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Abstract This paper examines powder snow avalanches by introducing a pre–selected de-
gree of variation, or fuzziness, in model parameters. Given a certain degree of uncertainty
in the parameters, fuzzy set theory makes it possible to evaluate the uncertainty in the
results thereby avoiding the need for a more complex stochastic analysis. Having assumed
that model parameters are affected by a certain degree of variation, the response of the
numerical model is calculated by solving the fuzzy equations. In this manner it is possible
to evaluate how the results are affected by a given change in model parameters.
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1 Introduction

The goal of this investigation was to study powder snow avalanches by introducing a pre–
determined degree of variation (fuzziness) in model parameters. It was motivated by the
consideration that model parameters are usually affected by a degree of uncertainty, mainly
due to measuring imprecision and the great variability of snow properties in both space
and time. This approach could be particularly effective when dealing with snow avalanches,
where it often proves difficult, or outright impossible, to gain sufficient knowledge of the
characteristics of the avalanche itself.

Fuzzy set theory is a mathematical theory for the representation of uncertainty (see
Zadeh (1968) and Zadeh (1988)). Given a certain degree of uncertainty in the parameters,
fuzzy set theory makes it possible to evaluate the uncertainty in the results thereby avoid-
ing the difficulties associated with stochastic analysis, since this method does not require
a knowledge of probability distribution functions.

The model used in the numerical simulations is described in Clement Rastello (2002);
it is based on earlier works by Hopfinger and Tochon-Danguy (1977), Hopfinger (1983),
Beghin and Brugnot (1983) and Beghin and Olagne (1991).

It is assumed that some model parameters are affected by a certain amount of uncer-
tainty (defined by the so-called membership functions) and the response of the numerical
model is calculated by solving the fuzzy equations for different shapes of the membership
functions. In this manner it is possible to work out a quantitative estimate of the influence
of a given change in model parameters and hence to identify, and take into due account,
the parameters having the most adverse effect on the model response.

2 Avalanche model

Compared to the model described by Beghin and Olagne (1991), the model used in this
study is somewhat simplified, in as much as avalanche width is assumed to be constant (see
Clement Rastello (2002)). An avalanche is defined as the turbulent motion of a dense fluid
cloud (suspension of snow particles) moving downhill through the air under the effects of
gravity. The shape of the avalanche is assumed to remain the same throughout its motion,
i.e., the ratio between its height and length is assumed to be constant.

Snow entrainment is taken into account, while the sedimentation is neglected. This
model has proved effective to describe the artificial avalanche of the Vallée de la Sionne
(see Dufour, Gruber, and Ammann (2001)).

The equations of the model are:

• mass balance:

d(∆ρA)

dt
= ∆ρN βhN U

︸ ︷︷ ︸

Snow entrainment

(1)

• momentum balance:

d [(ρ+ kυ ρa)AU ]

dt
= ∆ρA g sin θ

︸ ︷︷ ︸

Gravity

−Cd ρLU2

︸ ︷︷ ︸

Friction

(2)

where A = S1HL is the so-called “bidimensional volume”, S1 is a shape factor (π/4
for a semi-elliptical shaped avalanche), U the velocity of the gravity center, ρ avalanche
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density, ρa the density of the fluid medium (air), ρN density of ground snow, βhN the
height of the snow entrained, g gravity acceleration, θ the slope angle, kυ the added
mass coefficient and Cd the friction coefficient between the avalanche and the ground.
∆ρ = ρ− ρa (or ∆ρN = ρN − ρa) is the difference between snow (or ground snow) density
and air density.

If β = 0 or hN = 0, no snow is entrained during the avalanche motion, otherwise
the quantity of snow entrained is assumed constant throughout the avalanche motion. It
must be pointed out that this representation could be not very realistic (see the recent
measurements of entrainment and deposition presented by Sovilla and Bartelt (2002)).

2.1 Analytical solution

If the contribution of friction in Eq. 2 is neglected (Cd = 0) the solution in terms of velocity
U (or Uf ), A and ρ as a function of distance x or (xf ) can be calculated analytically.
Otherwise, a numerical integration is required. Neglecting the contribution of friction,
velocity U turns out to be (if U |x=0 = 0):

U =

√

2KMx+ (KB + LM)x2 + 2

3
(KN + LB)x3 + 1

2
LNx4

M +Bx+Nx2
(3)

where:

B = βhN∆ρN + (1 + kυ)ρaE
√

A0 (4a)

M = (1 + kυ)ρaA0 +∆ρ0A0 (4b)

N =
1

4
(1 + kυ)ρaE

2 (4c)

K = ∆ρ0A0 g sin θ, L = βhN∆ρN g sin θ (4d)

It is possible to link front velocity Uf with the velocity of the gravity center U (from
Eq. 3) assuming the mass center of the avalanche to be situated approximately in the
middle of its length L so that xf = x+ L

2 :

Uf =
U

1− 1
2k

∂H
∂xf

(5)

In the original work by Clement Rastello, coefficient E (volume growth rate) is intro-
duced by differentiating A = S1HL so that it is possible to write the evolution equation
for A:

dA

dx
= E

√
A with E =

2
√

S1

k
∂H
∂xf

1− 1
2k

∂H
∂xf

(6)

Height growth rate ∂H
∂xf

, ratio k = H
L
, E and coefficient S1 are obtained experimentally

as a function of slope angle θ only. For instance, for θ = 25◦ we get:

∂H

∂xf
≈ 0.085, k ≈ 0.3, E ≈ 0.2, S1 ≈ 0.8 (7)
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3 Application of fuzzy set analysis to avalanches

In this study the influence of the uncertainty or imprecision affecting three parameters
contained in Eq. 1 and 2 is assessed through a fuzzy approach. Parameters A0, ∆ρ0 and
E are considered to be fuzzy, i.e., associated with a certain degree of uncertainty, as
defined through the so-called membership functions µ. Such functions represent the level of
confidence (or imprecision) of a variable; a typical shape could be triangular or trapezoidal.
Compared to stochastic analysis, this approach is a simpler and more intuitive way to
allow for the uncertainty in some parameters, since it does not call for the determination
of probability distribution functions.

The methods used to determine membership functions include: subjective evaluation or
expert statement (by an expert on the subject), converted probabilities (using histograms
or other probability diagrams), physical measures (often difficult), learning and adaptation
(see, for instance, Schulz and Huwe (1997)).

Given a value of the membership function it is possible to obtain a closed interval
within which lies the variable of interest. The projections of α-cut (cut at level α) on
the axis of the variable define the left and right boundaries of this interval. For instance,
α-cut = 0.5 in Figure 7 defines interval 160m2 to 280m2 for A0, 120kg/m

3 to 210kg/m3

for ∆ρ0 and 0.16 to 0.28 for E. As a results, the variables of interest (velocity U(x) and
average pressure p(x) = 1

2 ρU
2) are now expressed by fuzzy numbers, Eq. 1 and 2 being

fuzzy equations. It means that U(x) and p(x) are associated to a certain membership
function to be determined by finding, for each level 0 ≤ α ≤ 1:

Min/Max U(x,Aα
0 ,∆ρα0 , E

α) α ∈ [0, 1] (8a)

Min/Max p(x,Aα
0 ,∆ρα0 , E

α) α ∈ [0, 1] (8b)

with:

A0 ≤ A0 ≤ A0 (9a)

∆ρ0 ≤ ∆ρ0 ≤ ∆ρ0 (9b)

E ≤ E ≤ E (9c)

where the underline indicates the left boundary of a variable and the overline the right
boundary of the same variable, corresponding to a certain (given) value of α-level.

The solution is found by minimizing and maximizing the fuzzy variables (subjected to
the constraints in Eqs. 9a-9c) and calculating velocity and pressure for each level of α.
Their range of variation represents their level of imprecision due to the imprecision in the
input data. The determination of the membership function of U and p, i.e., their level of
imprecision, is achieved by repeating the calculation for different α’s. This problem can
be viewed as an optimization problem, as explained in Dubois and Prade (1980).

4 Numerical simulations

The properties listed in Table 1 are used in the numerical simulations together with a
friction coefficient Cd = 0. Such properties have proved useful to describe the avalanche
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Table 1: Reference values of the avalanche parameters.
A0 ∆ρ0 β hN kυ ρa E θ
m2 kg/m3 - m - kg/m3 - ◦

200 150 1 1.5 0.5 1.0 0.2 25

of the Vallée de la Sionne (see Dufour, Gruber, and Ammann (2001)); in this way the re-
sults are directly comparable with those found in the sensitivity analysis presented in
Clement Rastello (2002).

It must be pointed out that the purpose of this work is not to propose a new model
but to present the results of a method designed to take into account imprecision in the
data. For this reason, the model has been conceived to be as simple as possible: the results
presented below have been obtained by solving Eq. 3 analytically. Hence, the contribution
is not in the model but in the way in which the model is used.

4.1 Discussion of the results

Six cases are represented by the membership functions (with triangular and trapezoidal
shape, symmetrical and non symmetrical with respect to the reference values given in
Table 1) as presented in Figure 1 (case 1), Figure 3 (case 2), Figure 5 (case 3), Figure 7
(case 4), Figure 9 (case 5) and Figure 11 (case 6). The results in terms of velocity U ,
average dynamic pressure p and velocity at x = xmax = 4000m (U |x=L) are shown in
Figure 2 (case 1), Figure 4 (case 2), Figure 6 (case 3), Figure 8 (case 4), Figure 10 (case
5) and Figure 12 (case 6).

Each diagram shows the value obtained for a different α-cut and makes it possible to
investigate the effects of parameters imprecision on velocity and pressure and to identify
the parameters with the most adverse influence on the response. For instance, in Figure 2
(left) for α-cut = 0, the velocity range at x = 4000m is ≈ 72m/s to 110m/s, i.e., a range
−21.7% to +19.5% with respect to the reference value ≈ 92m/s. The same values can
be found in the figure on the right, where the membership function for the same data is
plotted. This range corresponds to a range −80.0% to +80.0% for the fuzzy input data
in Figure 1 relating to the same value of α-cut = 0. It should be noted that, despite the
linear membership in Figure 1, the resulting membership function is non linear.

As for case 2, it is obvious that the range for the same results is smaller in Figure 4
than in Figure 2 because in the former the data are much more precise (the membership
functions are “crisper”).

Moreover, Figures 5 and 6 make it possible to evaluate the influence of the slope of
the membership functions. It can be seen that the increase in the membership function of
Figure 5 (40m2 to 200m2 for A0 30kg/m3 to 150kg/m3 for ∆ρ0 and 0.04 to 0.20 for E) is
reflected in an increase 81.2m/s to 92.0m/s for U |x=L (left branch of Figure 6, right). The
steep decrease in the Figure 5 (200m2 to 280m2 for A0 150kg/m3 to 210kg/m3 for ∆ρ0
and 0.20 to 0.28 for E) is reflected in a less steep decrease 92.0m/s to 107.6m/s for U |x=L

(right branch of Figure 6, right). Similar considerations apply to Figure 7 and Figure 8.
The fact that, for α-cut = 1, the membership function of U |x=L turns out to be the

same in terms of both range (3.9m/s) and position (Figures 10 and 12 on the right) is
due to the fact that for α-cut = 1 the membership functions of A0, ∆ρ0 and E are also
the same, having the same range (30m2 for A0, 22.5kg/m

3 for ∆ρ0 and 0.03 for E) and
position. In other words, the membership functions of A0, ∆ρ0 and E in Figures 9 and 11
differ solely for the slant of the two branches. Again, the membership functions for U |x=L
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are non linear.
It can be also noticed that the imprecision in the data is reflected in a much larger

imprecision in the value of pressure p.
These results can be very useful when the data are used, for instance, to design struc-

tural members, to protect buildings or town areas, or for planning purposes (hazard maps).
In all cases it is possible to quantitatively evaluate how the imprecision in model parameter
is reflected in the results.

Clement Rastello proposed a sensitivity analysis to study the influence of A0, ∆ρ0
and E on the response in terms of velocity U . This approach examines the effect of one
parameter at a time, given its range of variation. It means that the effect of the variation
in each parameter is taken into account separately. Compared to a sensitivity analysis, the
method presented here makes it possible to take into account an entire set of imprecise
parameters and to determine the level of imprecision in the results. A different level of
imprecision in the data is obtained by a change in the membership functions.

5 Conclusions

The main points discussed in the paper are briefly summarised below.

• The fuzzy approach, applied to a well-known model described in the literature, makes
it possible to take into account a degree of imprecision in model parameters. This is
very useful for avalanches, where only approximate knowledge is available.

• Given a set of membership functions, the influence of the imprecision affecting model
parameters is evaluated quantitatively.

• A membership function can be determined by using an expert judgment. In this way,
the contribution of an expert on the field is easily included in the model.

• A complex statistical analysis can be avoided.

• The set of parameters with the greatest influence on the response can be identified.
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7 Appendix - Some fuzzy set definitions

This Section presents a brief overview of some fuzzy sets definitions and operations. For a
complete treatment, the reader is referred to Dubois and Prade (1980) and Kaufmann and Gupta (1991).

1. Let X be a set of elements. A is called a fuzzy (sub)set of X if A is a set of ordered
pairs:

X = {(x, µA(x)), x ∈ X, µA(x) ∈ [0, 1]}. (10)
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where µA(x) represents the grade of membership of x in A. The closer µA(x) is to 1,
the more x belongs to A, and conversely, the closer it is to 0, the less x belongs to
A.

2. The support is the area where the membership function is greater than zero (A being
a fuzzy set):

sA = {x : µA(x) ≥ 0} (11)

For instance, the support of the membership function in Figure 11 (left) is the interval
90− 360m2.

3. The core is the area that contains elements having the maximum degree of member-
ship to the fuzzy set A:

cA = {x : µA(x) = 1} (12)

The core of the membership function in Figure 11 (left) is the interval 170− 200m2.

4. The α-cut is the cut through the membership function of A at height α:

Xα = {x : µA(x) = α} (13)

For instance, the α-cut = 0.5 of the membership function in Figure 11 (left) is defined
by points 130m2 and 280m2.

5. Height is the maximum value of the membership function of A:

hA = maxx {µA(x)} (14)

The height of the membership functions presented in the paper is 1.

Operations on fuzzy numbers are performed using the extension principle: the classical
operators (addition, multiplication. . . ) are thus extended to their fuzzy counterparts. For
a binary operator ⊗, with y, z ∈ R:

µA⊗B(x) = max{min{µA(y), µB(z)} | y ⊗ z = x} (15)

The degree of membership of x is the maximum of min{µA(y), µB(z)} over all the
possible pairs of (y, z) for which y ⊗ z = x holds.
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Figure 1: Membership functions for A0, ∆ρ0 and E for case 1.
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Figure 8: Velocity U and pressure p vs. distance x (left and center) and membership
function for U |x=L (right) for case 4.
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Figure 9: Membership functions for A0, ∆ρ0 and E for case 5.
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Figure 10: Velocity U and pressure p vs. distance x (left and center) and membership
function for U |x=L (right) for case 5.
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Figure 11: Membership functions for A0, ∆ρ0 and E for case 6.
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