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Abstract The paper analyses the interaction between strain-softening and time-dependent
behaviour in the case of quasi-static fracture of concrete. A viscous element based on a
fractional order rate law is coupled with a micromecanical model for the fracture process
zone. This approach makes it possible to include a whole range of dissipative mechanisms
in a single rheological element. Creep fracture in mode I conditions is analysed through
the finite element method, the cohesive (or fictitious) crack model and a new space and
time integration scheme. The comparison with creep tests executed on three-point bending
conditions shows a good agreement.
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1 INTRODUCTION

The long term performance of concrete structures is fundamentally affected by the be-
haviour of the material after cracking. It is well known that concrete presents a diffused
damage zone within which micro-cracking increases and stresses decrease as the overall
deformation increases. This results in the softening of the material in the so called fracture
process zone (FPZ). The size of this zone can be compared with a characteristic dimension
of the structure and can vary during the evolutionary process. In this context, a numerical
method (based on finite or boundary elements) has to be used together with the cohesive
or fictitious crack model as shown by Barenblatt [1], Dugdale [2] and Hillerborg [3].

The interaction between strain-softening and time dependent behaviour is analysed,
with the emphasis on very slow or quasi-static fracture. This is the case of cracking in mas-
sive concrete structures like dams, where inertial forces can be neglected. This approach is
based on a micromechanical model which combines time-dependent and time-independent
information. One of these models was proposed by Santhikumar and Karihaloo [4, 5].
The time-independent part of this model is based on the concept of effective spring, which
derives from a micromechanical hypothesis for the static softening behaviour of the con-
crete in the fictitious process zone proposed in [6]. In the present paper this approach is
enhanced using a fractional order rate law and is applied to the numerical simulation of
the three-point bending tests described by Zhou [7].

The proposed approach can be compared with the one proposed in [8] (rate dependent
softening) and the one proposed in [9] (stress relaxation law in the FPZ obtained by fitting
stress relaxation test results).

2 RHEOLOGICAL MODEL

Rheology is concerned with time dependent deformation of solids. In the simplest rheolog-
ical model of the linear standard viscoelastic solid (Fig. 1), the springs are characterized
by linear stress-displacement relationships:

σ1 = E1 (ε− ε1), (1a)

σ2 = E2 ε. (1b)

The dashpot is based on the following fractional order rate law for the internal variable
ε1:

Dαε1 =
dαε1
dtα

=
σ1

E1 τα1
=

ε− ε1
τα1

with α ∈ (0, 1), (2)

where the fractional differentiation of a function y(t) is defined according to [10, 11]
(see the Appendix for more details).

Equation 2 represents a generalization of the well-known Newton’s constitutive law for
the dashpot:

σ = η
dε

dt
= E τ

dε

dt
, or, to compare with Eq. 2:

dε

dt
= D1ε =

σ

E τ
. (3)

In Eq. 2 the classical derivative of integer order (α = 1) of the deformation ε is replaced
by a derivative of order α and, to maintain the correct dimensions, the relaxation time τ1
is changed by τα1 .
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In particular, the non integer (of order m) differential operator Dm y(t) is defined as:

D−(1−α) y(t) =

∫ t

0
Φ1−α(t− t) y(t)dt, (4)

where:

Φ1−α(t) =
t−α
+

Γ(1− α)
with t+ =

{

t if t > 0
0 if t < 0

. (5)

In the previous expression Γ represents the Gamma function. Equation 4 can also be
obtained by using an hereditary model based on a Rabotnov fractional exponential kernel
[12].

A convergent expression for the α-order fractional derivative operator Dα is given by:

Dαy(t) = D1D−(1−α)y(t) =

d

dt

∫ t

0
Φ1−α(t− t) y(t)dt =

1

Γ(1− α)

d

dt

∫ t

0

y(t)

(t− t)−α
dt. (6)

In the case of α = 1 the classical dashpot with an integer order rate law is obtained
from Eq. 2. In particular, the solutions for the relaxation problem (under constant w)
and for the creep problem (under constant σ) become of exponential type, with τ1 as the
relaxation time, and τ1

E1+E2

E2
as the retardation time. A comparison between the solutions

corresponding to α integer and α non integer is plotted in Fig. 2 and 3.

2.1 Numerical integration of constitutive response

A possible approximation for the fractional differentiation of a function y(t) is [10]:

n+1(Dαy) =
1

(∆t)α

n
∑

j=0

bj(α)
n+1−jy. (7)

It is assumed that the spacing in time is uniform, i.e., ny = y(n∆t). The coefficients
bj(α) depend on the Gamma function as follows:

bj(α) =
Γ(j − α)

Γ(−α) Γ(j + 1)
. (8)

By using the recursion formula:

Γ(j − α)

Γ(j + 1)
=

(j − 1− α)

j

Γ(j − 1− α)

Γ(j)
, (9)

no evaluation of Gamma function is needed and the coefficients bj(α) are given by:

b0(α) = 1, . . . bk(α) =
(k − 1− α)

k
bk−1(α), . . . k = 1, . . . , n. (10)

For convenience, the expression in Eq. 7 can be rewritten as:

n+1(Dαy) =
1

(∆t)α
(n+1y − ny), (11)

3



where

ny = −
n
∑

j=1

bj(α)
n+1−jy, (12)

is a known quantity at time tn+1.
At this point the updated stress quantities n+1σ can be obtained by using Eq. 11

with reference to Eq. 2. The integration over time is executed with the classical General
Midpoint Rule [13].

3 MICROMECHANICAL MODEL FOR THE PROCESS

ZONE

In each point of the fictitious process zone a micromechanical approach to tension softening
is combined with the above rheological model (described in Fig. 1 and Eq. 2) according to
a method proposed in [4, 5]. Tension softening behaviour appears when the damage in the
material has localized along eventual fracture planes: this behaviour has been successfully
modelled using two- and three-dimensional micromechanical models [6, 12].

3.1 Loading phase

All models provide a relationship between the residual tensile stress carrying capacity σ1

and crack opening displacement w (also called COD) as a function of known concrete
microstructural parameters (included in the factor β), e.g. aggregate volume fraction Vf ,
Young’s modulus Ec, ultimate tensile strength ft and fracture toughness of the homoge-
nized material Khom

Ic (see Fig. 4).
According to these models, the function is assumed to be:

w

wc
=

(Khom
Ic )2

Ec(1− Vf )ft

ft
σ

[

1−

(

σ

ft

)3
]

= β
ft
σ

[

1−

(

σ

ft

)3
]

. (13)

3.2 Creep phase

During the creep phase (at constant load), the (σ−w) law is generalized in the same way
of Eq. 3; the deformations ε and ε1 are now replaced by the crack opening displacements
w and w1. By using a fractional order rate law it is possible to write:

Dαw1 =
dαw1

dtα
=

σ1
K1 τα1

=
w − w1

τα1
with α ∈ (0, 1), (14)

where the constants K1 and K2 are defined in the following Sections and in Fig. 5.
They represent the counterpart of the elastic moduli E1 and E2 of the classical viscoplastic
model2. In the present work K1 = K2 is assumed.

1From here to the end of the paper, σ indicates the stress in the cohesive zone.
2Notice that the physical dimensions of K1 and K2 differ from those of an elastic modulus.
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4 RHEOLOGICAL AND MICROMECHANICAL MODEL

INTERACTION

During the loading phase each point of the FPZ moves on the same (σ −w) curve. Later
on this condition does not hold any longer, due to the combined effect of viscosity and
damage.

In order to understand how the rheological and micromechanical models interact, three
single degree of freedom systems were presented in [4, 5], in the case of integer rate law.

1. In the case of the first system, the displacement discontinuity w is kept constant along
time step ∆t; the stress relaxation ∆σ occurs according to the standard viscoelastic
model described. Each stress relaxation ∆σ, through the unloading stiffness hy-
pothesis (Fig. 5, centre), induces an istantaneous stiffness reduction (effective spring
concept) related to the time increment ∆t.

2. In the case of the second system, the stress σ is kept constant along time step
∆t; the creep displacement ∆w occurs according to the standard viscoelastic model
described. Each creep displacement increment ∆w, through the tangential softening
hypothesis (Fig. 5, right), induces an istantaneous softening reduction related to the
time increment ∆t.

3. In the case of the third system, both stress σ and displacement discontinuity w are
forced to stay on the static curve (Eq. 13). One of the two increments (∆σ or ∆w)
occurs as predicted by the rheological model, while the other is smaller or equal to
the value predicted by the rheological model.

At the end of each time step, the microcrack pattern changes and, in either case,
stiffness is reduced.

In the present work, a multiple degree of freedom system is analized. Therefore, the
above mentioned approach were generalized through the Finite Element method as de-
scribed in the following Sections. It is worth noting that each point in the FPZ follows a
different path and, hence, exhibits a different stiffness, while K1 = K2.

5 FINITE ELEMENT ANALYSIS

In the present work, the continuum surrounding the process zone is assumed as linear
elastic. All non-linear and time-dependent phenomena are assumed to occur in the process
zone. When the fictitious crack tip (F.C.T.) advances by a pre-defined length, each point
located on the crack trajectory, is split into two points. The virtual mechanical entity,
acting on these two points only, is called cohesive element. The local behaviour of such
an element follows the rules mentioned in the previous section. Each cohesive element
interacts with the others only through the undamaged continuum, external to the process
zone.

According to the finite element method, by taking the unknowns to be the n nodal
displacement increments, ∆u, and assuming that compatibility and equilibrium conditions
are satisfied at all points in the solid, it is possible to obtain the following system of n
equations with (n + 1) unknowns (∆u, ∆λ or ∆t). The creep effect is incorporated by
simply adding the pseudo-load induced by relaxation to the load vector in the equilibrium
equations [14, 15]:

(KT +CT )∆u = ∆λP +∆tQ, (15)
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where:

• KT : positive definite tangential stiffness matrix, containing contributions from lin-
ear elastic (undamaged) elements and possible contributions from cohesive elements
having (σ,w) below the curve of Fig 4. The conditions in which this possibility
applies will be described later on;

• CT : negative definite tangential stiffness matrix, containing contributions from co-
hesive elements with (σ,w) on the curve of Fig 4;

• P : the vector of external load;

• ∆λ: maximum load multiplier which is compatible with Eq. 13 and the fictitious
crack tip growth condition (σF.C.T. = ft);

• Q: vector of unbalanced load (or pseudo-load) due to relaxation in the process zone,
related to a unitary time increment.

During the loading phase, the behaviour of the material is assumed to be time-
independent (Q = 0), the external load changes, ∆λ 6= 0, and ∆t = 0. On the contrary,
during the sustained loading phase, the behaviour of the process zone is assumed to be
time-dependent (Q 6= 0), the external load is kept constant, ∆λ = 0, and ∆t 6= 0.

5.1 Interaction between cohesive elements

During the loading phase, all the stress paths in the FPZ are forced to follow the (σ−w)
law (defined Eq. 13). For the boundary condition analysed dw is always and everywhere
positive. A more complex situation occurs during the next loading phase (sustained): the
unloading stiffness approaches ∞ when w tends to 0+. In order to avoid this difficulty, a
threshold value has to be assumed for w. A cohesive element is classified as active, and
submitted to the rheological model, when and only when its w is bigger than the threshold,
assumed equal to 0.001wc. Otherwise the stress path is forced to follow the (σ − w) law
as it occurs during the loading phase.

According to the rheological model, for each active cohesive element, it is possible to
compute the stress relaxation under constant w (dσt) as well as the creep displacement
under constant σ (dwt). It is important to notice that dσt and dwt are threshold val-
ues computed according to the micromechanical model, while dσ and dw are real values
obtained from equilibrium and compatibility conditions.

The compatibility conditions can be grouped in the following cases :

1. full relaxation only: dσ = dσt < 0 and dw < dwt (see segment AB in Fig. 5);

2. full creep only: dσ < dσt < 0 and dw = dwt (see segment BC in Fig. 5);

3. full creep with elastic increment: dσ = (dw−dwt)K1 > 0 and K1 > 0 and dw > dwt

(see segment CD in Fig. 5);

4. full creep with softening increment: dσ = (dw − dwt)K1 < 0 and K1 < 0 and
dw > dwt (see segment CF in Fig. 5).

In order to follow this process of classification, an inner loop must be introduced. Since
the incremental problem is formulated as linear with threshold, each physical time step has
to be divided into numerous logical substeps. When case (3) or (4) are applied, stiffness
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matrix coefficients are changed from one substep to the next [14, 15]. Otherwise they are
kept constant during all the substep iterations.

Creep rupture time is reached when the smallest eigenvalue of the tangential stiffness
matrix becomes negative: this means that the external load can no longer be kept constant.

6 EXPERIMENTAL AND NUMERICAL RESULTS

The experimental tests, executed on prenotched beams, described in [7], were simulated
numerically. The experimental procedure is based on two phases. In the first, the external
load grows from zero to the nominal level (a fraction of the maximum load Pmax taken
equal to 0.76, 0.80, 0.85 and 0.92, see Fig. 7 and Fig. 8) under deflection control (5× 10−6

m/s), while, during the second, the load is kept constant until the creep rupture occurs
(pre-peak sustained bending).

These tests are usually associated with the name of pre-peak sustained bending tests.
Of course, in order to know the maximum load Pmax ≈ 900 N, a number of static tests
have to be previously executed. To overcome this difficulty, different authors prefer to use
the so-called post-peak tests where the creep phase starts beyond the peak point [16, 17].
The specimen dimensions are 10×10×80 cm, the notch depth is 5 cm, while the material
properties, as described in [7], are presented in Table 1.

The numerical simulations were executed using the values listed in Table 2, and ne-
glecting the time dependent behaviour of the undamaged material. The finite element
mesh around the symmetry axis is presented in Fig. 6 while the dimension of the smallest
elements is equal to H

160 = 10
160 = 0.625cm. As suggested in [15] the following limit is

applied to each step: |dσ
ft
| ≤ 0.01.

Figure 7 shows the experimental and numerical load vs. crack mouth opening dis-
placement curves for static tests as well as for sustained load tests. Figure 8 shows the
load level vs. the logarithm of the failure lifetime (creep rupture time), for different values
of the fractional derivative order α (0.30 and 1.00). The best fitting of the experimental
results is achieved assuming α = 0.30. Experimental and numerical results appear to be
in good agreement.

Finally, Figs. 9 and 10 show the stress distribution inside the process zone (the max-
imum value of tensile stress is ft, according to the cohesive model) and the stress path
followed from some cohesive elements during the external load growth ( Pcost

Pmax
= 0.92). As

explained before, the couples (σ − w) are not restricted to stay on the static envelope.

7 CONCLUSIONS

• A linear viscoelastic rheological element, combined with a suitable micromechanical
model is successfully used for studying Mode I crack propagation problems.

• A single rheological element has been used. Four material properties only, namely,
the elastic constants K1 and K2, the relaxation time τ1 and the order α of the
fractional derivative are enough to describe the phenomenon. It is not necessary to
use long chains of rheological elements, whose properties are difficult to determine.

• A fractional order rate makes it possible to include a whole spectrum of dissipative
mechanisms in a single viscous element.

• A new time integration scheme is proposed. The incremental problem is formulated
as linear with threshold with an upper limit to the initial values of the unloading
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stiffness (when σ ≈ ft).

8 Appendix – Non integer derivative of the unit function

This Section presents, without proof, the results of the non integer differentiation (or,
following Oldham and Spanier [10], “differintegral”) of the unit function y(x) = 1. It is
worth noting that, from a general viewpoint, the non integer derivative of y(x) = 1 is not
equal to zero: the expected zero is obtained just for a positive integer α (α=1 and 2 in

Fig. 11). For α = −1 the integral function Y (x) = x (i.e., Y (x) = d−1y(x)
dx =

∫ x

0 y(x) dx =
∫ x

0 1 dx = x) is obtained (Fig. 11). For non integer values of α the remaining curves of
Fig. 11 are obtained.
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10 Notation

• ε, ε1: deformations of the rheological model

• σ: stress of the rheological model, stress in the cohesive zone

• σ1: stress of the rheological model

• E1, E2: Young’s moduli of the rheological model

• η: classical Newton’s viscosity parameter

• τ1 =
η
E1

: relaxation time

• Dα(•) = dα(•)
dtα : fractional derivative operator of order α

• α: order of differentiation

• Γ: Euler’s Gamma function
(

Γ(x) =
∫∞

0 ei t(x−1)dt = limn→∞
nx n!

x (x+1)...(x+n)

)

• y(t): generic function of time

• Φ1−α(t): kernel of the non integer differentiation definition

• bi(α): i
th coefficient of the numerical approximation of the non integer derivative

• Ec: concrete Young’s modulus

• K1,K2: elastic constants of the rheological model (see Fig. 5)

• ν: Poisson’s ratio

• GF : fracture energy (area below the curve of Fig. 4)

• ft: ultimate tensile strength

• σF.C.T.: maximum principal (tensile) stress acting at the fictitious crack tip

• w: crack opening displacement (also called COD)

• COD: crack opening displacement (also called w)

• wc: critical crack opening displacement (beyond wc no stresses are transferred in the
cohesive zone)

• Vf : aggregate volume fraction

• Khom
Ic : fracture toughness of the homogenized material

• β: concrete microstructural parameter
(

β =
(Khom

Ic )2

Ec(1−Vf )ft

)

• ∆σ: stress relaxation due to creep

• ∆w: creep displacement

• t: time

• ∆t: time step

9



• dσt: stress relaxation computed in each point of the FPZ (depends on local conditions
only because it is assumed w=const)

• dwt: creep displacement computed in each point of the FPZ (depends on local
conditions only because it is assumed σ=const)

• dσ: real stress increment in the FPZ (depends on global and local conditions)

• dw: real displacement increment (depends on global and local conditions)

• H: specimen height

• Pmax: maximum (or peak) load

• Pcost: constant load level during the creep phase

• KT : positive definite tangential stiffness matrix

• CT : negative definite tangential stiffness matrix

• P : external load vector

• ∆λ: load multiplier

• Q: unbalanced load vector

• ∆u: displacement vector

10
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Table 1: Material properties.

E ν GF ft
(GPa) (-) (N/m) (MPa)

36 0.10 82 2.8
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Table 2: Numerical parameters.

wc τ1 ∆t/τ1 β Element size
(mm) (s) (-) (-) (mm)

2.2 10−4 150 1/50 0.05 0.0625
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Figure 2: Stress relaxation functions (E1 = E2).
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Figure 4: Cohesive stress-COD law (β = 0.05).
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Figure 6: Portion of the finite element mesh around the symmetry axis (dimensions in
centimeters).
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Figure 7: Experimental and numerical load vs. crack mouth opening displacement.
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Figure 8: Comparison between experimental and numerical results in terms of failure
lifetime.
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Figure 9: Stress distribution inside the process zone.

25



0 0.02 0.04 0.06 0.08 0.1
Nondimensional displacement w/wc (−)

0.4

0.5

0.6

0.7

0.8

0.9

1

N
on

di
m

en
si

on
al

 s
tr

es
s σ/

f t (
−

)

Figure 10: Stress vs. crack opening displacement paths for some points in the process
zone (the thick line represnts the static envelope).
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Figure 11: Derivative of order α of the unit function y(x) = 1.
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