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[. Introduction

A. Reconstructing 3D shapes: general techniques

The reconstruction of three-dimensional shapedus@amental research field in computer vision.
A large number of techniques have been discussgthgriemented, depending first on the type of
sensors used. Active 3D scanning is currently ditgptechnology. Most active 3D scanners use

ranging techniques (time of flight, phase comparjsw triangulation with laser beams. Their main

feature is producing depth maps that are closedadinal 3D shape (Figure 1).

Figure 1: 3D scanners
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However, 3D scanners are expensive, and affectsg\sral limitations. They are rather invasive,
different equipments are required for scanning abjef different sizes, scanning outdoor large
scenes presents several problems, scanning time®badequate to real time applications, as
capturing the shape of objects in motion.

For these reasons, in several practical situati@ational image-based computer vision

approaches are more effective. For instance, aoriiait emerging area usually requiring image-

based approaches is the analysis of the humanrhodgments (Figure 2).

AR

Figure 2: the analysis of posture and motion of thbuman body is a popular computer vision area

Several passive approaches, based on 2D imagesedply inexpensive cameras, have been
proposed, usually referred togtsape from Xwhere X stands for some image feature which ean b
used as 3D shape cue (Aloimonos, 1988). Among tereo(disparity), texture motion focus
shadingandsilhouettes An advantage of image-based approaches ishitbpicn easily supply 3D
textured reconstructed objects. Actually, mosheke approaches require textured objects, or lines
calledimage contours

Some of these approaches, as shape from shadiagdAmd Tsai, 1999), require a number of
hypotheses and conditions that seldom take plapeaictice. The most effective approaches are
shape from stereo and shape from contours. Shapestereo requires images from (at least) two
cameras and matching algorithms for determiningesponding points in the two images (Trucco

and Verri, 1998). From the different positionshe images of the corresponding points (stereo



disparity), and camera geometry, it is easy to firel3D position of a point. Shape from motion in
principle is an extension of shape from stereaesitconsiders multiple images of the same
objects taken with the same camera from differelattive positions, and also requires finding
correspondences in the various images. The pugfdbé work is to discuss theory and practice of

shape from silhouettes.

B. Shape from silhouettes

Many algorithms for reconstructing 3-D objects fr@AD image features are based on particular
lines called image contours. Actually, these lioas be also used for recognizing 3D objects. This
approach mimics to some extent the human visioigesive are often able to understand the solid
shape of an object from a few image lines laidavuga plane (Gibson, 1951, Koenderink and van

Doorn, 1979).

surface normal discontinuity
%pth discontinuity

l n c ~—illumination discontinuity

/

N

surface color discontinuity

Figure 3: Different types of image lines
In general, from an image of a 3D object we camaextvarious kinds of lines, separating areas of
different intensities or colors. Some of them asedirectly related to the 3D shape, and correspond
to different surface properties, or to abrupt clesngf the incident light. Other lines are directly
related to the surface of the object. They areliysoalled edgesandoccluding contourgsee

Figure 3)



The edges are the projections of theaseof the object (surface normal discontinuities)] ane

not present in images of smooth surface objecte lifies calleaccluding contourgapparent
contours limbs) are the projection onto the image plane ofdetour generatorsf the objects. A
contour generator is a locus of points of the digecface where there is a depth discontinuity
along the line of sight.

The lines related to the 3D shape (occluding castand edges) produce line drawings that can be
organized into thaspect grapha user-centered representation of 3D objectsgdigposed in
Koenderink and van Doorn (1979).

With the wordsilhouettewe indicate the area of the image bounded by ¢bkiding contours that
occlude the background. Sometimes the word silheigused for the boundary of this area. The
idea of using silhouettes to reconstruct 3D shaesfirst introduced in the pioneering work of
Baumgart (1974). Since then, several variationth®fkhape from silhouettes methods have been
proposed. For example, Martin and Aggarwal (198@) lkim and Aggarwal (1986) used

volumetric descriptions to represent the reconstdishape. Potemesil (1987), Noborio et al.
(1988) and Ahuja and Veenstra (1989) used octreestiaicture to accelerate the reconstruction
process. Shape from silhouettes has also beenmuSaeliski (1993) to build a non-invasive 3D
digitizer using a turntable and a single camerae®tecent techniques (Kutulakos and Seitz, 2000,
Matusik et al., 2001, Slabaugh et al., 2003) stemmfthis idea.

In principle, reconstruction from silhouette re@sir back-projecting the silhouettes from the
corresponding viewpoint for obtaining solid cong&key are bounded by the circumscribed cones
formed by the half-lines tangent to the object.c8ithe object must lie inside each cone, it must
also lie inside their intersectidR, which summarizes the information provided bysilhouettes

and viewpoints (Figure 4). This reconstruction teghe is calledrolume intersectiof\VI)



Figure 4: Volume intersection. © 2003 IEEE

A reason that makes silhouette-based techniqupslgmois that silhouettes are usually easy to
extract from images. This operation is particulddgt and robust with controlled background, or
for objects in motion with respect to the backgmunother important feature of silhouette-based
technique is that they are convenient for real @pplications.

However, one drawback of this approach is thateddmg on the object, the information provided
by its silhouettes could be insufficient for fullynderstanding a 3D concave shape. The problem,
gualitatively perceived by several researchershanfteld, received a full quantitative solution in
Laurentini (1994).

The content of this chapter is as follows. Firgt discuss the theoretical problems raised by
silhouette-based image understanding. In particwarpresent and develop the concept of visual
hull of an object, which allows answering questisash as: can the 3D shape of an object be fully
understood from its silhouettes? We will see tha& geometric entity allows answering this and
other basic questions related to silhouettes apprda will be shown that the visual hull and the
aspect graph of an object are strictly related. dtmmputation of the visual hull will be discussed
for polyhedra, object of revolution and smooth aoef objects. In general, VI supplies an object
which is not coincident with the object to recouastr the problem of inferring the real shape from
the object reconstructed will be also discussddpducing the concepts bfard andsoft points. On

the base of these concepts, we will show how aerastive reconstruction approach can be
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outlined. Finally we will deal with the problem oéconstructing an object when we have its
silhouettes, but no information about the relapesitioning of the corresponding viewplanes.

The last part of the chapter is devoted to survagtal shape from silhouettes.



[I. The Visual Hull

Reconstructing as well as recognizing 3D objeciisgusilhouettes requires facing some problems
inherent to the approach. An intuitive analysisaie examples will help us to focus the problems
raised by this technique. Let us consider the camabjectdO; andO, in Figure 5. The difference
between them consists of a small cube inside theasaty. It is not difficult to intuitively realize

that this cube does not affect any of the silh@settf the object, provided that the corresponding
viewpoint is not “too close” to the object (a pexiformulation of this statement will be given
later). The example shows that we could be unabtkstinguish different concave objects using

their silhouettes.

0 0]

1 2

Figure 5: O; and G, cannot be neither exactly reconstructed nor distiguished using their silhouettes. © 1994

IEEE

Let us consider now the reconstruction from sillitageofO; andO,. Since the silhouettes relative
to viewpoints not "too close” are equal for the talgects, we cannot reconstruct exactly neiter
nor O, from these viewpoints. On the contrary, assumiewpoints equally positioned with
respect the two objects, the same object is reaartst by VI.
The examples show that the silhouette-based appra&es a series of question, such as:

1. can we reconstruct exactly a given 3D object with V

2. if not, which is the closest approximation of thgezt that can be obtained using VI?

3. can two objects be distinguished from their sillitas®



4. which parts of the surface of an object can aftscsilhouettes, and can be reconstructed by
VI?

5. how much a concave object can change its shapeutittifecting its silhouettes?
Before dealing with precise geometric definitionsl gheorems, it will helpful to consider another
example of VI reconstruction. The object in Fig6(a) is sufficiently simple to allow answering
the previous questions concerning reconstructioarbituitive inspection. We understand that it
cannot be exactly reconstructed. The closest pessbonstruction is shown in Figure 6(b). It can
be obtained from two ideal viewpoints. Several moesvpoints-at least six-are required if located
at finite distance. The surface that can be recocigtd is shown in Figure 6(c). The object can
assume any shape inside the polyhedron P withtdtafg any silhouette obtained by parallel
projection, or perspective silhouettes obtainedibwpoints not “too close” to the object Figure

6(d).

(@) (b)

:

(c) (d)



Figure 6: reconstructing an object using parallel pojection

In the following we will introduce the geometriorcept ofVisual Hull, which provides precise
guantitative answer to the question raised by agfte-based shape understanding (Laurentini
1994). In the next sections, we will describe tlsi@l hull concept (I1I.A) and the algorithms fas it
computation for several classes of objects (llIB)1.C, we will show what can be inferred of the
originating object from the reconstructed objeatally, two particular problems are discussed:

interactive reconstruction of objects, in II.E, aedonstruction with unknown viewpoint, in II.F.

A. Definitions and general properties

Broadly speaking, the visual hull of an obj€rts the maximal object that gives the same
silhouettes oD from a given set of viewpoints, or the envelopalbthe possible cones
circumscribed t® generated by these viewpoints. We will first define visual hull relative to a
set of viewpoints lying in a particular space regibat we call the viewing region. Then we will
show that there is a unique visual hull for anywmey region completely enclosing the object and
not sharing any point with its convex hull. Thidlvae referred as thexternal visual hullpr visual
hull without any other specification, since it is releveo most practical applications. Dropping any
restriction for the viewpoint, we obtain thgernal visual hull,which also provides information on

the part of the surface of the objects that cabeaeen by a viewing region outside its convex hull

1. The Visual Hull of an object relative to a viewing region

Let VR be a region oR® where we can locate viewpoints to observe an ofjendto extract its
silhouettes.

Definition 1: the visual hulVH (O,VR) of an objecD, relative toVR, is a region oR® such that
for any pointp [JVH and any viewpoin¥ [IVR, the half line starting at and passing through

contains at least one point belongingto
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A 2D example is shown in Figure 7.

VH(VR,0)-O

.
’
,
.
’

Figure 7: The visual hull of O relative to VR: a 2Dexample

It is immediate to see th@t [0 VH(O,VR), since any point oD satisfies the definition. The
following propositions can be obtained fr@efinition 1

Proposition 1:VH(O,VR) is the maximal object that gives the same silkielessO when observed
by any viewpoin¥V belonging tovR.

In fact, according t@efinition 1, the projection of every poiptJ VH (O,VR) from any viewpoint
V OVR belongs to the silhouette 6f obtained fronV, as well as the projection of any point
belonging ta0, sinceO [0 VH(O,VR). This demonstrates thetd (O,VR) is silhouette-equivalent
to O for any viewpoint ilvVR. FurthermoreyYH (O,VR) is the maximal silhouette-equivalent
object, since for any poit not belonging t&/H (O,VR) there is at least a line starting from a
pointV’ in VR and passing throughi and not intersectin@. Therefore, the projection pf does
not belong to the silhouette 6f obtained fronV’, andp’ does not belong to an object silhouette

equivalent taD. A 2D example is shown in Figure 8.

2D silhouette

Figure 8: VH(O,VR) is the maximal silhouette-equivéent of O

11



Proposition 2:VH(O,VR) is the closest approximation that can be obtaursialg volume
intersection techniques with viewpointsbelonging tovR.
In fact, only points not belonging ¥H (O,VR) can be removed intersecting 3D viewing cones,
since these are the only points that do not betoradi the silhouettes @& that can be obtained
from VR.
These properties provide quantitative answer tajthestions relative to capabilities and limits of
silhouette-based techniques:
1. an objectO can be exactly reconstructed by volume intersedgchniques using silhouettes
obtained by viewpoints from a viewing regi¥R iff O =VH(O,VR)
2. the closest approximation of the object that canlitained with silhouettes obtained from
VR is VH(O,VR) (Proposition 3
3. two objectdO andO’ can be distinguished using their silhouettes olegkefitom a viewing
regionVR iff VH(O,VR) #VH (O’ ,VR)
4. the part of surface of the object that affectsiitsouettes obtained fromMR and that can be
reconstructed is the part coincident with the sagfaf the visual hull
5. an object can assume any shape without affectipgidrouette observed froMR as far

these shape variations are containedhi{O,VR)-O

2. The external Visual Hull

According toDefinition 1, for every objecO there is an infinite set of visual hulls, one éach
possible viewing regioNR. This seems to reduce somewhat the effectiverfabe adea.
However, in this section we will show that theraisnique object subsuming all the practically

important cases, and that this object is relat&@H@O), theconvex hullof O.
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Observe that, in many practical cases, the obpeloetrecognized or reconstructed can assume any
orientation with respect to the viewpoints. Lethisrefore consider the visual hull relative to a
regionVR’ thatcompletely enclos®. Let us also suppose that:

VR’ 0 VR.=R3- CH(O)
that is,VR’ is a viewing region outside the convex hull of gigect, which appears a practically
sensible assumption. The following proposition lsold
Proposition 3:VH(O,VR’) [0 CH(O)
To prove this statement, we consider a ppiB€H (O), and show thgtOVH (O, VR’). We can
easily find a viewpoint V such that the line stagtat V and passing throughdoes not interse.
A viewpoints of this kind can be found on the pl&hpassing through and perpendicular to the
segmenpq, whereq is the point ofCH(O) closest t@. In fact, by contradiction, if the viewlinép
intersectCH(O) in another point, let’s say poihtn Figure 9, the linéq belongs taCH(O) and
therefore the point aH(O) closest t@ would ber (beingpr perpendicular tég), and noq,

contradicting the hypothesis.

Figure 9: the visual hull relative to viewing regims outside the convex hull of an object O, belongs CH(O)

Let us consider a second viewing regi\dR”, that, as/R’, completelyenclose®© and lies outside
its convex hull. We have:

Proposition 4VH(O,VR’) =VH(O,VR")

13



In fact, consider a poirglIVH (O,VR’). According toDefinition 1, for any viewpoiny’ VR’ the
halfline V'q intersect®. It is clearthat also any half ling”’q , whereV” OVR” intersect®© (see
Figure 10), since for any” the half lineqV” intersects the viewing regiofR’. Then we can find

a viewpointV’ belonging to the lingV”, such that the half ling”V’q intersect€. Concluding,
any pointq belonging tovH(O,VR’) also belongs t¥H(O,VR”). Vice versa, the same argument
shows that any point belongingV¥é (O,VR” ) also belongs t¥H(O,VR’), and it follows that the

two visual hulls are coincident.

Figure 10: all VHs relative to VRs completely enclsing O and not entering CH(O) are equal
Observe thaProposition 4could not hold if a viewing region intersects twavex hull of the
object. Consider in fact the 2D case shown in Fdl, where the regioviR’ has a part inside the
convex hull ofO. Also consider the poigdVH (O,VR”). It does not belong t¥H(O,VR’), since
for viewpoint asv’ the half lineV’p does not interse@. Theargument of the previous proof
requires that’ andV” lie on the same side pf which happens if both viewing regions do not

share points with the convex hull.

Figure 11: the VHs relative to VR’ and VR” are different
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In conclusion, there is a unique visual hull, nateeding the convex hull @, relative to all the
viewing regions enclosin@ and not entering its convex hull. Observe that gnecise geometric
condition substitutes the intuitive statement “twohear”.

Definition 2: VH(O,VR,) is theexternal visual hullor simply the visual hull dD, indicated as

VH (O), without any other specification.

It is clear that the (external) visual hull is redat to most practical situations. The previousaaans
to the question raised by the silhouette approaahbe reformulated in terms of (external) visual
hull, making reference to normal viewing regions.

A point p belonging tovH (O) can be characterized in terms of the lines pgdsiroughp. The
following statement holds:

Proposition 5 a pointp belongs tda/H (O) iff any line passing through contains at least one point
of O.

This proposition is equivalent @efinition 1for the viewing regioVR. =R - CH(O)

and it will be used in the following to compute thisual hull. We defin&ee linerelative to an

objectO a straight line not sharing any point with

3. The Internal Visual Hull

A limit case takes place when the object itsethis boundary of the viewing region. Let

VR =R*-0.
Definition 3:VH(O,VR)) is theinternal visual hul] IVH (O)
The points belonging to the internal visual hulh ¢e simply characterized in terms of half lines:
Proposition 6:a pointp belongs tdVH (O) iff any half line passing throughcontains at least one
point of O.
This statement, correspondingRooposition Sfor the (external) visual hull, is useful to constr
the internal visual hull. Finally, since cleal§4(O,VR) OVH(O,VR’) if VR OVR’ and the

viewing region relative to IVH (O) is the largest possible, we have:
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Proposition 7:IVH (O) O VH(O)

It also follows thatO O IVH (O) O VH(O) OO CH(O).

For convex objects all these entities are coindiden

The internal visual hull admits another interesfamgperty. It is easy to show that the surfacehef t
internal visual hull not coincident with the suraaf the object cannot be observed by viewpoints
outside the convex hull. In other words, thiél can tell us which features of a concave objedt wil

never appear in any image taken by points not limgedo the object.

B. Algorithms for computing the Visual Hull

In general, the surface,$of the visual hull can be divided into\&; coincident with a part of the
surface of O, and $}, which “covers” some concavities of the object. &ample is shown in
Figure 12, wher® is one half of an object of revolutio@H(O) is its convex hull, where the
concavity has been filledProposition 5 stating that through points not belonging/td must pass
free lines, suggests the following intuitive phyiconstruction o¥H. Fill the concavities of the
object with soft material, and scrape off the esa@sterial with a ruler grazing the hard surface of
the object in all possible ways. The last imagenghthe visual hulVH(O), and in particular S/,

the surface of the visual hull that covers the eorty, produced by the ruler. A similar intuitive
construction holds for the internal visual hullctinsists of “digging” into the concavities with a
tool corresponding to a half line, accordingPtmposition 6 In the case of Figure 12, the soft
material filling the concavity would be completaigraped off, since/H (O) is coincident withO.

In the following subsection we will show how theg®es composing ${ can be found for

different categories of objects. Then, we will dése algorithms for computingH of 2D objects,
polyhedra, solids of revolution, and smooth curebgects.

We will also show that the visual hull is connecteénother geometric entity, the aspect graph,
and that the visual events surfaces, that we wiiheé in the next sections, can be used to determin

the relevant patches for .
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o CH(0) VH(O)

Figure 12: An object O, its convex hull CH(O) andts visual hull VH(O). © 2004 IEEE

1. The Aspect Graph

As already mentioned in the introduction, the carddhat occlude both the background and the
object itself, together with the image lines whaaile projections of thereasesf the object

(surface normal discontinuities), produce line dregs that can be organized into #spect graph
(Koenderink and van Doorn, 1979). The range opadisible viewpoints can be partitioned into a
set of maximal open regions where the topologitaktture of the line drawing, also calladpect

is stable. Crossing the boundaries between thgsenseproduces a topological change in the
aspects known assual eventThe boundaries are also called liffeircation set Aspects and visual
events can be arranged into #spect grapi{AG), where each node is labeled with an aspect and
each arc represents a visual event. For the pergpdds, each aspect corresponds to a connected
open volume of viewpoints, and each visual everat boundary surface. For the parallel AG,
aspects and visual events correspond to open cathaeas and boundary lines on the Gaussian
sphere. The parallel aspect graph is a sub-grafiteqderspective aspect graph, since not any
perspective aspect is also a parallel aspect.

Constructing the AG requires determining the caadoof the possible visual events and the related
boundary surfaces, which is relatively easy fonptaaces object (Gigus et al. 1991). Several
authors have studied the more complex visual evadrdsrved surfaces. A possible approach is
using thesingularity theoryfor determining the visual events as the singteriof thevisual
mapping,which maps the surface of the object onto the enagne (Koendrink and van Doorn

1976, Kergosien 1981, Platanova 1984, Callahan/eids 1985, Rieger 1987, Rieger 1990,
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Petitjean 1996). Other approaches have also beh(8sipradisvarakul and Jain 1989, Eggert and
Bowyer 1993). For a comparison of the cataloguesepted, the reader is referred to Eggert and

Bowyer (1993).

2. The Boundary Surfaces of the Visual Hull

In this section we will derive some necessary cimifor a point to belong to &4, the surface of
VH (O) not coincident with the surface ©f In general this surface covers some unreconstrigctab
concavities oD, even though in some rather exceptional case tieere be parts ofH (O) not
connected t® (Laurentini, 1994)We will find that S% consists of patches of surfaces that
belong to the bifurcation set of the aspect grapb.o

Let us recall (fronProposition § that a poinp does not belong tdH (O) iff throughp pass free
lines (lines not intersectin@). From this statement we can derive a necessawitoan for a point

to belong to &4:

Proposition 8 - A necessary condition for a pginto belong toSyy is that throughp passes at
least one straight line sharing with only boundary points.

This follows from the fact that the visual hull @ is the object reconstructed by volume
intersection from any possible viewpoint of a regautside the convex hull @. This means that
any point of $y belongs to the surface of (at least) one coneddrby the half lines starting at a
viewpoint and tangent t®. Then, for finding points of \ we can restrict ourselves to consider
points of straight lines which make contact witk #urface S of the object, without intersectihg
in other parts.

It is clear that, for lines making contact withat one point only, this point belong to,$’ Then,

for finding S'vyw we must consider lines making twas (in the example of Figure Y1Br more
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contacts with SIf we restrict ourselves to generic surfaces wittexceptional alignment condition,
we need to consider only lines making contact abiits. Actually, generic surfaces also admit
lines making more than 3 contacts, but these laresisolated and do not form surfaces (Arnold,
1984, Petitjean et al., 1992). Let us inspect ncarefully these lines:

» Bi-tangent linesStraight lines tangent at two different point€dtio not yield surfaces but
fill volumes, so we need a radical pruning of théees. This will be discussed in the
following for two different categories of objecfmlyhedra and smooth surface objects.

» Tri-tangent lines.In this case the relationship with the aspect grahmmediately
established, since tri-tangent lines produce thaalievent known asiple point (Kergosien
1981, Callahan and Weiss 1985, Petitjean et al2,18§gert and Bowyer 1993, see Figure
13). Lines making three contacts with an objecinfaurfaces that we will discuss in detalil

for polyhedra and smooth surface objects

Figure 13: the visual event triple point. © 2004 IEEE

As for the surfaces that bound the internal visudl, the difference is only that we must consider

half-lines making two or three contacts with a genebject.

3. Computing the Visual hull in 2D

The visual hull is essentially a 3D concept. Howegadgorithm for computing 2D visual hulls are
helpful for computing the visual hull of 3D objeatained by sweeping 2D objects, such as
buildings and their interior. In addition, the 2[@arithm for polygonal objects can be used as part
of an algorithm for computing the visual hull oflpwedra. For these reasons we will discuss the

computation of th&H (and briefly of thdVH ) of polygons in a plane
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a) Computing the Visual Hull of a set of polygons.

TheVH of any simply connected 2D object is trivially moident with its convex hull, so we will
consider a set of polygons SP. It is clear thafin points which could belong to the boundary of
VH of generic 2D objects, we must restrict oursetedses making two contacts with the object.
Therefore, for generic polygons, the possible baunied ofVH are the lines passing trough two
vertices V; and \f and not intersecting elsewhere the polygons.

A line L making two contacts is divided by the vegs into 3 segments. Two cases, shown in
Figure 14 can take place. In the first case, Figdi@), it is easy to see that through each pooft
both exterior infinite segments can pass a freeds L', obtained with a small rotation of L about
p, compatible with the vertices. Then only the iltesegment can be a boundaryvéi. Here and
in the following we will callactivea segment of a line sharing with the object onlyrimary points,
and such that the geometry at the contact poirg doeallow free lines through the segment.

L’
L’ Vi

Vi \% Vi
(a) (b)

Figure 14: the active segments

In the second case, Figure 14(b), only the exteegments are active. Observe that, for dealing
with exceptional alignment of vertices, the cadesootact at three or more aligned vertices can be
decomposed into several two-contact cases, eashioh determines active segments. The total

active part is obtained as the union of all actiggments. Consider for instance the example in Fig.

A4 = + +

Figure 15: Decomposing a case of three contacts anseveral two-contact cases

The whole line results active, as it can be vatifig OR-ing the active parts due to each pair of
vertices.
The general idea of an algorithm for computiftd is as follows:
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a) find the active segments,
b) intersect these lines to form a partitidrof the plane such that each zone belongs totally
or does not belong at all ¥H.

c) select and merge the zones belongingh
Let us consider in more detail each step, anditsptexity:
Step a)Letn be the number of vertices. The edges arg.@etermining the active segments
requires considering @) pairs of vertices. Each line joining two verticesst be intersected with
O(n) edges. Qf) active segments result in i) time. Some obvious pruning operations can be
performed, as discarding immediately concave vestitines that intersect the polygons at the
contact vertices, segments outside the convexolitle polygons that can be computed in
O(nlogn) time (Preparata and Samos 1985).
Step b)Observe that, for constructimg we must also use the edges of SP that belonge® hot
intersecting SP. These edges are also boundanidd of
Intersecting the active segments to fdincan be performed with the plane sweep algorithm
described in Gigus et al. (1991), which makes traputation time sensitive to the size of the
output. Ifmis the size of the patrtition, its constructionuiegs Ofmlogm) time. In any casenis
o(n?.
Step c) Efficiently performing this step with a linearsiting algorithm requires introducing the
concept ofvisual numbenf a point VNg). It is defined as the number of families of flees
passing througp. Two free lines belong to the same family if oa@ be obtained from the other
with a rotation aboup without intersecting. For instancethe visual number of poirmt in Figure

16 is 2.
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Figure 16: Two families of free lines pass through. © 1994 IEEE
Clearly, the VN of a point belonging ¥H (SP) is zero. The VN is relevant to our case singsg it
easy to see that all points of each zone of thitiparl1 have the same visual number. In fact, if we
imagine a poinp moving through the zones Bf, its visual number changes if and only if it cless

an active line. More precisely, one is added otrsigbed to visual number according to the crossing

direction. In Figure 17 we show the various possdases.

—
+
|
(a)
q
1 |
| =
(b)
5
7
|
(c)

Figure 17: the three cases of active lines and theictive segments. © 1994 IEEE

For each case we indicate with an arrow the crgsdirection that increases by one the visual
number, and the new family of free lines obtairf@dserve that the edges lying on lines not
intersecting SP change VN from O to 1.
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Concluding, for selecting the zones belonginy¥'kb we need only to visit the dual graph of the
partition, computing the VN of each zone. We camtgtom a zone internal to SP, whose VN is 0.
After visiting the dual graph, we can merge thaaeg whose VN is 0. Step c¢) can be performed in
time Of), and the whole algorithm takesr®¢mlogm) time.

An example, showing the initial set of polygons gartitionlm and the VN of each region, is

shown in Figure 18. Observe that there paiIdfis not connected.
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Figure 18: An example that shows the partition andhe VNs. © 1994 IEEE

b) Computing IVH(SP

Here we outline an algorithm for computihgH , similar to the one previously described. The
differences are the following. The active lines #a@se shown in Figure 19. Crossing these lines
also adds or subtracts one to iternal visual number IVINdefined as the number of families of

free half lines starting at a point (see Figure 20)
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(@)

Nt 4

(b)

Figure 19: Active lines and active segments for IVHO 1994 |IEEE

_y

Figure 20: the internal visual number of g is three © 1994 IEEE

The edges of SP must be also be used for formmgaditition, but cannot be crossed visiting the
partition, since the IVN can assume any value imately outside SP. More details can be found in

Laurentini (1994). An example is shown in Figurev#tiere we show several objects, théit and

IVH :
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0, VH(Oy) IVH(Oy)

v U o B
0, VH(O;)  IVH(O2)
O3 VH(O») TVH(O3)

Figure 21: three 2D objects, their visual hull andheir internal visual hull

c) Computing the visual hull of curved 2D objects.

The previously described algorithms #H andIVH also hold for a set of objects bounded by

curved lines, the only difference being that thiavadines are those bitangent to the objects.

4. Polyhedral objects

An algorithm for computing the visual hull of pobtiral objects is described in Laurentini (1994).
This algorithm uses a brute force approach andstéi{e-) time.

A more efficient algorithm has been presented étjpan (1998). The algorithm uses a new
visibility structure the visibility compleXDurand and Puech, 1995), which is a partitiorheffree
lines according to their visibility with respect@ The visually active surfaces can be computed
from the visibility complex, and also the surfatiest intersect the scene transversally can be
pruned by traversing the complex. Defining the 38&ual number of a point as the number of
different families of free lines passing throygktwo lines being in the same family if one can be
transformed into another by a rotation aropnalithout intersecting the object), traversing a
visually active surface means incrementing or deerging the visual number by one. It then

suffices to traverse the partition of the viewipgse generated by the active surfaces, startimg fro
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some initial position, to identify the cells beldmg to the visual hull. The algorithm takeg(n* +

m°) log n) time, wherem, the number of active surfaces, isé)(n the worst case.

Here we will propose a new efficient algorithm. Tdigorithm is able to determine only the parts of
VH that are connected to the object. However, con8&vebjects able to produce visual hulls with
parts not connected are neither likely to be foumgractice, nor easy to construct. An example of
such an object is shown in Figure 22. The objeatudtiply connected. With some more ingenuity,
the reader can also construct examples where tfextols simply connected. Concluding, the
algorithm that we will describe in the following perfectly adequate to most practical cases. Their
main feature is that several pruning rules are @seg, able to discard a substantial amount of
surfaces candidate to bound the visual hull. Aiteersecting these surfaces, a very simple rule

allows to find cells belonging téH.

T &
1 [

O p [

| vao) [
—

Figure 22: an example where there is a part of VH@) not connected to O. The sections with planes,A?, and P,

are shown on the right

In agreement with the general approach outlinethis work, we consider as candidates to form
S”vu points of straight lines making two or three cotgawith the object. For understanding if a
point of a such line can actually be a point oface Sy, we will investigate, as already done in
2D, if there are free lines passing through tligpand compatible with the surface ©fat the

contact points.
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a) Lines making two contacts.

As already observed, lines making two contacts with edgesof a polyhedron fill a volume. Let
us consider a line L touchin@ at two pointgp; andp, of the edges £and & (Figure 23). Let also
consider the two planes P and P’, containing Lskamswvn in Figure 23(a), which is a projection of
the edges from a viewpoint lying on L. The poipisandp, divide L into two exterior half-open
infinite segments and one open interior segmerituseonsider the intersection of P @xdFigure
23(b)). It is clear that the exterior segments caroontain points belonging to &, since in P
there are free line as L', obtained with infinitasil rotations of L, passing through any point of
both segments. Consider now the interior segmen® lthere are free lines passing above the
segment at an arbitrarily small distance, but ee fmes passes through points of the segment. The
situation is different in a plane as P’, whose ngsgetion with S is shown in Figure 23(c). Through
any point of the interior segment pass free linesLa compatible with the local geometry.
Concluding, no point of L belongs to\%"or, in other words, lines making contact at two eyen

edges ar@active.

L L p
p] 132
(b)
L p, P
P, L'
(a) (c)

Figure 23: lines touching O at two generic edges ainactive.

Now let us consider lines making contacaatertexV and at a poinp of an edgeée. We call these
linesVE lines Let us analyze the projection of V and E fromoaplying on L onto a plane normal
to L, and suppose first that the projection alongf the edges converging at V is convex. We also
admit that E and one of the edges meeting at \é@panar, since this case is important in practice.

Five cases, shown in Figure 24(a), (b), (c), (€),can take place. All these casesiaagetive.
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Actually, for each case, it is shown a plane P tloatains L, whose intersection withfor all cases
is like Figure 24(f), showing that, through anymiadf L pass free lines compatible with the vertex

and the edge.

P -P . P
(a) (b) (©)
P.
(d) (e) ()

Figure 24: VE lines making contact at a convex veeix are not active

Consider now VE lines making contact at a verteohghat the projection along L of the edges
converging at V is concave. Taking into accound alsplanar edges, the five cases shown in Figure
25 can occur. For each case, we show two or flleees P, P’ and P”, representative of the
families of planes containing L, and their intets@ts with the object at V and E. Let us consider
case (a). It is clear that for any plane containirtge intersection is either as that of P’ or &fIR
planes as P’ there are free lines passing thrdugkexterior segments. In planes as P” no freedine

possible. Combining these results, we find thatikerior segment is active.

. P P P. P
. ‘. . .- P : _,.-P'
T P i s
P P P P P
\\ :

P ,

P P' F P
P’Y

(@) (b) () (d) (e

Figure 25: VE lines making contact at a concave vex. Cases (a), (b) generate an interior active segnt. Cases

(d), (e) produce two exterior active segments. Cage) is inactive
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Similar arguments show that also in case (b) thexior segment is active, case (c) is inactive; the
exterior segments are active in cases (d) and@erve that in case (c) there are three famifies o
planes generating three different kinds of intetisac

The two types oéctive VE surface patchgenerated by the active exterior or interior segnare
shown, respectively, in Figure 26(a) and (b). Weallehat the lines making contact at V and E
must not intersedD, and then can be active only those parts of thesacas where the generating

line does not interse@® elsewhere.

E M
v
(a)

(b)
Figure 26: two types of active VE surfaces patches

We also consider another limit VE case, commorratiice, where E and the edges converging at
V are coplanar. It is easy to see that two casepa@ssible, generating or an interior active segmen
or two active exterior segments (Figure 27). Albsayve that cases of multiple contacts at coplanar

edges can be decomposed into several cases obtvacts.

P P
Y E l," E
oV
P
E v E P
v
(b)

(a)

Figure 27: The VE case with three coplanar edges.

Finally, observe that the VE active patches aréspaErthe VE surfaces considered in the theory of

the aspect graphs of polyhedra (Gigus et al. 1991).
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b) Lines making three contacts.

We will call EEE this case and the line and sur$ao®olved. From basic analytic geometry it
results that lines passing through three 3D likesvdo each other form quadric ruled surfaces.
More precisely, they form a hyperboloid of one slegea hyperbolic paraboloid. The second case
takes place when the three lines are all parallalplane (Salmon, 1874).

Also in the EEE case we analyze the four segmeanighich the line is divided by the contact
points, for finding if there are active segmenthjcl produce active patches. Lat E; and E be

the three edges amd, p, andps the three contact points of line L. Obviously,lpnnary to this
analysis is checking that L shares wiilthe contact points only.

It is easy to verify that three different spatiabmgements of the edges can take place. The cases
are shown in Figure 28(a), (b) and (c). Casesr{d)(a) are cases (b) and (c) observed from the
opposite side. In the figure we show a view froewjpoints on L, as well as a 3D origami-like
structure, intended to clarify the 3D relative piosi of the edges. The arrows in (b), (c), and (e)

indicate the direction of the inner side of theface at the hidden edge.E

Figure 28: the possible 3D arrangements of the edgéor the EEE case. © 2004 IEEE

Each case can be analyzed by studying the intessesith the edges at the contact points with a

plane rotating about L. An example of this analysiscase (a) is shown in Figure 28 for case (a).
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Three possible position of the plangadte possible, marked wifty 2and3 in Figure 28(a). The

three intersections, markeat), (a2) and @g), show that the case is not active.

Pr

pt_L L' p; PR
Sl i <2 [CH'

S-S - T (y)

M-&i{s—-m(@

Figure 29: the analysis of case (a) with a rotatinglane. © 2004 IEEE

The results obtained are summarized in Figure 3@revthe solid lines mark the active segments.

Figure 30: the active segments of tri-tangent line® 2004 IEEE

c) The algorithm for computing VH

The outline of the algorithm for computiMH is as follows.
a) Compute the surface &, which is the surface of O coincident with theface of VH(O).
If it covers completelyD, it is O=VH (O), and we stop. Otherwise:
b) Compute the active VE and EEE patches
c) ComputeVH using a volumetric approach, which intersectsaittese surfaces and selects
the zones of the partition belonging\tél (O).
In the following we will discuss in detail the vaus steps, using as a running example the object in

Figure 31.
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Figure 31: the running example

Step a)For computing S/ we can use the 2D visual hull algorithm appliethi@ plane of each
face Fto the set of polygons $Bbtained intersecting this plane addind excluding Atself. It is
easy to see that a point of the face belongs\ig if’it does not belongs t¥H (SR) (for a full
discussion see Laurentini, 1994). For each facedhgplexity of the algorithm is @{+mlogm),
wherem is the size of the partition (which isitJ() and then the whole step isr®logn).

However, much pruning can be performed. The comixof the polyhedron can be computed in
O(nlogn) time, and the faces, or their parts, belonginthéoconvex hull can be immediately
selected as members of,3. Other pruning operations are described in Laume(i994). The

result of this step for our toy object is showrFigure 32.

L

Figure 32: the surface S)y (light gray)
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Step b)In principle, computinghe active surfaces requires:

1. considering OfY) VE pairs and Q¢) EEE triplets;

2. verifying in constant time if there could be actauafaces compatible with the contact

points;

3. intersecting each candidate surface Wath
In all, it takes Of*) time for finding O¢®) active patches.
Actually, also in this case much pruning can beejoeducing greatly the computational burden.
For both VE and EEE surfaces, a large number afscaan be ruled out in constant time. In the
following we provide the main pruning rules, withaletailing the rather trivial proofs. The rules
also consider exceptional alignment cases.

* Rulel. Concave edges must not be considered neitherBanor for EEE surfaces

* Rule?2. Concave vertices must not be considered for VEases. By definition, a concave

vertex V is such that the intersection of any fslearing V as vertex wit® form a concave

o

Figure 33: the intersection with O of a face sharig a convex vertex.

angle at V (see Figure 33)
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* Rule 3. Edges shared by faces lying on CH, at leasttheagdge, must not be considered
neither for VE nor for EEE surfaces, as well agiges shared by these edges
Applying rules 1 and 2 to the running example dedehe edges and the vertex shown in Fig. (a).
Applying rule 3 also deletes the edges and versbesvn in Fig. (b). The edges and vertices left,
which are candidate to form VE and EEE active s$aare shown in Fig. (c), and are the rim of

the concavity of the object.

() (b) (c)

Figure 34: rules 1 and 2 discard edges and verticédghlighted in (a). Edges and vertices discardedcaording to

rule 3 are shown in (b). In (c) edges and verticesandidate to give VE and EEE active patches are sivo.

The analysis of the various VE cases generatedstwat there is only one active VE surface. The
surface \ Es (Figure 35(a)), as well as the symmetrigBy, is not active, since they both

correspond to case (b) of Figure 24. For the saagon, also ME;, as well as the symmetrig¥,
(Figure 35(b)), is not active. Observe that, siBgeE, and E are coplanar, (Figure 35(b)), the
rectangle V, V,,V3 and \4 is covered by other VE patches, as&y, that are active. However, the
rectangle is inactive since it is covered compyelsi the two inactive patches¥; and \LE,. The
patch VM E4, as W Es, (Figure 35 (c)) is also inactive since it cor@asgs to case (c) of Figure 24.
Concluding, only VE; (Figure 35 (d)), corresponding to case (a) of Fag2b, is potentially active.
This is actually the case, since the whole VE s@fdoes not intersects O elsewhere. Observe that,
given this object with 16 edges and 10 vertices ptuning operations, which are all performed in

constant time, produce only one active VE surface.
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Figure 35: Inactive VE surfaces are shown in (a)pf, (c). The only active VE case is shown in (d).

As for EEE surfaces, only the edges candidaterta #E patches can form them. We can consider
all pairs of such edges, prune all coplanar pad, for each remaining pair g we must check if
one of the remaining edges (or a part of it) isuded into the volume formed by all lines passing
through Eand E (Figure 36). This takes constant time for eachaiemg edge. In the running
example, the candidate pairs auEE, E4E,, EsE3 and E E;, and, for each pair, no other candidate
edge is enclosed into the corresponding voluméhatathere are no active EEE surfaces.

In general, if one edge or part of edge is enclosedmust verify if the case corresponds to one of

the active cases of Figure 30, and in this casegatt the whole EEE surface wih

Figure 36
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Step c)Let S’0O)= SO) - S'vu, that is the part of the unreconstructable surtde®. After finding

all active VE and EEE patches, we construct a 3ftjen 1 using these patches and the faces of
the surface S@). Fork active patches and faces, the partition consis® @f) cells. Note that this
result holds for infinite algebraic surfaces: ie tturrent case, with small finite patches (alsorwhe
the active surface is an exterior segment, werdeeasted only in the part insid#éd ), the number

of cells is much smaller.

Each cell of this partition belongs entirely or dowt belong at all toH. If we suppose that the
visual hull is connected 10, which, as already shown, happens for most objsetscting the cells
of the partition belonging t¥H can be done in constant time for each cell. It fac

Proposition 9:if VH(O) is connected t@®, only the cells of partitiofl that are bounded by one or
more faces of S@) belong toVH (O).

This can be easily proofed by contradiction. Obsehat, for each active patch there is a side, that
we will call positive where free lines pass near to the surface. Segpasthere is a cell not
bounded by S®@). Then its boundary faces are only patches oVadtirfaces, whose positive side
must lie on the exterior of the cell, otherwiseréherould exist free lines inside the cell. But this
means that on the exterior side of each face paedifes, and that the cell ¥H(O) is an

insulated ongagainst the hypothesis.

In the running example, the partition consistsrud oell only that satisfies the condition of

Proposition 9.The visual hull of the object is shown in Figure 37

VH(O)

Figure 37: the visual hull of the example.
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Let us consider another example. The object is shawigure 38(a). Its surface\g’is shown in
Figure 38 (b). After applying the various pruninges we find the candidate edges and vertices
shown in Figure 38 (c). Various overlapping VE pa&te result. Consider for instance the rectangle
V1, Vo, V4 and \s. It includes two active patches % and \LE,) and two inactive patches {is

and V4E;). Superimposing the various patches, the actitehpghown in (d) results. Two other
similar VE active patches can be obtained. No E&lvesurface results. The partition produced is

shown in Fig (e). The only cell produced belong¥tb since it satisfie®roposition 9

M

(b) (©)

(d) (e)

Figure 38: The object (a), the surface S (b), the edges and vertices after the pruning (can active VE patch

(d), the only cell of the partition belongs to thevisual hull (e).

Also this case shows the effectiveness of the pguniles. The sample object has 21 edges and 14
vertices, but produces only 6 active VE patchesB& patches and a single partition with one 6
faces cell.

A more complex object, also able to produce EEl@durfaces, is shown in Figure 39 (a). In (b)
we show the surface i, in (c) the vertices and edges surviving the prgnEeveral VE surfaces
are generated, some of them overlapping, which ifen@t enumerate. As an example, we show
the patches originated by VThe patches Mg, V1Eg and VM E4 are active, VEs corresponds to case

(c) of Figure 25 and then is inactive. HowevetE)is inactive since it is coincident with the
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inactive patch VEs(case (b) of Figure 24). Also for,¥y there are other patches lying in the same
plane, but those superimposed are active. Conduifinactually generates two active patches:
V1Eg and AEs. The most interesting feature of the object i€&f patch, adjacent to,Ms, formed
by the lines making contact a,Eesand E (Figure 39 (e)). Using Figure 30 it results the active
part is between £and E. Also in this case the partition includes only @ed belonging to/H

(Figure 39 (f)).

(d) (e) ()]

Figure 39: The object (a), the surface S'VH (b), th edges and vertices after the pruning (c), actinE patches
(d), (e), the visual hull of the object (f).

5. Solids of revolution

The problem of computing the visual hull of solafgevolution can be transformed in a 2D
problem, since also their visual hulls are solitieegolution.

Consider a soli® generated by revolution about an axisf a series of planar areas lying in the
same half plane. To constrodgt (O), the algorithm for computing the visual hull d ®bjects of
section 11.B.3 can be extended, in order to finglititersection of the visual hull on an axial pl&e

The intersection o® and P Op, gives the symmetric 2D objects of Figure 40(a).
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We recall that the 3D visual number of a pgnelative toO is the number of families of free lines
passing througp. A point belongs t&H (O) if and only if its visual number is zero. Thenefp
computing the 2D visual hull on the axial planeeRuires finding the areas of P whose 3D visual
number is zero.
The boundaries of areas having different visual Imens are line and curve segments, cadletive
that belong tavisual curvesA visual curve is the intersection with the apldne of the surface
obtained by rotating a free line about the axisegblutionX. Three kinds of visual curves can be
obtained: hyperbolae (visual curves of type |), str@ight lines symmetric with respectXpwhen
the hyperbolae degenerates (visual curves of typevo half lines starting aX and perpendicular
to the axis of revolution, when the free line l@sa plane normal t& (visual curves of type III).
For each class of curves, we can define their agtart. Curves of type | present active segments
only if they make three contacts in P widh. Active lines of type Il are only those making tart
at two points in P witlDp. Active lines of type Il are those normalXcand making contact with
Op at one point; the active segments are those witinhect this point t&X or to the first point
where the line intersec@p. Examples of the three kind of active segmentsbeaseen,
respectively, in Figure 40(b), (c) and (d). Eactivecsegment has a positive direction. Crossing an
active segment in the positive (negative) directrameases (decreases) the 3D visual number by
one. The complete catalogue of active segmenepimted in Laurentini (1999), to which we refer
the interested reader.
The algorithm for finding the intersection\dH (O) and P is the following:

1. find the active segments of the visual curves péty 1l and Il

2. construct the partition of P given by the boundao&Op and the active segments

3. find the visual number of each region of the p@mit merging those region whose visual

number is zero; this can be done evaluating theaVisumber in one region and visiting the
region graph from this one, adding (subtractingg &6om the visual number of the starting

region when crossing a boundary in the positivgdétige) direction
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In Figure 40(e) the partition of P for our examislshown, and the corresponding visual hull is

shown in Figure 40(f).

2

1: contactat V, V3V,
2: contact at V, V3V,
3:contactat V, . V3
4: contactat V, 1.V,

Figure 40: cross cut of the solid of revolution (g)active segments for visual curves of type | (b}l (c), lll (d); the
partition of (half) P, where each region is markedvith its visual number (e); cross cut of the visuahull (f). ©

1992 IEEE

It is worth noting that the surfaces we have usetbimpute/H (O) are due tonultilocal visual

events (Petitjean et al. 1992).

6. Smooth curved objects

An algorithm for computing the visual hull of smbaturved objects is described in Bottino and
Laurentini (2004). It is shown that p'consists of patches of the boundary surfacesechsipect
graph corresponding to the visual evaatgyent crossingndtriple pointof smooth curved objects.
Tangent crossing occurs when the projections oflimvbs meet at a point and share a common
tangent (or, which is the same, the same normat)ifig a tacnode (Figure 41). Triple point occurs

when the free line is tri-tangent to S (Figure 42).

e .

Figure 41: the visual event tangent crossing. © 2a0EEE
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Figure 42: the visual event triple point

The equations that determine these surfaces ctoubd in Bottino and Laurentini (2004).
Much pruning of these surfaces can be done forfgtheactive patchesAs for polyhedra, active
patches are defined as the parts of these surfduel are formed by tangent lines not intersecting
elsewhere the object, and such that no free lioegpatible with the surface near the tangency
points pass through points of the patches.
The analysis of the surfaces corresponding to igiealevent triple point is identical to that
previously reported for EEE surfaces of polyhedizn, we only need to analyze the surfaces
related to the visual event tangent crossing.
Let us consider a line tangent at two points ofsilnace. These points divide this line in two
exterior segments and one interior segment (FigByeLet us consider the intersection of the
surface and a plane containing the surface normasadn, at the tangency points. If the normals
have the same directions, Figure 43(a), the exteegments cannot contain points belonging to
"vu, Since through any point of the exterior segmeatspass free lines compatible with the
surface near the tangency points. The situatidiiffisrent when the normals have opposite

directions, as in Figure 43(b), showing that thitoagy point of the interior segment can pass a free

line.

Figure 43: Two cases of bi-tangent line: potentiajl active segments

Each of the cases shown in Figure 43 can be arthlgzamore detail considering if the shape of the

surface at the tangency points is compatible wihb fines trough the potentially active segments.
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For performing this analysis, we recall that near point a smooth surface can be approximated by
a quadric. According to the Gaussian curvakuat a point, it is classified as elliptikX0),
parabolic k=0), and hyperbolick0), and the surface near the point can be appeirinby an

ellipsoid, a cylinder or a saddle-shaped hyperllo{Bigure 44, see O’'Neill, 1996).

n=7

Figure 44: surface approximations: elliptic, parabdic and hyperbolic points. © 2004 IEEE

The results of this analysis are summarized in&ablwhere the state of exterior and interior
segments of the two main cases, that is normalseaangency point having or not the same
direction, are itemized per kind of surface appmadion at the tangency points. The details of this
analysis can be found in Bottino and LaurentiniOZ)0 to which the reader is also referred for

further details on the complex case hyperboligpedi

Ni= Ny ni= -Ny
interior exterior interior exterior
Elliptic-elliptic inactive inactive |inactive inactive
Parabolic-elliptic inactive inactive |inactive inactive
Only insolated tangent Only insolated tangent lines
Parabolic-parabolic lines of this kind exist for | inactive |inactive | of this kind exist for generic
generic surfaces surfaces
Hyperbolic-parabolic active inactive |inactive active
Hyperbolic-hyperbolic active inactive |inactive active

42



The internal patch is

divided, according to the The external segments near
local curvatures at the the parabolic and hyperbolic
Hyperbolic-elliptic _tangency points, into an inactive | inactive poi.nts are partially or totally
inactive surface, near the active according to the local
hyperbolic point, and an curvatures at the tangency
active surface, near the points

parabolic point

Table 1: active and inactive bi-tangent surface pahes

The algorithm for computing the visual hull is sianito that described for polyhedra, the only
difference being the different computation of agtsurfaces.

An example is shown in Figure 45. The object, whichymmetric, has been modeled as a NURBS
surface, and the rim of the concavity has a highature; (a) and (b) shows two views of the
object. Three active patches, shown in (c), (d) @ydare candidate to cover the concavity. Paich P
is generated by the lines touching the object atbegcontour generatorg @nd G, and is an

instance of the active case hyperbolic-hyperbéligs generated by lines tangent aa@d G

(which is very close to £. Since the object is symmetric, all these liasgthrough a point and
form a conical surface. This is an instance ofcése parabolic-hyperbolic, and only the patch near
the parabolic rim is active s symmetric to P Lines Ly and L, which are the boundaries

between Pand B and B and B respectively, correspond to a flex point of thejgection of the far
rim. Intersecting the three patches @ad R intersect along a curve lying in the symmetry plah

the object), only one closed cell results, whiclobgs toVH. The visual hull surface, formed by P

and parts of fand B is shown in (f).
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Figure 45: (a), (b): original object; (c), (d), (e) active surfaces; (f). © 2004 IEEE

C. Understanding 3D shapes from silhouettes: hard and soft
points

Volume intersection summarizes the information ped by a set of silhouettes, and constructs a
boundary voluméR which approximates more or less closely an unknolyjact. Only if the object
O is coincident with its visual hull we are able, laast in principle, to reconstruct the object
exactly.

In this section we will deal with the problem oferring the shape of the real obj&atfrom the
object reconstructeR, or, which is the same, from a set of its silhtegetWe will face first the
optimal case, where we have been able to construct thebssible approximation, the visual hull.
Then we will consider the case which is more likehyhappen in practice, where we do not know if
the reconstructed obje® is the visual hull or not. The problem has beescussed first in
Laurentini (1995).

The intuitive analysis of a simple example will pide some insight into the problem. Let us
consider the problem of inferring the shape of bjeat from the visual hull. In Figure 46, various

objects sharing the same visual hull, the cubeiglire 46(a), are shown. They are part of an
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infinite family of objects ranging from the cubsetf to zero-volume objects like the one shown in
Figure 46(e), provided that no free line interdbet bounding cube without intersecting the object
itself. The objects must lie within the boundindbeuwhat else can we infer about their shape? It is
easy to realize that all these objects share thedb2s of the cube with the surface of the visual
hull. In addition, the surfaces of these objects teke any shape, without the need to be connected,

as long as no line passes through the object wiihtersecting these surfaces.

(@) ] (b) ] (c) ] (d) ] (e) ]

Figure 46: all objects have the same visual hulloincident with the object (a). © 1995 IEEE

This example shows that in general the best reaarigin achievable is not sufficient to infer the
real shape of the unknown object. However, we l@s@ seen that some points of the surface of the
visual hull are shared by any possible obf@ariginating on the visual hull, while the otheriqs
may or may not belong 0. This leads to the following definition:
Definition 4:let p be a point on the surface of a visual MH . p will be specified as

» ahardpoint if it also belongs to the surface of anygioke object originatinyH

* asoftpoint otherwise
In other words, a soft point may or may not belamthe surface dD. This definition raises a
problem: how can we find hard and soft points andtirface of a visual hull?
Recalling Proposition 5 the following statement can be derived (Laurentif9bs):
Proposition 10:a necessary and sufficient condition for a ppibelonging to the surface of a
visual hullVH (O) to be hard is that at least one line L passesitiirp without intersectingyH (O)

at any other point.
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T mo e

Figure 47: a necessary and sufficient condition fop to belong to VH(O). © 1995 IEEE

L

Proposition 10allow us to divide the surface of the visual huito a part belonging to the
originating object, thdnard part, and a part which is an outer boundofthe soft part. However,
even if the surface of the unknown obj€ctan assume different shapes within the boundatiyeof
soft surfaces, every visual ray intersecting thi¢ sarfaces will also interse€@. We will call this
the opaqueness propertyt is important to note that the opaqueness ptgpioes not hold for a
generic reconstructed objdgtwhen it is not coincident with the visual hull.

Finally observe that, in spite of its name, voluimiersection supplies precise information only on
the surface of an unknown object.

Proposition 10s a point condition. Finding the hard surfacasviarious types of visual hulls
requires further work. Let us consider polyhediabal hull. We have seen that polyhedral visual
hulls can be originated by polyhedra, but not eyeryhedron has a polyhedral visual hull. It can
be shown that the interior points of faces of a/petlral visual hull are always soft, and only the
convex edges can be hard (Laurentini, 1995).dtde easy to see that a sufficient condition for a
convex edge to be hard is to lie on the convexdfute visual hull. This immediately confirms the
intuitive analysis of the hard points of the objetFigure 46.

A general algorithm for finding the hard edges olypedral visual hull in Q€) time can be found
in Laurentini (1995). Only curved visual hulls daawve hard surfaces. For instance, all the surface
of a spherical visual hull is hard. However, consting algorithms for finding the hard points of
non-polyhedral objects, as smooth or piecewise simalgject is currently an open problem.

The results presented so far in this section (imfigrthe real shape from the visual hull) are rathe
theoretical. In practice, when in addition to sillettes no other information on the object is

available, we do not know whether the objeateconstructed by volume intersection is or not the
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visual hull. In the following we will face the potacal problem of finding hard points on the sugac
of a generic reconstructed object.

A simple example will provide some insight into fhr@blem. It will also show that in general a
generic reconstructed objeRtsupplies less information @D, i.e. less hard points, than the same
object considered as a visual hull. Figure 48 shawsbe reconstructed from three square
silhouettes obtained with viewing directions paiab the axes. It is clear that infinite objects
enclosed by the cube supply the same silhouefiggire 49 shows some of these objects, three
polyhedra and three origami-like objects. In martar, inspecting the origami-like objects it isga

to realize that in this case no hard point existshe surface oR.

(@)

Figure 49: three polyhedra (a) and three zero-volum, planar face objects (b) which may give the thresquare

silhouettes of Figure 48. © 1995 IEEE
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In order to understand how to find the hard poirés$,us consider one of the silhouettes involved i
the process of VI, the corresponding viewpairand the viewing cone circumscribed to the object
O and starting a¥ (Figure 50). The viewing cone is tangenCt@long a curve€y, that is shared by
O and the surface of the cone. In general this coavehave discontinuities, and, for exceptional
alignments, a half line of the circumscribed corayrshare multiple points or segments vith

This curve belongs to an annular surface homeonmtpta closed curve, a strT (V) of variable
width (measured along a line of the cylinder), ihig what is left of the original circumscribed
cone after the various intersections. During tlo®mstruction process, this annular strip cannot be
interrupted (i.e. become homeomorphic to an opevedusince no point d can be removed by
VI; at most it can reduce to a curve with zero Wwidthe following theorem holds:

Proposition 11:etp be a point on the surface of the reconstructedobBj. A necessary and

sufficient condition foip to be hard is that it belongs to at least one §fTi(V) of width zero ap.

Figure 50: VI reduces the surface of the circumschied cone to ST(V) by, containing the curve CV belaing to

0. © 1995 IEEE

Let us summarize the results obtained. The sudbeaay reconstructed object consists of a number
of stripsST(V;), one for each viewpoint;. On each of these strips there is a ci@yef points
belonging tdO, but usually we are not able to locate the curve dly case when we are able to
locate points of this curve, and therefore harahisoiis when the strip has zero width.

An important consequence of the proposition is Wegre not able to find hard surfaces when

considering an obje® reconstructed with a finite number of intersecsidout only hard points or,
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at most, hard lines. As a matter of facts, thealiswill is able to supply hard surfaces, but they
require an infinite number of zero-width strips their full description.

It is not difficult to understand that hard poinésults when two strips intersect (Figure 51). dHar
line results in situations like the one depictedigure 52, where the two viewpoints andV;
produces the corresponding strips(V;) andST(V;). ViewpointVy produces a third stri§ T (Vi)

of width zero and therefore coincident with thechamrveCyy. From the figure, it is also easy to

see that hard lines can appear where therensase that is a discontinuity of the surface normal.

ST(V)

V.

Figure 51: How to generate a hard point P on a smdlo surface. © 1995 IEEE

Cw = ST(Vk)

Figure 52: how a hard line is generated. © 1995 IHE

An important practical consequence of this disaurss that hard points and hard lines can be

simply obtained as a by-product of the VI algorithm
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A simple example is shown in Figure 53 that show&-@haped polyhedron observed from ideal

coplanar viewpoints. Two ideal coplanar viewingedirons,V; andV,, shown together with the

corresponding strips, do not produce hard poimsgsboth strips have everywhere non-zero width

(Figure 53 (a)). One additional co-planar viewimgection V3 supplies four R-hard segments

(Figure 53 (b)), highlighted with thick lines.

sT, <« V2 ST, <« V2
O s e (s PP <.
,,,,, /[ / _
) g B
A s v —
V4 — s s A — \\XX_\_
STh » s STv o, " X N
% ;s % /NS
/ P ST3
s N
S A\ st
(@) (b)

Figure 53: examples of hard edges

For further detail and examples the reader is redeto Laurentini (1995).

D. How many silhouettes does the best reconstruction require?

In theory, the visual hull is the best reconstiuttinat we can obtain from the silhouettes of an
object. In practice, also the number of silhouetéegiired by this optimal reconstruction is
important. In this section we will briefly deal Wwithe problem of finding the minimum theoretical
number of silhouettes required (Laurentini, 199°&X us first define the volumetric accuracy &f
the VI reconstruction as the ratio between the masi of the real obje€@ and that of the object
reconstructedr:

Ay =Vol(O)/Vol(R)

Ay can be expressed as the product of two accuracies:

Av = Avuy A where Ay = Vol(VH(O))/Vol(R) and A =Vol(O)/ Vol(VH (0))
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This allows to separate the accuragydBe to the intrinsic properties of the object frAgy, due to
the number and positions of the viewpoints. Letlenee-reco an object coincident with its visual
hull, such that A=1.

Also definef-reco objects whose visual hull can be reconstrueitda finite number of

silhouettes. It is clear that the volumes obtaibgthack-projecting the silhouettes have conical
surfaces, for perspective projections, formed bgdipassing trough a point, or cylindrical surfaces
formed by lines parallel to a direction for parbfieojections. Therefore, the surface of any object
obtained with a finite number of VI operations astsof a finite number of patches of conical or
cylindrical surfaces.

It follows that objects with curved surfaces &reco only in exceptional cases. Even a simple
sphere is nokreco. Also a cylinder is ndtreco using perspective silhouettes. In these casee
these objects amreco, we can speak of reconstruction with arblyrdwigh accuracy Ax.

Polyhedra are a more promising category of objéctsonvex polyhedron, which esreco as all
convex objects, is aldereco. In fact, if the planes supporting the faaesimgeneral position, we
can choosen/3] viewpoints at the intersection of disjoint triseif these planes. More viewpoints
are required, in any case less theif some planes are parallel each other.

Let us consider a general polyhedron. If it is&oeco, the surface of the visual hull could contain
curved quadric patches. Although ruled, they atepatches of a cone or a cylinder, and then these
polyhedra are ndtreco.

Let us restrict ourselves to polyhedra with polylaédisual hulls. It seems not unreasonable to
expect that the minimum number of silhouettes neglis bounded by some functionrof

Actually, in general this is not the case. For satasses of polyhedra we have the rather
counterintuitive result that, for a giventhe number of silhouettes required can assumealng.

An example of such a polyhedral visual hull withfades is shown in Figure 54(a). Reconstructing
face F, and in particular the part F’ highlightedhe figure requires viewpoints lying in the plane

of the face and outside the convex hull, and thdside the face. Figure 54(b) shows that the part
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of F’ reconstructed by each viewpoint can be matb#rarily small by reducing the distance

between the vertical wedges, without changing tivalver of faces.

Figure 54: a visual hull whose reconstruction mayake any number of silhouettes

The situation is different if we want to reconstran internal visual hull, and then viewpoints
inside the convex hull are allowed. In this casean be shown that a polyhedral internal visudll hu
is f-reco. In Laurentini (1997) an algorithm is desadib&hich computes polyhedral internal visual

hull using Of°) viewpoints.

E. Interactive reconstruction

In the previous section we have discussed the ¢hieal minimum number of silhouettes required
for the optimal reconstruction. Silhouette-basembnstruction algorithms must face another
important problem. If na priori information about the 3-D shape is available, &eehno idea of

the accuracy of the reconstruction obtained, amdeguently we do not know whether halting or
not the reconstruction process. It is also cleat, flor a given object, each new VI operation can
refine the reconstruction to different degreesedeling on the viewpoint chosen. Then another
problem is where to locate new viewpoints. If weavgiven the shape of the object, in principle we

could construct some object specific algorithmfiioding the next best viewpoint, but the shape is
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the very information we are looking for. So in gexleve are reduced to a simple “the more
silhouettes the better” strategy

Object specific heuristics for finding the nextwjgint have been suggested, for instance in
Shanmukh and Pujari (1991) and Lavakusha et a89j1$ome results have been also obtained in
the area known ageometric probingsee Skiena, 1992, for a survey).

In Bottino et al (2001) guantitativeapproach is presented, able to solve, at leasrin this
apparently under-constrained problem. The appr@albhsed on aecessary conditiofor the
reconstruction obtained to be optimal. The conditian be verified considering the reconstructed
objectR only, without anya priori knowledge abouD. If the necessary condition is not satisfied, it
is possible to derive suggestions for locating newpoints.

We have seen in section II.C that the points ofsindaceof R can be divided intdard points
which belong to any possible object originatRgandsoft points which could belong or not 10.
The computation of the hard points®fcan be performed under two hypothesesR 19 the visual
hull; 2) R is a generic object reconstructed by VI. Let u$ ¥&l-hard the hard points in the first

case, andR-harda hard point in the second case.

1. The interactive reconstruction approach

Consider an objed reconstructed by VI. Let VHR) be the set of VH-hard points Bf and RR)

be the set of R-hard points. The following progdositholds.

Proposition 13:.VH(R) 0O R(R)

This follows from the fact that each new VI opevatcannot delete R-hard points already obtained,
but only add new R-hard points, and the visual isuthe reconstruction made with all the possible
silhouettes. If the best possible reconstructialdeen obtained, thatis=VH (O), no more hard
points can be found. It follows:

Proposition 14:a necessary condition for the reconstruction togdenal is VH(R)=R(R)
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Let us definecompatiblea reconstruction that satisfies this conditionf thasuch that all the points
of R which could behard (the VH-hard points) have been found tadteallyhard (R-hard points).
The condition in general could be not sufficientttee reconstruction to be optimal, and in some
cases small details of the object could remain teutied.

However, the necessary condition is fruitful. lisitsatisfied, we can stop the VI process, although
the optimal reconstruction is not absolutely gutead. If not, we are sure that the optimal
reconstruction has not yet been obtained, but tharf@ and VH-hard points suggest the location of

the next viewpoint.

a) A general approach to interactive reconstruction

The general idea of the interactive reconstructigproach is attempting to obtain a compatible
reconstruction, and, in any case, to improve ab aé&p the accuracy, which is not guaranteed if the
new viewpoints are selected at random.
At each step:
 Compute VHR), RR)
* If VH(R)=R(R), stop
» Otherwise, refine the reconstruction by checkintpé potentially R-hard points VR{-
R(R) are actually R-hard or not. This can be donedbycting a viewpoint such that some
potentially hard points are projected on the boupndéthe silhouette oR.
Whatever the new silhouette Ofturns out to be, it improves the reconstructiorihé new
viewpoint produces a circumscribed cone contaihiaftlines tangent at potentially hard points,
these points are verified as R-hard. If not, thgkdicess deletes a part of the reconstructed object
R. Then either we find new R-hard points, or we éase the volumetric reconstruction accuracy
Av. In any case, our knowledge ©fimproves. The outlined approach can be appliehtoclass

of objects (i.e., convex polyhedra, concave polyagdurved objects...) provided that an algorithm
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for evaluating VH-hard points is available for tiokdss. As an example this approach has been

applied to convex polyhedra.

b) An interactive algorithm for convex polyhedra

Interactively reconstructing unknown convex polyfzefilom silhouettes has been studied by
Dobkin et al. (1986). Their algorithm, restrictedarthographic projections, uses a strategy that
determines the polyhedron with a bounded numbsillduettes N
V/2 < Ns< V+5F
where V and F are the numbers of vertices and feasggectively. The algorithm has not been
implemented.
The interactive approach described is able to coct any convex polyhedron from a bounded set
of parallel or perspective silhouettes and has leptemented for virtual polyhedra (Bottino et al.,
2001). It consists of three parts:
1. ALGVI, which performs the volume intersection;
2. ALGR, the algorithm for computing the R-hard poiRIR);
3. NEXT, which compares VHR) and RR) and, if the sets are not equal, computes the next
viewpoint;
ALGVI implements VI and works for any kind of polgtira (actually also concave) and parallel
and perspective projections. ALGR is a straightimdvconsequence of VI. In this case the
algorithm in Laurentini (1995) for computing the Wdrd points is not necessary, since any
reconstructed obje® is convex, and all edges are VH-hard. TherefoE&XN computes new
viewpoints until all the edges & are R-hard. An edge is R-hard if it belongs tdrig svith zero
width. Then to verify an R-hard edge E requireséhplanar surfaces of three cof@snaking

contact withR at E. To verify a face requires a viewpoint in ghane of the face.

(1) The strategy of NEXT
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The general approach described in section Il.Eduajantees that each new viewpoint improves
the reconstruction, but not that the reconstruasqgrerformed with a bounded number of
silhouettes. To this purpose, NEXT uses a setleErihat guarantees that at each step a facesat lea
is verified, or a contact with at least one undetgdr-hard edge is obtained. For the exact
reconstruction, NEXT requires

F/3 +2< Ns< F+3E
silhouettes (see Bottino et al., 2001).
NEXT works as follows. Start with two random viewms (after the first VI, all edges are
potentially R-hard). For each following step, selepotentially R-hard edge E and locate the
viewpoint according the following rules, relatedth@ characteristics of the facesand F of R

which meet at E. Three cases are possible.

R SN

Figure 55: three cases for the candidate edge E

(a) (b

Case 1- The edges oD that produce Fand Fk; have not yet been detected (see Figure 55(a)ewher
the undetected edges &nd E are shown as dotted lines). In this case, anypo@w projecting E

on the boundary of the silhouette is convenientatn, it will either verify E as a R-hard edge, or
produce at least a new faceRbimaking contact with one or more R-hard edges pdetected

inside the region bounded by &d F. Then the viewpoint can be located anywhere indivihie

four regions into which the space is divided by plenes of Fand F.

Case 2- There is one R-hard edge on bothaRd F (see Figure 55(b), where the hard edges are
thick). A viewpoint lying on a line passing thrdugne point of both the hard edges will either
verify a possible undetected face (for co-planad lealges), or produce one or more faces making
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contact withundetected R-hard edges. Also in this case thepaawcan be located anywhere in
an infinite space region, which is planar for colaR-hard edges.

Case 3 There is one R-hard edge on one face; let itnsde Figure 55(c)). Consider a line
starting atV, (the viewpoint which produces)rand lying on k. The intersection of this line with

F, is bounded by two points. Let P be the one clas¥r. Chose a new viewpoint on a line passing
trough P and one point of the R-hard edgerftR. It is clear from the figure that it will produce
one or more new faces making contact with undedeRtedges (possibly.E Also in this case the
viewpoint is restricted to lie in an infinite spa@gion.

In some cases the above conditions can be satfsfiedore than one potentially R-hard edge.
Actually, two additional rules have been used fmesling up the algorithm. Since the polyhedron
is known to be convex, if two R-hard vertices anie¢d by a potentially R-hard, the edge can be
immediately classified as R-hard, even if it doeslbelongs to a strip of zero width. This happens
frequently in our examples.

The second rule is the following heuristic. Whesgible, a viewpoint is located on a line
containing one R-hard edge, if at least one ofdbes sharing the edge has not yet been verified.
This verifies one or two faces, usually deleteesgnon R-hard edges and adds one or two faces
tangent at several R-hard edges not yet detected.

An example of the steps performed by the algorithshown in Figure 56, where the arrows
indicate a line containing the viewpoint and thédte edges are marked thick. The original object
is shown in (a) and, at the end of the reconswuacivhen all the edges are R-hard, in (h). Inlib) t
first cone is shown, truncated by one fore andlmack plane. The first rule and the heuristic are

used in several cases, (d) to (g), while (c) retiersase 1.
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Figure 56: an example of reconstruction of a convepolyhedron

We have experimentally evaluated the performandkeoflgorithm with respect to our upper and
lower bounds, and to the bounds of the algorithabkin et al. For this purpose, the algorithm
has been applied to fifty randomly generated corpayhedra. The average number of vertices,
edges and faces of the fifty polyhedra are 17.8 26d 10.9 respectively. We have found that the
average number of silhouettes required for thengiroction is 13. This number should be
compared with 91, our upper bound averaged ovénalifty polyhedra, with 99.9, the average
upper bound of Dobkin et al., and with 5.6 and &8,two corresponding lower bounds. These
comparisons show that the average behavior oflgorithm is much closer to the lower then to the

upper bounds.

F. Reconstruction with unknown viewpoints

So far, we have discussed the problem of recortstgu8D shapes from 2D silhouettes by back-
projecting them from the corresponding viewpointd antersecting the resulting solid cones. This
requires knowing the position of the viewpointshwiéspect to the object. However, in several

practical situations, as observing a vehicle, a@lar an asteroid, this information is not avagabl
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In these cases we have a set of silhouettes tageitiethe position of the corresponding viewpoint
with respect to each silhouette, or, in other wpadset of circumscribed cones, without knowing
their relative position. This raises the followiggestions

1. does an object exist able to produce them?

2. if a set of silhouettes can be generated by the sabject, how can we find one or more

objects able to produce the same silhouettes?

In the following, we will callcompatiblea set of silhouettes if the same object can géménam.
An object able to produce a compatible set of sidttes will be said to be compatible with the set.

As an example, are the three orthographic silhesett Figure 57 compatible?

p O

Figure 57: Can these orthographic silhouettes be gerated by the same object? © 2003 IEEE

A preliminary discussion of the problem has begroreed in Bottino and Laurentini (2003), where
the case of planar orthographic silhouettes has thewoughly investigated. This case idealizes
some practical situations, as observing a vehiala planar surface, or a ship on a calm see.

First, we must define the compatibility of two silkettes. Given S, a 2D orthographic silhouette of
a 3D object, and L(8), the length of the 1D silhouette of S obtainenjguting orthographically S
along a direction in the plane of S making an anghath the x axis of that plane (see Figure 58),

two silhouettes Sand $ are compatible if two angles anda, exist such that L(Sa;) = L(S;,02).

yA L(S,OC)

o

» X

Figure 58: 1D silhouette of S. © 2003 IEEE
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When two silhouettes are compatible, it is easselect the parameters required for intersecting in
3D the cylinders obtained by back-projectingg8d 3. First, we must select the an@detween
the viewing directions, or, which is the same,dhgle between the planes of the silhouettes. Let |
be the intersection of these planes. The two cglgdnust be positioned as follows:

» the 2D viewing directions that produce L&) and L(S,02) must be both orthogonal to |

* both cylinders must be supported by the same pramrehogonal to |
It is clear from the figure that the object obtairm®y VI is compatible with both silhouettes. This

reconstruction is possible for any anfjleetween the viewing directions.

B

L(S1,01)=L(S2,02)

Figure 59: reconstructing an object compatible withS,; and S. © 2003 IEEE

Clearly, when we have more than two silhouettesimust ensure the pairwise compatibility
between silhouettes. However, this condition issufticient for the full compatibility of the seds
shown in Bottino and Laurentini (2003). For instanihe three silhouettes of Figure 57 are pairwise
compatible, but it can be shown that no objectsteadle to produce them all.

A necessary and sufficient condition can be fowgfdrring to the annular strigT(V), that is, to

what is left after various VI operations of theccimscribed cone (or cylinder, in this case) retativ

to viewpointV.

Proposition 12: A necessary and sufficient condition for a seditbfouettes to be compatible is that

it be possible to find viewpoints such that no danstrip of the reconstructed object is interrapte
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Proposition 12allows to write sets of inequalities that deterenieasible VI parameters. Before
introducing them, let’s give some notations (Fige@g. Each planar silhouetteiS defined, for

0<y<ymax by two curves y) and $(y). For simplicity, let us consider mono-valueddtions.

Also let S(y)=S(y)-Si(y).

Yinax

Figure 60: notations used for a silhouette. © 200EEE

1. Writing the sets of inequalities

The general case is whep(@# S(0) and $(YmaxZSi(Ymax for all the silhouettes considered.
Special cases, not respecting these conditiong|wi@quire considering additional constraints and

are discussed in details in Bottino and Laurerf2003).

a) Three silhouettes

Let’s start considering a generic horizontal plBrigetween 0 and )y three viewpoint¥/1,V,,V3
and the intersections of the corresponding bacleption cylinders and the plane P are shown in
Figure 61(a). Other arrangements of the viewpaatsfying the condition dProposition 12will

be discussed at the end of this section. In ttse,aais not difficult to see that the condition
requires, for all possible values of y, that the times projecting the endpoints (@) and 3(y) of
Ss(y) alongVs falls inside the curves defining the projectioftsng V3 of vertices3-4 and1-2,

respectively (see Figure 61(b)).
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Figure 61: (a) A case where S3(y) is compatible WwitS1(y) and S2(y) in a horizontal plane. (b) The calition for

the compatibility of the whole silhouettes. © 2008EEE
Inspecting in details the intersections in P, we darive set of inequalities characterizing thiseca
(Figure 62). Let @ O,, and Q be the intersections of the axes y of the cootdiagstem of each
silhouette with this plane. The unknown are thtee:anglex; betweerV; andV,, the anglex,
betweernv; andV3; and the distanca between the intersections on the line projectin@long the
directionV of the line projecting @alongV,, and line projecting ©alongVs. Thus, to find

feasible solutions we must search the 3-dimensigpate ¢4, 0>, d.

Slr(y)
S

Figure 62: the intersections in a horizontal plane

As shown in Figure 61(b), the compatibility conditican be expressed in terms giyf, Px(y),
Ps(y) and R(y), the distances from{®f the orthographic projections of the verticeshaf

parallelogram onto the line supporting\8. The resulting inequality set is the following:
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S (Y)=R(y), S,(Y)<R(Y), Si(y)=PRy(y)
Su(Y)<R(Y), R(y)=R(y)

The fifth inequality characterizes the case in gsia| let it be Case 1. The other feasible cases ar
determined by the direction of;With respect to Y, V,, and by the directions of the diagonals V
and \4; of the parallelogram. Each of these cases, depiotEigure 63, produces different sets of
inequalities. For each case, a possible orthogegmojection onto the plane of 8f the edges of

the object produced by the first intersection igvah with thick lines. The boundaries of &e the

VoV L ‘
) 4
T . ‘/: 2/ " )) 3 @)) !
. () Case 6 Cas Va

'\
Case Case 8

thin lines.

Figure 63: the eight intersection cases. © 2003 IEE

b) Four silhouettes

Adding a fourth silhouette,Sntroduces two new parameters: the angléetweervV; andV, and

the distancel;, measured, a§ along the line that projects,@om V1. The condition of

Proposition 12requires cutting away two opposite vertices offiblygon produced by three
silhouettes, without eliminating completely the eslghat meet at these vertices (Figure 64). By
orthographically projecting the six vertices ortte plane of $we obtain six curves. For the new
intersection to be feasible, the boundarig§/Band S(y) of & must lie in the areas bounded by the

two leftmost and the two rightmost curves respetyiv
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Various sets of inequalities result, dependinghendirection of \{. For each couple of opposite
vertices, there are two main cases (cayarid p) in the left of Figure 64) related to the direatio
that determines the leftmost and rightmost vert{emnd7 for case ¢) and7 and5 for (b) in
Figure 64). Each case can be subdivided into fobrcases for the leftmost and rightmost strips
where g and 3y must lie (see right part of Figure 64). The indijies corresponding to each sub-
case are easily written. For instance, for theag®ea; in Figure 64, it is:

Ps(Y)<Saiy)  Sai(y)<Pa(y)

Pi(y)<Sa(y)  Saly)sPy)

Pa(y)<Ps(y)  Pe(y)<Pu(y)
where Ry) are the projections of the poin{g) onto the plane of SAs before, the last two
inequalities guarantee that the inner boundariekesfe areas are actuallydhd R.
Summarizing, each set of inequalities for fourailbttes contains 11 inequalities (the five
inequalities related to the first three silhouetied six new inequalities also referring ). &s for
the number of sets of inequalities, we have 8 cisdhree silhouettes, 3 pairs of opposite vestice

and 8 cases for each pair, and thus 192 sets eatdirung 11 inequalities.

N\
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Figure 64: cases (a) and (b) and the 8 sub-cases2@03 IEEE

c) Five or more silhouettes

Each new silhouette adds two new parameters amqaotade compatibility, it must always cut a

pair of opposite vertices without deleting completbe edges converging at these edges; this
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corresponds to seven additional inequalities fohesub-case. Thus, farsilhouettes, the number
of parameters isr23, and the number of inequalitie&)+5 (=3). Each new silhouette adds 8
sub-cases for each pair of opposite vertices. lkam-th silhouette, the pairs of vertices aré. Let

N¢(n) be the number of sets of inequalitiesria@ilhouettes. Fon>3 it is: N.(n)=8(n-1)Nc(n-1).

2. Writing and solving the sets of inequalities

The inequalities discussed in the previous secitmw to answer, in a particular case, both
guestion raised: finding objects compatible witkeof compatible silhouettes, and understanding
if an (artificial) set of silhouettes is compatib&@e have developed an algorithm for automatically
writing the sets of inequalities, detailed in Battiet al. (2003b). A set inversion technique (Jauli
and Walter 1996) has been applied for finding #esible solution s& of the set of non-linear
inequalities that characterizes each sub-case.t@tlsique performs a paving the parameter space
with boxes. If the current boX] is proved to be insid§, then the box is kept as part of the
solution space. If it is proved to have an emptgrsection withs then it is discarded. Otherwise,
[b] is bisected except if its width is smaller thadedined threshold. The dimensionality of the
initial box is equal to the number of variablesalwed in the set of inequalities. To prove that a
given box p] is insideS, interval computation (Moore 1979) has been used.

In Figure 65 three silhouettes, & and S of a parallelepiped are shown. The boxes defitiieg
paving of the solution set of each of the eight-sabkes obtained, are depicted in Figure 66, where
the axis of the reference system afeanda, on the plane and as vertical axis. Several different

compatible objects, each one reconstructed froiffereht feasible sets, can be seen in Figure 67.
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Figure 66: the eight solution spaces
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Figure 67: objects compatible with the silhouettesf Figure 65
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lll.Practical object reconstruction

In the previous sections we have presented a ttegrdiscussion on limits and capabilities of the
shape from silhouette approach. In practical sinatwe must be content with the objBct
reconstructed using a finite set of viewpoints, chhias already discussed, in general is not the
optimal reconstruction. To comply with the curreatlance in the field, we will use the term visual
hull, orVH (O), to indicate thenferred visual hulicomputed from a finite set of images.

Practical shape from silhouette algorithms reqfaoceng several significant problems.

First of all, in order to perform VI, the positi@amd orientation of the image planes relative tdheac
other must be known, in order to relate the respettack-projection cones. In other words, the
cameras need to be calibrated. A copious literatudevoted to this problem, and a complete
survey is outside the scope of this work. The nsostmon approaches (Tsai 1987, Zhang 2000)
require to evaluate camera parameters a grid ae8fdence points, together with their
corresponding 2D projections on the image plangs) as in Figure 68. Camera parameters are
divided into intrinsic parameters (specifying ttanera characteristics, like focal distance, etc...)
and extrinsic parameters (describing the spatiatiomship between the image plane and a common
and fixed 3D reference system). Efficient implenad¢iohs of these techniques, such as the Tsali
Camera Calibration Code (TsaiCC), the Camera Galdor Toolbox (Bouguet) and the Open

Computer Vision Library (OpenCV) can be easily fdwver the Internet.

Figure 68: reference points on a calibration objegtand their position on the image plane
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Given a set of calibrated cameras, the projectaanetry between two different views is
completely described by tlepipolar geometryReferring to Figure 69, given two viewpoins
andV,, the corresponding image planes and a @@int3D, the three pointg,, V, andP are
coplanar, and form the so-calledipolar plane The line connecting the two optical centéssand
V, is calledbaselineand its intersection with the image planes gihespointse; ande;,, the
epipoles The intersection of the epipolar plane with the image planes gives tlepipolar lines
passing through the corresponding epipole. Theodgriggeometry can be expressed in algebraic
form by means of theundamental matrixAssuming thaP projects into the image planes in pixel
space ap: andp,, the main result of the epipolar geometry is thatlinear relationship;-F-p,=0
can be written, where€ is the fundamental matrik. determines the relation between a point in one
image and the corresponding epipolar line on teersdimageF can be computed from the
calibration parameters or, for instance, with thxealled “eight point algorithm” (Hartley 1995).

epipolar
plane

p epipolar
A lines P

epipoles

! ¢ T e, - Vz
baseline

Figure 69: epipolar geometry

Another problem to face with real images is theaiktte extraction. Since usually stationary
cameras are used, the silhouette extraction conmp@necesses a relatively static scene. Therefore,
a naive approach is to detect the silhouette ubmglifference between the current frame and an
image of the background scene. Defining a likelthparameter, each pixel of the image can be
compared with the corresponding pixel on the seceodel to decide if the pixel belongs to the

silhouette or not. However this simple approachaasries of drawbacks. First of all there is lkel
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to be noise in the video signal and thus a certaighborhood of the target color must be classified
as background color. Then, classification involiresmeasurement of a certain distance function
between the pixel color and the target regionséadice lower than a threshold indicates
background, otherwise foreground. Second, in asieation the background is unlikely to be
uniform due to illumination changes, subtle cammadion, or changes in the background
geometry. A possible solution is to model the saaméhe background as a texture surface: each
point on this surface is associated with a meaora@lue and a distribution about that mean. The
basic idea is that, as we stated before, the pofdlse image acquired by the camera sensors
contain noise, whose effect can be drastically ceduf we observe the same static background and
evaluate the mean color of each pixel. This isaghygroach used in Wren (1997) and Yamada et al.
(1998). The static model can be initialized shaptime empty scene for few seconds and it is
continuously updated in an adaptive way when afnamwe has been classified in background and
foreground pixels. This allows compensating forraes in the lighting conditions of the scene. As
an example, in Figure 70(a) is depicted the scepeirbuilt for the camera, while in Figure 70(b)
is shown one of the frames where a person is praséme image. In Figure 70(c)-(d) is shown the
result of the silhouette extraction process: thietgpixels represent the silhouette and the lighte
pixels the cast shadows that are removed fromilineugttes. The false recognition due to the
lighting changes will be slowly removed in the &nlling frames using the adaptative filtering.

In order to cope with multimodal background disttibns, more complex methods have been
developed using either mixture of gaussians, Staaffid Grimson (1999), Kernel Density
Estimators, Elgammal et al. (2000), “eigenvectasiloiting Principal Component Analysis,

Oliver et al (2000), or mean-shift based estimatidan et al. (2004).
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Figure 70: (a-d): the scene model, a frame of the@eguence and the extracted silhouette

Finally, we must discuss the types of represemaiged for the reconstruction. As far as shape

from silhouette has been stated, a number of muglelpproaches have been proposed. They can be
broadly divided in two main categories. The firstludes surface based approaches, where the
boundary surface d® is reconstructed, usually exploiting polyhedratpline representation. The
second category comprises volume-based methodsseeying the entire volume as a set of finite
samples of different characteristics (octrees, ig)x&his is also the main taxonomy we will use in
the rest of the section to describe the approachésrature to practical shape from silhouetthisT
short survey is not meant to be exhaustive andbeilbnly devoted to describe the latest

contribution to the state of art.

A. Surface reconstruction

Surface modeling provides a geometric represemtatioche surface of the reconstructed objects.

These methods compute the bounding surfa¢efodm the envelope of rays defined by the optical
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center and the contour of the silhouettes in thegienplanes. Before entering the discussion, we
recall the meaning of some terms.

For each camera, tlo®ntour generators the set of points & where the viewlines are tangent to
the object. The projection of a contour generatoth@ corresponding image plane is called
apparent contourThevisual conds defined as the set of viewlines passing thrahgtoptical
center of the camera and all the points of the mgmpaontour. The intersection of all the visual
cones is the inferred visual hull. Contour genegsatan intersect at isolated points, cafledtier
points Frontier points are related to epipolar geomedinge for epipolar planes tangenQgpthe
tangency point is a frontier point. On the imagangls, the apparent contours are tangent at epipolar
tangent lines in pointly andf,, projections on the image planes of the front@nipF (Figure 71).

A triple pointis a point in 3D where the viewlines passing fritiee points on different apparent

contours intersect.

frontier point F

apparent
contour

! contour

i \
v

/ generators

Figure 71: contour generators, apparent contours agh frontier points

Several authors tackled the problem of surfaceabisull reconstruction.
Spline reconstruction has been used in SullivanRortte (1998). The advantage of using splines is
that they guarantee certain smoothness conditiomsrticular their approach usés triangular

splines which are triangular Bezier patches sharing #mestangent at their boundaries. First, they
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reconstruct a polygonal approximation of the voluwneupied by the visual hull, intersecting in 3D
the visual cones obtained back-projecting from eaelWwpoint a polygonal approximation of the
corresponding apparent contour. The result is adedeénto a triangular mesh that is subsequently
simplified and converted into a spline surface magldy triangular spline patches. The final step is
to deform these spines to ensure that they aretang the viewing cones defined by the
silhouettes. Surface fitting is obtained minimizaguitable distance function between the spline
surface and the viewing cones.

Lazebnik et al (2001) compute the visual hull gfeaks with smooth surfaces and without planar
patches exploiting two data structures: the rimhmésscribing the connections of the contour
generators on the surface@f and the hull mesh, describing the structure efstlrface of the

visual hull, whose patches are the st@dgV) of Figure 50. The rim mesh is a graph whose
vertices are frontier points, edges are contoueggar segments connecting frontier points, and
faces are regions bounded by edges. The visuairtagh is a graph whose vertices are frontier
points and triple points, edges are intersectionegegments between consecutive vertices, and
faces are patches of the stripB(V). Frontier points and triple points are evaluatepl@ting

epipolar geometry. The advantage of building themesh is that its topology can be used to
reconstruct the adjacency relationship betweencesrand edges of the visual hull. However, the
approach is limited by the fact that only zero gesurfaces can be reconstructed. Otherwise, the
graph built is not necessarily complete. Calibragorors and noise on the input data are also taken
into account.

Matusik et al. (2001) compute a polyhedral textuegatesentation of the visual hull. The apparent
contours are represented with their polygonal axpration. The face of the cone corresponding to
each edge of an apparent contour is intersectddalibther viewing cones. The intersection is
performed in 2D, projecting the viewing cones oa plane of the face, and then back-projecting in
3D the result. The obtained polygons maintain gite a reference to the images that contain it,

entirely or partially. The final polygon textureasaluated at rendering time by means of a sefies o
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blending weights that are used to merge the origmages associated to the polygon. The weights
are based on the angles at the rendered vertexéetive virtual camera and the corresponding
image.

The approach of Franco and Boyer (2003) can ddhlgeneral surfaces, producing a polyhedral
representation of the visual hull based on frorgi@nts and triple points. Also in this case the
apparent contours are approximated by polygonabcwos. For each vertex of these polygons, the
corresponding viewline is cast in 3D, and its isgéetion with all the viewing cones is computed.
The result is a set of intervals along this lireled theviewing edgeswhich are the contribution of
the viewing line to the visual hull. However, sirtbe surface of the object can be general, viewing
edges alone may not be sufficient to reconstratbsed surface. Therefore missing vertices and
connections needed to reconstruct the final polydredre computed using the geometry and
orientation of the apparent contours.

An interesting and original contribution is the @reposed by Kang et al. (2001). They exploit a
dual space based on differential geometry thategla point of an occluding contour to the
corresponding local tangent plane on the 3D surdtiee object. The position of this plane is
deduced by fitting an implicit polynomial surfackedegreen, which estimates the local surface of
the objectjn the dual space. The surface of the reconstruathgztt is obtained as union of the set
of locally estimated polynomial patches. The apphdaas been generalized in Brand et al. (2004)
in order to reconstruct an entire free-form surfadey still make use of the dual space, but the
tangent plane position is derived from continuitypiples, given the position of nearby points on
the surface and information on the local surfaggature. The output is a set of tangent planes and
corresponding surface contact points (lying onsilméace of the visual hull), that can be
transformed into a 3D surface by locally intersegtihe tangent planes.

There are also works exploiting multiple image cioesurface reconstruction. In the work of
Isidoro and Scarloff (2003) an initial polygonapresentation of th&H, constructed via CSG, is

simplified and subdivided in order to provide a maniform distribution of vertices on the surface.
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Then photometric consistency with the incoming ieg used to remesh the visual hull, until the
error between the silhouettes and the reprojectidhe textured visual hull falls below a
predefined threshold. Hernandez Esteban and Scf0ig) use a snake-based deformable model
which is adapted to théH by means of two external forces based on the isyalyezen by the

shape of the silhouettes and by the model texture.

B. Volumetric reconstruction

Algorithms for intersecting visual cones of genetajects in 3D are complex and generally prone
to rounding errors. Therefore, effective approadbheepresent the volume occupied®are

needed. The most common is a regular tessellationbac primitives, called voxels, and the
reconstruction is defined as an occupancy classifioc problem, the voxel belonging to the volume
if at least one of its vertices project insideth# silhouettes in the corresponding image planes.
When the model is used for synthesizing new viesseral rendering algorithms can be used,
including ray casting, splatting and shear-warpedtepresentations use octrees, allowing a more
efficient subdivision of the scene space (Poteni&l7, Noborio et al. 1988, Ahuja and Veenstra
1989). From such models, it is possible to recosi polygonized representation of the surface of
the visual hull using the Marching Cubes, Lorensed Cline (1987), or the Marching Tetrahedron
algorithms, Carneiro et al. (1996).

A 2D example of voxel-based reconstruction is showiigure 72. Image (a) shows the inferred
visual hull of an object computed from four viewsile in (b) its approximated voxelized

reconstruction is shown. As can be seen, the lst&gnificantly bigger.

74



o V2
\2 Sampled VH

]

(b) ST VH(O)

=
N

Figure 72: (a) the object O and its inferred visuahull; (b) the approximated reconstruction of VH (O)

A different representation, using the so-called Bbng Edges (BE), has been introduced by Chen
et al. (2003). A BE is defined as follows. A poinbn an image plane corresponds to a 3D line in
world space. The BE is the part of this line thafjgcts inside all the silhouettes used for
reconstruction. It can be immediately seen thaEac&n be composed by several separate segments
along the originating line. The visual hull is themonstructed in terms of the BE corresponding to
points sampled on the contour of all the silhowgetiged. It should be noted that each BE is part of
the stripST(V) shown in Figure 50, that is to what is left of theual cone relative t¥ after the
various volume intersection operations, and theegtdelongs ta/H (O). Hence, this
representation, although incomplete, is an effeati@scription of the surface of the visual hull.

All these approaches, however, provide a coarsmsetaiction of the visual hull. The results can be
improved when multiple image cues, and not onlytiimary silhouettes, are used. The first attempt
has been presented in Fromherz and Bichsel (1@8&Ye volume intersection is combined with a
consistency test based on the luminance of thdspiehe image planes. This basic idea has been
extended by Seitz and Dyer (1997) with thairel coloringalgorithm. Initially the volume
containing the scene is reconstructed by meangrafi@ional voxel based algorithm. Then voxels
are checked for color consistency with the silhtagein the image planes, and inconsistent voxels
are removed from the initial volume. Finally comsig voxels are assigned the colors they project

in the image planes, enhancing the quality andsmabf the object when rendered from a different
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view. Consistency checking requires knowing voxsibility in the image planes. Since this is a
complex problem, some simplifications have beerothiced. If it is possible to establish a
topological ordering of the voxels, that is ifstpossible to sort the voxels in order of visilgilitith
respect to a set of cameras, voxels can be trala@rghis order, guaranteeing that when a voxel is
visited, all other possible occluders have beesaaly checked. An example is when we have a
single camera, Fuchs at el. (1980), or when alttmeras lye on the same side of a plane, Langer
and Zucker (1994). In their work, Seitz and Dye&991) demonstrated that a multi-view visibility
ordering exists for particular camera configuragiathat is whei® lies outside the convex hull of
the optical centers of the cameras.

Those pioneering works focused the attention okthentific community on the so-called shape
from photo-consistency problem, whose main recentributions are detailed in the following

sections.

1. Space Carving

Space carving has been proposed in its originattitation by Kutulakos and Seitz (2000). This
method addresses the problem of computing an unkist\ape from a multiple set of colored
images taken at arbitrary viewpoints. It takes extoount several image and object cues, like
parallax, occlusion, scene radiance, shape con&masmage correspondences.

First, the authors prove the existence phato-hull which is a shape subsuming all the class of
objects having appropriate reflectance propertiag seen from any of the specified viewpoints,
produce the same input image. This can be dondreariag the reconstructable objects to belong
to the particular subclass of objects whose ra@idmection is locally computable (or, in other
words, when global effects of illumination, likefdise to diffuse, diffuse to specular and specular
to diffuse interactions can be neglected, as veefirmdows and transparencies) and also accordant
to a known radiance function. The existence ofpiheto-hull is also in accordance with the fact

that 3D shape reconstruction from a set of imagesiunder constrained problem, since multiple
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shapes can be consistent with the set of inputesathis problem has been discussed thoroughly
in chapter Il for silhouettes.

Second, the authors give a set of consistency,ndetefine when a point is consistent with a sng|
image, when a set of objects is consistent witingles photo, and finally when a set of objects is
consistent with the full set of input images. Paohsistency is given when the point does not
project on the image plane on a background pixelisncomputed radiance is equivalent to the
color of the image pixel. Objects consistency wébpect to a single photo is given when all not
background pixels correspond to consistent po@lgects consistency with the full set of input
photos is given when the objects-photo consisténgyaranteed for every input image. These rules
are used to characterize the photo-hull, and ard usthe photo-hull reconstruction.

The process of photo-hull reconstruction is peridrby effectively carving an initial volume and
repeatedly scraping off small portion of volumeiluhie final shape is reached. The initial volume
is supposed to consist of a set of voxels. WheoxaMs checked to be not consistent, it is removed
from the volume, until no more inconsistent voxals found. The contribution of this work is how
visibility is dealt with. All the cameras are cotsied, and no particular configuration of the
position of their optical centers is required. @it the general case there is no topological oerder
of the voxels with respect to the viewpoints, vexale traversed in a visibility compatible order by
means of a multi plane-sweep algorithm, along th&tiye and negative directions on the three
coordinate axis, and consistency is checked usihgtbe cameras lying on the positive side of the
plane. A different approach has been used in Cisiberet al. (2000). Their algorithm iterates
through bounding voxels, until no more inconsistexels are found. Visibility is determined

using all the cameras at the same time exploitipgricular data structurlgyered depth images
(Shade et al. 1998) to update visibility constiiwhen inconsistent voxels are carved away.

A similar approach, presented by Carceroni and kts (2001), usesurfels or surface elements,

instead of voxels to reconstruct the surfac® of
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As can be seen from this description, the finaliitds not an exact reconstruction of the photd;hul
but only its approximated description in termstefdomposing voxels. Therefore, the quality of the
approximation is related to the size of the voxaig] no exact geometric description of the final
shape is given. Another problem is given by thetptomnsistency measure used to decide when the
voxel should be eliminated. In the work of Kutulakeind Seitz (2000) this measure is based on the
color variance of the projections of the voxel dirttee image planes, which is thresholded to decide
when to retain a voxel. The drawback of this metisatiat it is very sensitive to the global
threshold selected, and that a single threshaldligely to give optimal results for complex scenes
Therefore, other researcher have used differenbappes, like in Slabaugh et al. (2000), where the
authors introduce a post-processing iterative nietiwbere voxels are added or removed from the
initial result until the squared sum of the diffeces between the reconstructed volume and its
reprojections on the input images are minimizedthe®aipproaches, Agrawal et al. (2001),
Broadhurst et al (2001), Yezzi et al (2002), Moeigo et al. (2004), use probabilistic approaches,
where each voxel is assigned a probability baseahaappropriate likelihood, and the reconstructed
surface is minimal with respect to a metric defibgdhese probabilities.

Another problem of this approach is the model ofeme reflectivity, and the difficulty of dealing
with specular highlights or textureless surfacdse Work of Yang (2003) tries to overcome this
difficulty by developing a novel photo consistemagasure, valid for both lambertian and specular
surfaces, conjugated with a progressive spacergapgheme that, starting from some reliable
voxels, incrementally add voxels using photo cdesisy, uniqueness and local smoothness
constraints. The basic idea is to defer any datighlmut uncertain voxels until a sufficient amount
of evidence has been achieved. The new photo-densismeasure is based on the assumption that
the surfaces are such that the reflected lightiig modulated by the incident light, like plasticch
glass. In this case, the reflected colors obseyedifferent viewpoint are collinear in color space
that is they form a segment starting from the défgolor to the color of the incident light. This

color signaturein color space is used for evaluating photo coescy.
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2. Image Based Visual Hull

Image based Visual Hull (IBVH), Matusik et al. (2Q0is a method for producing an image-based
rendering of th&/H from silhouettes. The method renders\he from a generic view without
reconstructing an auxiliary representation. Givenimage to create, for each pixel, a ray starting
from the optical centre of the virtual camera istéa 3D. The ray is projected on each reference
image, its intersection with the correspondingaiktte is computed and back-projected on the 3D
ray, and the intersection of all these back-prapastis computed. All these operations are
optimized exploiting the epipolar geometry. Thenpaf the resulting intersection on the 3D ray
closer to the virtual viewpoint, which is a poiribnging to the surface of the visual hull, is then
assigned the color of the projection of the poimtlee image that is more similar to the virtuahwie
The similarity measure is given by the angle betwtbe visual hull point and the desired camera
centre. An example can be seen in Figure 73, whe&mdual image is created from two input

images.

Virtual image —{~

£ pixel (i)
[P

Vyirt

Figure 73: the ray from pixel (i,j) is projected from the desired view, then it is projected on the put images with
the corresponding silhouettes; finally their back-pojections in 3D are intersected, and the closesbnt to the
virtual view is rendered on the virtual image
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The Image Based Photo Hull (IBPH), by SlabaugH.€2803), combines the IBVH and the photo
hulls approaches. The drawback of IBVH is thas ihot very accurate, since it reconstructs only the
visual hull. On the contrary, the photo hull isghter bound to the obje@. Therefore the IBPH
combines the efficiency of the IBVH and the imprdveconstruction capabilities of the photo hull.
The idea of the algorithm is simple. First, the BYé reconstructed. Then, for each ray, the photo
consistency of the closest point on the visual isudivaluated. If the point is inconsistent, theapo

is shifted away from the virtual camera center efrall portion, until a consistent point is found o
the entire ray is discarded as being totally ingiaat. The advantage of this method is also that
only the portion of the photo hull visible from thietual camera is effectively reconstructed. The
disadvantage is the loss of performances. On giteitd data, as shown in Slabaugh et al. (2003),

the IBVH runs at 24 frames/sec, while the IBPH rbasveen 6 and 7.5 frames/sec.
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