivially oerive on L2(
).Moreover the form b(q; v) = (rq; v) trivially satis�es an inf -sup on-dition on �L2(
)�2�[H1(
)\L20(
)℄, indeedkrq k0 = supv2[L2(
)℄2nf0g (rq; v)k v k0 : (7.11)Finally, the solution of (7.6), (7.7) satis�es the estimatek u k0+ krp k0 - k f k0 : (7.12)7.2 Disretization and a priori estimatesNow we introdue a �nite dimensional approximation of the varia-tional problem (7.4), (7.5). Let Vh � H0(div;
) and Qh � L20(
)be �nite dimensional subspaes of ontinuous pieewise polynomial



28 Stefano Berronefuntions on a triangulation Th. We onsider the following stabilizedproblem: Find [uh; ph℄ 2 Vh�Qh suh that 8[vh; qh℄ 2 Vh�Qh(uh; vh)� (ph;r� vh)+ XT2Th ÆT (r� uh;r� vh)T = (�Tf; v); (7.13)(qh;r� uh) + XT2Th �T (uh+r ph ��Tf;rqh)T = 0; (7.14)where ÆT � 0 and �T > 0 are stabilization parameters whose de�ni-tion will be disussed below.Remark 7 The present disrete formulation di�ers from the disreteformulation given in [5℄. Therein the authors assume to use a on-tinuous subspae Vh � H0(div;
), but suh that the ouple Vh; Qhof the disrete subspaes satisfy a disrete inf � sup ondition. Do-ing so they do not need the terms multiplied by �T to irumventthe Babu�ska-Brezzi ondition. Moreover, they hoose the parameterÆT = 1 to get the needed oerivity of the bilinear form ah(uh; vh) =(uh; vh)+PT2Th ÆT (r� uh;r� vh)T in the spae Vh. Here we needthe terms multiplied by �T to irumvent the disrete inf � sup on-dition.Remark 8 We will use ontinuous �nite element spaes Vh, Qh, so wehave Vh � �L2(
)�2, Qh � [H1(
)\L20(
)℄ as well and thanks to theboundary ondition (7.3) the stabilized disretization (7.13), (7.14)is also a disrete formulation of problem (7.6), (7.7).7.2.1 Stability of the disrete stabilized problem In order to prove thewell-posedness of the stabilized disrete problem, we hoose vh = uhin (7.13), qh = ph in (7.14) and we sum the two equations, then weapply the Cauhy-Shwarz and Young inequalities:k uh k20+ XT2Th ÆT kr � uh k20;T + XT2Th �T krph k20;T = (�T f; uh)� XT2Th �T (uh;rph)T + XT2Th �T (�Tf;rph)T � 12k1 k�Tf k20+k12 k uh k20+ XT2Th 12k2 �T k uh k20;T + XT2Th k22 �T krph k20;T+ XT2Th 12k3 �T k�Tf k20;T + XT2Th k32 �T krph k20;T : (7.15)



Robustness in a posteriori error analysis for FEM ow models 29Choosing k1=k2=k3= 23 and assuming maxT2Th �T � 49 , we easily getk uh k20+ XT2Th ÆT kr � uh k20;T + XT2Th �T krph k20;T - k�Tf k20 : (7.16)Remark 9 We note that the stability ondition of the disrete formu-lation does not �x any upper bound for �T dependent on the loalmesh-size hT di�erently from [8℄, [9℄; here we have only an upperonstraint of the type maxT2Th �T = O(1).Assumption 4 From now on we set �T def= � and ÆT def= Æ, 8T 2 Th.Proposition 9 Assuming � � 49 the following uniform stability esti-mate for the disrete formulation (7.13), (7.14) holds truek uh k20+Æ kr � uh k20+� krph k20 - k�T f k20 : (7.17)Finally, if we onsider e.g. � = 49 and either Æ = 0 or Æ = 1, wewrite expliitly the uniform stability estimates k uh k0+ krph k0 -k�Tf k0 or kuh kdiv+ krph k0 - k�T f k0; respetively. Then, bystandard arguments, a priori error estimates in the norms in whihstability is stated an be obtained.7.3 A posteriori estimatesHere we want to investigate the robustness of an error estimatorvery lose to the error estimators used before, when we are usingdi�erent norms for the true error. For this reason, sometimes, weswith between the two variational formulations of the ontinuousproblem (see Remark 8). Again, we deal separately with the veloityerror � and the pressure error 	 .Let us de�ne RT;h def= uh+r ph ��T f jT .Proposition 10 Under the assumptions of the ontinuous problems(7.4)-(7.5), (7.6)-(7.7) and the disrete problem (7.13)-(7.14), thereexist a positive onstant C� suh that, for eah positive onstant k1,we have k � k0 � C� � 1pk1 kr	 k0+pk1 kr � uh k0+sXT2Th kRT;h k20;T + k�Tf�f k09=; : (7.18)



30 Stefano BerroneProof. From the ontinuous equation (7.4) we get(� ; v)� (	;r� v) = (uh; v)� (ph;r� v)� (f; v); 8 v 2 V: (7.19)We take v = � as a test funtion and we proeed similarly to the proofof Proposition 1, using the fat that ph and uh are ontinuous fun-tions in 
, [[n̂ �� ℄℄E = 0; 8E 2 Eh;
 and n̂ �� = 0 on �
 to onludethatPT2Th (n̂ ph; � )�T = 0. Moreover, we use Cauhy-Shwarz's andYoung's inequalities. Then, applying (7.8) we get (7.18). 2Proposition 11 Under the assumptions of the ontinuous problem(7.6), (7.7) and the disrete problem (7.13), (7.14) we havekr	 k0 � k � k0+sXT2Th kRT;h k20 + k�T f�f k0 : (7.20)Proof. From the inf -sup ondition (7.11) and equation (7.6) wehave:kr	 k0 = supv2[L2(
)℄2nf0g (r	; v)k v k0� k � k0+ supv2[L2(
)℄2nf0g 1k v k08<:XT2Th(RT;h; v)T+(�T f�f; v)9=; :Then, we get (7.20). 2De�nition 12 Let us de�ne the residual-based a posteriori error es-timator on the triangle T 2 Th:�2R;T def= kRT;h k20;T + kr � uh k20;T : (7.21)Theorem 5 Under the assumptions of the ontinuous problems (7.4)-(7.5), (7.6)-(7.7) and the disrete problem (7.13)-(7.14), there existsa onstant C" depending on the smallest angle of the triangulationand independent of any mesh size suh that the following global up-per bound holdsk� kdiv+ kr	 k0 � C" (�
 + k�T f�f k0) : (7.22)Proof. Using inequalities (7.18), (7.20) and suitably hoosing theonstant k1, we get the global upper bound for the error � inde-pendent of 	 . Then using inequality (7.20) we get the global upperbound for the error 	 . Realling the de�nition of the global errorestimator (4.2) and olleting the previous results, de�nition (7.21)and kr � � k0 = kr � uh k0 we get the thesis. 2



Robustness in a posteriori error analysis for FEM ow models 317.3.1 Loal lower bounds As in Setion 3.3, for T 2Th let us de�newT def= RT;h bT , where bT is the usual bubble funtion on the triangle.Proposition 12 Under the assumptions of the ontinuous problem(7.1)-(7.3) and the disrete problem (7.13), (7.14) we havekRT;h k0;T - k� k0;T + 1hT k	 k0;T + k�T f�f k0;T (7.23)and kRT;h k0;T - k� k0;T + kr	 k0;T + k�Tf�f k0;T : (7.24)Proof. First we use inequalities (3.14)-(3.16), then we observe that(RT;h; wT )T = (� ;wT )T � (	;r�wT )T � (�T f�f;wT )T : (7.25)Then, from (3.16) we obtain (7.23). Applying an integration by partsof the term (	;r�wT ) in (7.25), we get (7.24). 2Moreover we an show how the residual of the ontinuity equationbounds from below the error for the veloity on T in the L2-norm.We set wT def= [r�uh℄ bT and we havekr �uh k20;T - k� k0;T krwT k0;T - k � k0;T 1hT kr �uh k0;T ;thus we �nd kr �uh k0;T - 1hT k � k0;T : (7.26)Remark 10 If we want to ontrol the error measured by one of the twonorms k � k0+ k	 k0 or k� k0+ kr	 k0 we an apply the inverseinequality (7.26) on eah element T .Then, we reall de�nition (3.32) and we ollet the previous resultsin the following theorem:Theorem 6 There exist four onstants C#;1, C#;2, C#;3 and C#;4 de-pending on the smallest angle of the triangulation and independent ofany mesh size suh that the global lower bounds holds�h �
 � C#;1 �k� k0+ k	 k0+�h k�T f�f k0� ; (7.27)�h �
 � C#;2 �k� kdiv+ k	 k0+�h k�T f�f k0� ; (7.28)�h �
 � C#;3 �k� k0+ kr	 k0+�h k�T f�f k0� ; (7.29)�
 � C#;4 (k � kdiv+ kr	 k0+ k�T f�f k0) : (7.30)



32 Stefano Berrone7.4 Numerial resultsIn this setion we use again the hypotheses of Setion 4 about theapproximation of the data. From Theorems 5 and 6 we easily getthat measuring the true error by one of the norms k � k0+ k	 k0,k � kdiv+ k	 k0 or k � k0+ kr	 k0 yields the bounds �h � 1e:i: � C (7.31)for the inverse of the e�etivity index.Instead, if we de�ne the true error as t:e: def= k � kdiv+ kr	 k0;then we have  � 1e:i: � C : (7.32)So, we have found the most appropriate norm for measuring the er-ror in the solution of problem (7.1), (7.3), sine it yields robust aposteriori estimates.In order to test our error estimators, we onsider problem (7.1),(7.2) in the unit square with boundary ondition (7.3). We hoose theforing funtion f = [f1; f2℄ suh that the solution [u; p℄ of the prob-lem is the same as the one desribed in Subsetion 5.1. In this ase we�x R1 = R2 = 0:3. We onsider two di�erent grids: a strutured uni-form grid (Figure 7.1) and a quasi uniform unstrutured grid (Figure7.2). Finer grids are obtained splitting eah triangle in four similartriangles for both grids. In Figures 7.3-7.6 we report the behaviour of1=e:i: versus �h for the errors measured in the four norms onsideredin the previous subsetion. We onsider both the stabilization asesÆ = 0 and Æ = 1 with � = 4=9. The numerial results on�rm ourtheoretial estimates. Indeed, if we measure the error in the normk � kdiv+ kr	 k0, the inverse of the e�etivity index is always loseto 1 when �h tends to 0. If we measure the error in any other normwe always have, at least, one ase for whih the inverse of the e�e-tivity index tends to 0 when �h tends to 0. Note that setting Æ = 0the \good" norms are those that inlude the term k � kdiv (see Fig-ures 7.3, 7.4). Conversely setting Æ = 1 the \good" norms are thosethat inlude the term kr	 k0 (see Figures 7.5, 7.6).Referenes1. I. Babu�ska, R. Dur�an, R. Rodr��guez, Analysis of the eÆieny of an a pos-teriori error estimator for linear triangular elements, SIAM J. Numer. Anal.29 (1992), no. 4, 947-964.
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Figure 7.1. Coarsest Uniform Grid,N = 289 Figure 7.2. Coarsest Quasi UniformGrid, N = 284
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