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A Foreword (and more)

The Foreword...

The pages which follow were originally intended to provide a minimum of references
for the series of introductory talks I delivered at the Departamento de Matemdtica of
the Universidade Federal de Pernambuco at Recife, about Intersection Theory over
Moduli Spaces of Curves, during the “Eschola de Ver8o”, Janeiro 1998.

The purpose of these notes is not to substitute the several excellent books {such
as, e.g. the very recent [45]) or research papers on the subject, available in the current
literature, listed more or less in the references that do not pretend to be exhaustive.
Rather, the aim is to focus on the most basic techniques one needs for computing
classes in the Chow ring of M,, the coarse moduli space of smooth projective curves
of genus g, and M, its Deligne-Mumford compactification.

Here is a list of problems (or, rather, exercises) that shall be studied in the notes.

1. How many elements, running in a pencil of lines of P2, are tangent to a plane
conic?

How many reducible fibers may one find in a pencil of plane conics?

. How many flexes does an irreducible plane curve of degree d have?

. How many bitangents does an irreducible smooth plane quartic curve has?

. How many Weierstrass points does a smooth curve of genus g have?

=

. How many hyperelliptic fibers may one find in a general proper flat family of
smooth curves?

7. How many fibers with a special Weierstrass point may be found on a flat proper
family 7 : X—S of smooth curves of genus g 7
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8. How to compute divisors classes in M, expressing loci of curves having special
‘Weierstrass points?

9. How to find relations between the tautological classes of the moduli
space M,? !

The most important goal of these notes is to convince the reader that all the above
exercises may be solved essentially by using the same embarassingly simple method,
which always amounts, more or less, to be able to compute determinants.

Although there is no claim of originality about the contents of these notes (with
the possible exception of Chapter 7), the presentation of the subject may offer some
different points of view here and there. The core of the notes is certainly formed
by the chapters where is developed the formalism of the jets extension of relative
bundles. The extra material beside that (like the quick review of intersection theory
or of the (sketch of) construction of the Deligne Mumford compactification of M, via
Kuranishi families) has been included in the attempt of trying to keep the lectures as
self contained as possible.

For the detailed description of the topics here treated, we refer to the table of
contents below as well as to the very first chapter, where one tries (not necessarily in
& successful way) to get started in the smoothest way possxble by searching for the
classical roots of current problems.

..and more.

What is going to follow are acknowledgments for all people and institutions that
helped me to write this yet informal version of the present notes.

My first debt of gratitude is with Elizabeth Gasparim: by making possible my
visit to Brasil, she forced me to give a deeper look at the foundations of the subject I
am currently working on. These notes are the natural output of her kind confidence
in me and her fine e-mail organization job of my trip. Moreover I got a great benefit
from her detailed reading of the notes, which let me to correct several mistakes and
to improve the shape of some english sentences.

For many enlighting discussions I have to express my gratitude to Prof. Israel
Vainsencher. My gratitude is especially for warmly encouraging me to keep working
on the subject of these notes and to communicate me his insight on many problems
which I am still interested in.

This is an exercise only for small values of g, such as g = 3,4,5 (Cf. Chap. 8).
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Many thanks also to Joaquim Kock (for BTEX advices and a careful reading of the
notes, suggesting me several improvements) and to Prof. Anders Kock for explaining
me some category theory and a couple of nice examples of fine moduli spaces.

Back to Italy. I have fo express my gratitude to my colleague and office-mate
Caterina Cumino. I shared a graduate course with her, at the University of Torino, on
the same subject of these notes. She helped me quite a lot to improve the manuscript
with many remarks here and there. Thanks are due to my collaborator F. Ponza for
discussing the matter treated in the notes and for suggesting me several improvements,
and to Tommaso de Fernex who immediately picked up, at a very first reading,
two quite bad mistakes in the first pages of the notes. For sharing with me many
mathematical discussions, I want also to thank my good friend Jorge Cordovez.

Two very bad mistakes in the substance of the notes were detected by Prof.
Edoardo Ballico, who read them with special care. This is a wonderful opportunity
for me to express to him my thanks for his mathematical support and, above all, for
his precious friendship which I enjoy for eight years at least. Thank you very much
for your support, Edoardo.

Very special thanks are due to the unknown Referee: his careful reading and his
sharp criticisms helped me to substantially improve the shape of the notes.

I am sincerely grateful to the institution where I work, the “Dipartimento di
Matematica del Politecnico di Torino” and to the people working there for allowing my
stay abroad during the Recife Summer School. I thank my department for providing
me the use of computers and printers, Mr. Dino Ricchiuti and Mrs. Rosa Rogano for
helping me in doing some xeros copies of the manuscript.

Thanks a lot to my beloved mentor, Prof. S. Greco, for having accepted, on the
behalf of the Algebraic Geometry group of my Department, to partially support my
trip in Brasil. Without such a support it would not have been possible.

I want also to acknowledge many people who encouraged me in keep trying to do
mathematical research or gave me moral support in several occasions. Among them I
want to list Prof. G. Monegato, the Chairman of the Dipartimento di Matematica del
Politecnico di Torino, my dear friends Prof. Aristide Sanini, Prof. Paclo Valabrega
and Prof. Marco Codegone. For the same reason, many thanks are also due to Prof,
Edoardo Vesentini. .

Thanks also to my colleague Letizia Scuderi for her precious friendship and for
the joy she communicated me during many chats.

Last, but absolutely not the least, I wish to express my special gratitude to Renza
Cortini. Renza has certainly done a wonderful job in reading the first part of the pre-
liminary form of this manuscript and in suggesting many improvements. However,
the most important help I got from her was her constant and enthusiastic encourage-
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ment to pursue this project, especially in the bad moments when I felt tired and/or
in lack of selfconfidence. Her friendly support has been the key that helped me to
keep working on these Recife Notes. Grazie Renza.

For the several misprints, mistakes, omissions, misunderstanding and more, still
left in this final form of the manuscript, I am, of course, the only responsible.

Questo libro é dedicato a Nadia, perché se non l'avessi trovate e poi smarrite, non
sarebbe mai stato scritio.

_ Torino, 1 Marzo 1999
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Chapter 1
Getting Started

1.1 Generalities and Notation

1.1.1 The projective space P¢: =: P"

In these lectures we shall only deal with projective spaces defined over an algebraically
closed field of characteristic 0 which, by the Lefschetz principle ([74], p. 164-165) shall
be identified throughout with the field of the complex numbers C.

For our purposes, it is often useful to think of P" as a compact complex variety
which admits the following celluler decomposition:

PP =A"UP" = A"UA™ T UP" 2= A"UA™' U...UATUA®, (1.1)

A" being a point. Of course, A" will denote the n-dimensional affine space, again
thought of as a scheme over C, i.e.

A" = Spec(C[X3,..., X)),

or, in the language of schemes, the C-valued points of the universal affine n-dimensional
scheme A% = Spec(Z[X1, . .., Xp]), so that

A&E = A% xSpec(Z) Spec(C).

The above decomposition (1.1} recalls the well known classical fact that P may
be seen as an affine n-dimensional space A™ with the addition of an extra hyperplane,
called the hyperplane at infinity, which is itself a projective space of lower dimension.

3
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A closed irreducible algebraic subvariety of P* may be thought as the zero set locus
of an homogeneous prime ideal in the ring C[Xo, ..., Xz]. Moreover, recall that the
degree of a closed irreducible subvariety V of P is defined to be the cardinality of the
set of points of intersection between V' and a general linesr subspace of complementary
dimension.

1.1.2 The intersection ring of P"

We want to learn how to attach a Z-algebra to each n-dimensional projective space
P*. We shall call such an algebra the éntersection ring or the Chow ring of F* and we
shall denote it as A*(P™). As a Z-module it is generated by all the closed irreducible
algebraic subvarieties of P®. The name “intersection ring” has to do with the fact
that such ring should reflect the intersection properties of subvarieties of P". For
example, we would like to say that, in %, two lines intersect in a point, while three
lines (in general position) do not intersect at all. In P" we would like to say that two
hyperplanes intersect in a codimension 2 linear subspace or that a hyperplane and a
quadric hypersurface do intersect along a subvariety of codimension two of degree 2.

Here is the way to formalize such an intuitive idea. Start by setting, by definition:

£(F") = @,z 4®"),

with A([P*) = 0 for each i < 0 and for each i > n (still by definition). We are hence
dealing with the finite direct sum:

AP = AP & AYEY) @ ... ® A™(P"), (1.2)

where we must now declare what we mean by each degree of the above Z-module. It
is a positive integer. The codimension j of V' is the height of the prime ideal in the
ring A(U) defining it on any affine open subset U of P, and the dimension of V is
i =n — j. We require that to each closed irreducible subvariety V' of codimension j
in P" corresponds a generator [V] of the module A7(P"), which shall be said to be
the Chow class of V in A*(P"). Let H' be any hyperplane of F*. Abusing notation,
the Chow class (the class for short) of H' in A'(P") shall be dencted with the letter
H, with no bracket surrounding it, instead of [H’]. We define the Chow ring of P* by
agreeing that all the hyperplanes fall in the same class (50 that H shall be said to be
the class of the hyperplane) and that if V' is an irreducible subvariety of codimension
i in P* of degree d, then [V] =d- H'.
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The last relation implicitly defines the ring structure of A*(P*). In other words we
are claiming that the ring A*(P") is generated by H as a Z-algebra, with the relation
H™ =(. This is the same as saying that:

AP = (I%&Iﬂ).

A cycle in A*(P") is a formal finite Z-linear combination:

[¢] = 3" ailV],

where the ¥’s are irreducible subvarieties of P*, of any codimension. If f¢] € A (P®),
then [¢] is said to be homogeneous of degree i. Of course, by what has been previously
said, any cycle may be expressed as a polynomial in A of degree smaller than or equal
to n, i.e.

[c] = ao[P") + a1 H + a2 H* +... +a,H", @ €Z

where [P"] = H? is said to be the fundamental class of P*. One may set, as a
definition, H".= [pt], said to be the class of a point.

Example 1.1 Let C; and Cyp be two irreducible curves in P2, Then, if L is the class of
a line, we have:
[Cd) - [Ca} = dL - (d'L) = dd'L* = dd'[pt],

in the ring A*(P?), expressing the well known Bézout theorem which says that two irreducible
plane curves intersect in dd’ points, counting multiplicities, where dd’ is the product of the
degrees.

Let [¢] be the Chow class in A*(P"). As we said, it may be uniquely written as a
polynomial:
[el=ap+aH+...+a,HY

The degree map is a morphism of Z-modules:
A)R L AN(PY)—Z

defined as:
Id Han[c] =/Pnau+a1H+...+anH"=a,n.
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In particular, fp» HT = 0 unless 7 = 7, in which case it is equal to 1. This means
that the degree of the class of a point, [pt] is 1. The reason for calling this the degree
will be clear in a moment. Let Pic(P™) be the Picard group of P*, i.e. the Z-module of
all the Cartier divisors of P* modulo linear equivalence, or, alternatively, the group of
all the isomorphism classes of line bundles H'(P", OI’Pn), the analytic Picard group of
P". We ask here to the reader to assume as a fact, which is well known, that Pic(P")
is generated by the hyperplane bundle Op~(1), in the sense that any line bundle on
P is isomorphic to the bundle Cp~ (1)®", for some N € Z.

Then there is a Z-module (iso)-morphism:

¢ @ Pic(P*)— A'(P?)

defined by:
c(Op-(1)) = H

and extended by Z-linearity. If L is any line bundle over P*, hence necessarily of the
form Opr(m), then

¢1(Op=(m)) = mH

is said to be the first Chern class of the bundle Opn(m).

For the informal discussion that shall follow below, let us suppose that X is a
smooth closed subvariety of P* and let ¢ : X — P be the inclusion morphism. Let
us denote by Ox (1) the pull-back bundle :*Opn(1) and set, in a perfect formal way:

a(0x(1)) = a(e*(0p~ (1)) = & (a((Op(1))),

where ¢*(c1(Opn(1))) must be thought of as the class of the divisor on X which is
supported on X ( H', where H' is a hyperplane not containing X. We have the
following identity:

[ a0xW) = [ #(@Op @) = fpa0p 1) 1X) (13)

$0 that the last expression on the right hand side is non zero iff X is 1-dimensional
{a curvel).

The formal rules quoted above shall be used in this section for an informal dis-
cussion about the motivation of the subject to be treated in the lectures. They shall
be explained in a more detailed way in section 4.2,
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1.2 Warming up: Two Exercises of High School
Geometry.

1.2.1 1 - How many lines in a pencil are tangent to a conic?
- A “pumerical example”.

Let C be the curve in the affine space A? defined by the points P(z,y) whose co-
ordinates satisfy the quadratic relation:

24+yi=1 (1.4)

which is, as everybody knows, the equation of a circle (a conic!) in the plane with
center in the origin. Let ¢ be the point of coordinates (0,2). Of course @ € C. The
family of affine linear forms parametrized by the homogeneous coordinates [, 8] of a
projective line,

az+b(y—2) =0, (1.5)
represents a pencil of line through @. As well known, by Bézout's theorem, the
general line of the pencil intersects C at two distinet points. We wonder about lines

that intersect C at two coincident points, corresponding to the tangent lines to C
belonging to the pencil. This is an easy exercise.
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LS

penci l
axtbly~-2>=0

/ ‘\\_u/ \ calt s
'&\
{0y x2eyletd

® —~¥3(y-2>=0 x +73(y-2>=0

Wlog !, we may assume a % 0. Then equation 1.4 is equivalent to:

a?r? + a%y? = a2,
but, by (1.5}, a%? = b?(y — 2)>. Hence the y coordinates of the intersection points
of the line Ly of the given pencil with the circle are the solutions of the quadratic
equation:

Bly—2)2+a%? —a®=0,

ie.
(8 + o)y — by +4b° — a® = 0.
The tangent lines of the pencil correspond to values of a, b where the discriminant:

—i— = 4b* — (% + a*)(4b® — a?) = a*(a® — 3b%)

vanishes. Since a # 0, this gives b = ++/3a/3, so that there are exactly 2 tangent
lines at C in the pencil. The tangent lines are exactly Ly .y and Ly_/5y. We hence
solved a very easy enumerative problem.

1'Without loss of generality!
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- Never solve such a simple exercise as follows!

Now we shall try to solve the previous simple exercise with (just a little bit) more
sophisticated technigues. The reason is not that we want to get the bad habit of
solving easy exercises with difficult methods. Rather, the purpose of the speculations
below is twofold: on one hand we want to show techniques which may be easily
generalized to the more interesting {and definitely more difficult) situations which
we are interested in this course while, on the other hand, it will be clear that the
enumerative geometry on the moduli spaces of curves has very classical roots.

To begin with, we shall warn the reader that here some elementary results on the
cohomology of the projective space and a minimum of prerequisites on line bundles
over algebraic varieties shall be assumed.

Recall, first of all, that the homogeneous polynomial ring C[Xg, X1, X2] may be
seen as the symmetric algebra of the 3-dimensional C-vector space HO(IP?, OPz(l)).
As a matter of fact, it is well known that H°(P", Opn (1)) is isomorphic to the space
(C*+)Y = C)[ Xy, X1, .- -, Xy] of linear forms on C**!. In our present situation we
have:

C{Xo, X1, Xz] = SnzoSym™(H°(P?, Op2(1)))-

For the reader convenience, it is worth to remind that the homogeneous part
Sym"(Ho(Pz,O]Pz(l)) is the same as HO(IP"’,O]P,z(n)), which is isomorphic to the
vector space of the homogeneous linear forms of degree n in Xp, X1, Xz, and where
Opz(n) = Opa(1)®".

Hence we shall identify an irreducible conic C in P? with the closed zero subscheme
Z(F) of an irreducible F € HD(]I”"),OP:@)). The ideal sheaf of C is isomorphic to
Op2 (—2). Let i : C < P? be the inclusion morphism of C in P%. Now, as it should be
known, Opz(1} may be thought of as a bundle over P, that is the dual of the most
natural line bundle living on it, the so called teutological bundle TIPz 2 Each non-zero
global section of Opz(1} selects {via the zero-scheme of the kinear form representing it)
a unique line of P2. Hence, the pencil of lines passing through 2 given point of P? may
be thought of as a 2 dimensional linear subspace V' of HO(P?, Ope(1)). Let us denote
by Oc(1) the line bundle over C which is the pull-back i*Opa(1) of Opz(1) via i. We
contend that the space of the holomorphic giobal section of Og(1), HY(C, Oc(1)), is

2 The tautologice! bundle over IP" has the feature that the fiber over each point is the line of
C™"? represented by the point of P™ itself, whence the name.
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isomorphic to HO(P?, Op2(1)). This comes out by analyzing the exact sequence:
0—0p2(—2)—0Ope—+0c—0 (1.6)
that may be safely tensored by the sheaf OIP"(I) (it is locally free!ll), getting:
0—Opz(—1)—0p2(1}—0c(1)—0. (1.7)
‘Writing down the long exact cohomology sequence:

00— HO(IP2,OP2(—1)) —»Ho(ﬂﬂ,Olpz(l))—+H°(P2,Oc(l))—>
— HI(IPz,Opz(-—‘l)) —r,

using the fact that HO(P?, Ope(—1)) = 0, H*(F?, Opz(—1)) = 0 and that H*(F*, Oc(1)) =
HY(C,0g(1)), we get the desired isomorphism:

Ho(]lﬂ: OIP’(]')) = HD(Ca 00(1))1 (18)

explicitly described by the map:
o dl- (1.9)

The geometrical meaning of the isomorphism (1.8) should be quite clear. An element
of the left hand side vector space is & linear form ¢ = 2pXp + 21X +apX,. Hence it
represents, via its zero scheme Z(¢), a line in P2. The restriction o), means that we
simply limit ourselves to evaluate ¢ at points of C. Now Z(0\,) is & closed subscheme
of C equal to the intersection of Z(o) with C. Let §{Z(0|.)) be the lenght of the closed
subscheme Z(c|,). Since C is smooth, Z(0}.) is a Cartier divisor and §(Z(s,)) must
hence coincide with the degree [, e1(O¢(1)) of the first Chern class of the bundle
Oc(1). One has:

&(0c()) = a(*0p(1) = ex(Op () = L-[C] = 2pf],  (1.10)

where in (1.10) we used the intersection product of the ring A*(P?) (see 1.1.1), and
where [pt] is the class of a point. The total degree of the section & is hence:

deg(0) = [ 20pt] = p.(2lpt]) = 2,

where p : C—Spec(C) is the structural morphism from C to Spec(C). Hence we
know that each section of H°{C, Oz(1)) has degree 2 (indeed, we already knew that,
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because of our high school years). Hence each line of the plane determines a pair of
points on C. Conversely, each pair of points on C, possibly coincident, identifies a
unique line of P?, possibly tangent to C. This explains geometrically the isomorph-
ism (1.8).

Because of the 1 — 1 correspondence between HY(C, Og{1)) and H °(OIP2(1)) and
since the intersection points of a line with C may be viewed as the zero scheme of
the section gotten by restricting the given line to C, it follows that the tangent lines
correspond to sections ¢ of H%(C, Oc(1)) such that Z{c) consists of two “coincidents”
points. Put otherwise, we want that ¢ has a double zero on €. Even in this case
we may proceed according to the taste. We may argune in an algebraic way, involving
maximal ideals of regular local rings of points of C, or we may rely on our analytical
intuition. We shall follow the latter because it may help to understand the underlying
ideas of our future computations, keeping at a minimum the technical prerequisites.
From now on, hence, we shall use the fact that our conic C is an honest Riemann
Surface.

Getting back to our original problem, the situation is now as follows: we are given a
pencil, P, of lines in IP? passing through a point which does not belong to C. This pen-
cil corresponds to a 2-dimensional C-vector subspace of sections V C HO(P?, OPz(l))
which, via the isomorphism (1.8) may be identified with a 2-dimensional C-vector
subspace of H%(C, O¢(1)), denoted, abusing notation, by the same letter V. The
tangent lines of P correspond to the sections o for which there exists P € C such
that ordpo > 2.

By the latter sentence we mean the following. Let z : U € C—C be a local
coordinate chart around P such that z(P) = 0, trivializing O¢(1) over Op. We shall
often write (U, z) to denote such a chart. Then, in the neighbourhood U, one has:

g, = s(z)vy,

where s € Oo(U) (i.e. s isa holomorphic function on U) and vy generates H°(U, Oc(1))
freely over Og(U). As a holomorphic function on U, s admits a Taylor series expan-
sion around z = 0, and its order of vanishing at z = 0 is, by definition, the order
of vanishing of the section ¢ at P. Moreover o vanishes twice at P if and only if

3(0) = 0 and §'(0) = d—S(O) = 0. One may check, in fact, that such a definition does

not depend neither on the local representative s nor on the local chart chosen. Let
then o € V be a non zero section vanishing at least twice at P. If {o1, 02} is 2 C-basis
of V, then:

0 = @101 + Q20%,
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for some @;, a2 not both zero. Let us set, in the given local chart (U, z), a3, = si(z)¥,
with s; € Og(U). Then:
5(0) = 0= 0a15:1(0) +a28:(0)=0 and (1.11)
F0) = 0= asi(0) +aas5(0)=0
The system {1.11) has a non trivial solution if and only if the determinant:
‘ s1(z) s2(2)
si(z) sh(2)
vanishes at #z = 0. The determinant (1.12) is a holomorphic function on U, which
should behave in a nice way when changing the local representation. In particular,
we would like that its vanishing at a point in a local coordinate chart implied its
vanishing at the same point in every local coordinate system. This is actually the
fact. But then, such a determinant should be the local counterpart of a global object,
which must describe intrinsically our situation.
Here is how things should work in Hegven. Let us consider the trivial family
p : C—Spec(C) together with the following map of vector bundles:

c x v 1os)
Pri

(1.12)

T;) (1.13)

Spec(C)

We have not defined the vector bundle J'Og(1) yet, but we shall define it by
describing the map D. To each pair (P,o) € C x V we associate D(P, o) = (Do)(P).
If (U,z) is a local holomorphic chart on C around P, Doy, is represented by the
pair (s(z),s'(z)) € Oc(U)®?, where, as usual, the derivative is taken with respect
to the local parameter z and o), = s(z)¥y. Suppose now that (Ua, za), (Us, 25) are
both trivializing charts of O¢(1) with respect to Oc, and such that U, NUg # 0. If
lag : Ua NUg—>C* is the transition function with respect to this intersection, one
has:

Olyanuy = Sate = 31,
with

8 = lgaSa {1.14)
dza dza

d d ,
E&;(S") = '&}'{;(lﬁqscz) e saSa + Ez;lﬁasa

!
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We may organize the relations (1.14) in a matrix form, by setting:

. lga 0
(s = | B2 2 |- (sco ). (115)
Ba dZﬁ Bex dz;;

Equation (1.15) so defines a O¢(Us N Ug) valued matrix M,z which, as the reader
may easily check by reminding the celebrated chain rule of the elementary calculus,
on triple overlapping U, N U N U, satisfies:

MogMpy = Moy,

i.e. {Mag} € ZHU,Glo{Oc)), where U = {Us}aca is an open covering of C trivial-
izing Oc(1). The Cech cocyecle {Map} hence defines a rank 2-vector bundle, which is
exactly the one we denoted by J*(O¢(1)) in the diagram (1.13). We now claim that
the points of € where we may find tangent lines of the pencil are the degeneracy locus
of the map D. In fact we have just proved that & local representation of the map of
vector bundles (1.13) is given by:

— (5 82
D|u=(s; 812)- (1.16)

$1 S2
’

This map has maximal rank <= |3, # 0. Hence we sre claiming that: the

1 Sz
locus of points of C such that there exists a non zero section o € V' vanishing twice

at P, coincides with the locus where the vector bundle map D drops renk.

Let us denote this locus by Z(D): the notation is consistent with the fact that we
are led to consider the zero locus of the holomorphic function occurring at the right
hand side of (1.16) - & determinant.

Roughly speaking:

§ {linesof P tangentto C} =
§ {pointsof C for which3¢ € V : ordpo > 2} = §{Z(D)),

which rigorously may be rephrased as follows:
1(Z2(D)) = fC[Z(D)] = fccl(J‘Oc(l) -V®0s) = [C alJ'0c(1)).  (1.17)

Formula (1.17) may seem quite obscure. And it is. In fact we have used tools which
have not been introduced yet. First of all we used the so-called Porteous’ formula (see
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Section 4.3), and then we used the fact, not explained yet, that, in our case, the Chern
polynomial (see section 4.2) is a homomorphism between the Grothendieck group of
locally free sheaves on C and its Chow ring A*(C). Hence, the second “integrand”
of (1.17} has been computed as:

e1(J'0c(1) = V  0¢) = c1(J*0c(1)) — eV 8 Oc) = ea(J*O0c(1));

using the fact that the first Chern class vanishes on trivial vector bundles. By the
way, for the time being, we shall content ourselves to evaluate the very right hand
side of (1.17). Let us start by recalling that if F is a rank r vector bundle, then
&1(E) = e1(A"E). The bundle A"(E), the top exterior power of &, is often called the
determinant bundle sssociated to E. We are hence led to compute:

a(J'0c(1)) = a(A*(J*Oc(1)))-

But A%(J'O¢(1)) is a line bundle whose transition functions are the determinant of
the transition functions of the Mgg. In other words, if {Mag} € Z*(Y, Gl2{Oc))},
then {det(Ma.g)} is the defining cocycle of the line bundle A2J*Og(1). Hence, looking
at (1.15), one has that, relatively to the covering {Ua}, the transition functions of
A2JY0c(1) are {Ua, lfw%g}, i.e. they are the transition functions of the line bundle:

Oc(l)®2 ® Ko = Oc(l)®2 ® Og(~1}) = Oc(1).

Hence:

per(Oc(V) = [ ex(Oc(1)) =2

as expected.

- Revisiting the numerical example in a numerical way.

Let us go back to the numerical example we started with. After some easy algebraic
manipulations we got the explicit equations of the tangent lines to the circle 2yt =1
belonging to the pencil
az + b{y — 2) = 0. The equations of the tangent lines were:

=Bz +y—2=0

We want to show — not because we doubt it, but because we want to get familiar with
maps of vector bundles ~ that we can get the result by computing explicitly the locus
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where the map D of (1.13) drops rank. We are working in the affine open subset
Xo # 0 of a projective plane with homogeneous coordinates { X, X7, X;), where we
set z = X1/Xo and y = X»/Xo. Hence 22 + y* = 1 is the affine piece of the conic
Z(XZ — X} — X3). In such an affine piece, a basis of the vector space V representing
the pencil of lines through @ = (0, 2) is given by:

g1=r and oa=y—2

We shall denote by the same expressions their image in H*(D (X)), Oc(1)) via the re-
striction isomorphism (1.9) (D(Xo) obviously means
P2\ Z(Xp)). The locus of points P of C' where the map D of (1.13) drops rank
have coordinates satisfying the following equation (see {1.16))

;”, yy,z‘ =0, (1.18)
where the derivatives are taken with respect to some local parameter. Now, for all
points P such that y # 0, we may choose = as a local coordinate, by virtue of the
implicit function theorem. In fact, at such points, 9—(’—279"'3&1 =2y # 0 and 50 y may
be locally expressed as a function of z in a neighbourhood of each point Pp(zp, 1) € C
such that 3y 5 0. Now, the only points on the circle C, having y = 0, are (£1,0}. But
at these two points the tangent lines to the circle are x = %1, which do not belong
to the given pencil. This means that, for finding the searched points of tangency, we
may safely use the parameter 7 itself. Hence, equation (1.18)} can be simplified to:

z y—2|_
v L

But since {z,y) are the coordinates of a point running on the given circle, by differ-
entiating the expression 2% 4+ y* = 1, we get the relation:

z+yy =0,
i.e. ¥ = —z/y (we are using now that y # 0). Hence we must solve the system of
stmultaneous equations:
3 22l
=0,
1 —zfy (1.19)

2ryi=1
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1
The first equation, keeping the second one into account, yields y = 5 hence z =

3
L3
1f one writes — as learned in the high schools — the equations of the lines joining
X ) V31 -3 1
the point }(0,2) and, respectively, P 53 and P 53 one gets exactly

the same we found at the beginning of this section.

1.2.2 II - How many reducible fibers are there in a pencil of
plane conics?

Let F' € HO(P?, Op2(2)) be an irreducible quadratic form. The associated zero scheme
in P? corresponds to an irreducible conic. The space of all the conics is parametrized
by a (P%)Y = P{H (P?, Op=(2))). Let U be the set parametrizing the smooth conics.
We claim that U is a Zariski principal affine subset of (P®)". In fact if:

2
C=Z(3_ 05X:X;),
i,=0
and considering [ai;]o<icj<2 8s homogeneous coordinates of (P®)Y, it turns out — by
high school geometry — that the reducible conics come out from the relation:

det(a;;) = 0.

Hence (P*)¥ \ Z(det(a;)) = D(det(as;)) = U is a principal affine open subset of (P°)".
The boundary of U, 8U, is hence the cubic hypersurface det(as;) in (P°).

Of course U turns out to be an affine scheme over Spec(C), but, being affine, it is
not complete or, otherwise said, is not proper over Spec(C). Anslitically, this means
that there exists at ieast one holomorphic function ¢ : D*—U, where D" is the punc-
tured disk
{\ € € :0 < |]A] < 1}, that cannot be extended holomorphically at z = 0. For
instance, consider the map:

{C:D‘——>U
}\l—->OA

where C) is the curve whose equation in P? is X1 X5 + MXoX2 — X}) = 0. For each
A # 0, Oy is an irreducible conic, but extending the map C' in a holomorphic way
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would mean to fill the puncture with Cy = Z{ X, X2}, which is reducible. Hence we end
out of . Notice that because U is affine, we may conclude that any family of conics
parametrized by some positive dimensional complete variety must have reducible
fibers (the only complete subvarieties of the affine spaces are points!). As a matter
of example we may hence try to solve the announced exercise.

We may try to compactify U, i.e. to find a proper scheme over Spec(C) which
contains I as a dense open subset. In this case it is very easy to guess what boundary
component should we add to compactify U: it is the cubic hypersurface in (IP%)¥ rep-
resenting the reducible conics. Let us analyze then the following exercise: How many
reducible fibers are there in a pencil of plane conics whose general one is irreducible?
Such a pencil of conics is of the form

AP+ uFo =10,

and high schools methods provide us a simple answer: we look for homogeneous pairs
{A, 1] satisfying the equation:

Acgo + pboo  Agor + oy Aoz + phoz

Agyp + pbio  Aan +pbu Aea+ pbp | =0 (1.20)

Aazo + pboo  Aaor + pba  Aagy + by
where Fl = Eﬂ.in;Xj, Fz = Ebin,;Xj, Qi = Q43 and bij = bji. A quick inspection
of (1.20) clearly shows that we are led to solve an homogeneous equation of third
degree in [A, p2], hence to find three reducible conics in the given pencil.

This last result may be interpreted geometrically as follows. The pencil of conics
may be seen as a projective line in (P®}¥ = IP°. The reducible conics of such a pencil
correspond to the intersections of this line with 8U. To count such intersections we
pass to the Chow ring of P°. A line is equivalent to H*, H being the hyperplane class,
while [8U] = 3H (because U is a hypersurface of degree 3). What we get is:

}{reducible conics in the given pencil} = /]P5 3H-H*= ,/]%D"' 3[pt] = 3.

Now we want to try to make the above heuristic reasoning a little bit more precise.

In fact, our pencil of conics P, may be seen as a proper flat family ¥— P!, where
X is of course a surface fibered in conics. I claim that there is a unique morphism
¢ : P'——P, such that the family ¥—P* fits in the following cartesian diagrom:

¥ — CcPxP

1 1

]Pl — IPS H

¢
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where C is the universal conic defined by:

C = : {((Zo HE xg),(ag{) ta@py s CQppi@il Q19 022)) € ]Pz x P°
Za;jxia:,- = 0}
Recall that saying that the above diagram is cartesian means that ¥ = ¢™(C) =
P! xps (C). In other words the family X is induced, via ¢, from the tautological family

of conics on P?, i.e. the family is gotten by parametrizing all the conics of P? by their
coefficients. The map ¢ is set-theoretically defined as:

¢(ja, b)) = {the point of P® corresponding to X b}
[2.b]

It is injective. In fact ¢{[as, b1]) = ¢([az, bo]) implies that [a1,b1] and [az, bp] corres-
pond to the same conic, i.e. [a1,81] = [@2,52). The map ¢ is 2 morphism in the
category of schemes of finite type over C (i.e. in a down-to-the-earth terms, is a
morphism of varieties}. In fact it is expressed as:

(A i = [Aas; + pbigh,
and this is a polynomial map. Moreover ¢ is the unique map making the above
diagram cartesian. For if ¢ were another, by definition of pull-back family one should
have:
'!g'J*C[a, b] = C‘l.b([a.bl)'
Now, the fiber of Cy( sits over 9([a,b]) € P° and, on the other hand, by the very

definition of the tautological bundle, 9([a, 8]) should be the point of P* representing
the 1-dimensional C-subspace of C?,

Cola) = ¥*Clae) = X -

Hence:

([a, 8]) = {the point of P° corresponding to X 4},
proving the uniqueness of ¢. Therefore, as we already guessed, our family may be seen
as a line sitting in P°. The Chow ring of P° is Z[H|/(H?®), where H is the hyperplane
class, so that the singular fiber of our pencil P correspond to the intersection of a
line P! ~ H* with a cubic hypersurface § ~ 3H. Hence, in the Chow ring of P°, one
has:

[P'] - [S] = 3H° = 3[pt],

i.e. the line representing the family intersects the boundary 3 times. We just showed
that P° is the fine moduli space of all the conics in the plane and that any family of
conics may be seen as a way to embed the base into P°.
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1.3 A more Difficult Problem

1.3.1 Flexes of smooth plane quartics

Let F be an irreducible element of H“(IP‘Z,OIPz(tl)). Suppose also that the ho-
mogeneous ideal generated by (F, 66—;;) is contained in the irrelevant ideal
1/ 01,2

(X0, X1, X2)- Then, the zero scheme Z(F) defines a smooth curve in P? of degree 4
which, by the genus formula, may be thought also as a compact Riemann surface of
genus 3. A point P € Z{F') is said to be a flex if and only if the tangent line L to
Z(F) at P is such that L - Z(F) = 3P + @, as a divisor on Z(F), with @ possibly
coincident to P. Of course we have a very good way to characterize the flexes on
C =:; Z(F). In fact, arguing as in 1.2.1, there is an isomorphism:

HO(P?, O (1)) —H"(C, 0c(1)),

sending o € HO(P?, Opz(1)) in o|;. Hence, P € C is a flex if and only if there exists
w € HYC, 0c(1)) such that ordpw > 3. But let (wp,wy,we} be a C-basis of Og(1),
such that w = ¢awyp + a1t + aaws. Then:

apfo(0) + a1f1(0) + a2 f2(0) =
Opow >3 = aofé(O) -+ G1f{ (0) == azfé(O) =
20fo” (0) + a1 f1”(0) + a2 57 (0)

where, in a local chart (U, z) around P, such that z(P) = 0 and trivializing Og{1)
over O¢g, we set:

wily = fi(2)¥u,

and the derivatives of the f; € Og(U) are taken with respect to 2. Then P is a flex
if and only if the holomorphic function on U:

fo A f
o A £ (1.21)
fo AR

vanishes at z = (. The equation (1.21} is often said to be the local wronskian
associated to the holomorphic C-basis (wp,wr, wz). By the way, as seen in 1.2.1, what
comes out is that the holomorphic function (1.21} is the local representation of a map
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of vector bundles denoted by D? as in the following diagram:

C x HYC,00(1)) 2 2oc)
ory
C
lp
Spec(C)
Again we shall apply Porteous’ formule, not explained yet, getting:
B{ flezes) = fc ex(J200(1) — HYC, 0c(1)) ® Oc) = fc er(J20c(1)).

We shall use again the fact that e;(J3(O¢g(1))) = ai(AST2(Oc{1))} = c1{Oc{6)).
Hence:

t{flezes} = .[:'cl(Oc(G)) = fcﬁq(Oc(l)) = 6/6_61(00(1)) =.24

a well known classical result {consequence, e.g., of the Pliicker’s formulas).

1.3.2 More geometry and less technique

Let us see, now, how to compute the number of flexes without using Porteous’ formula
but rather a little bit more of geometry. A smooth plane quartic, as said in 1.3.1,
is a Riemann surface of genus 3. By the theory of edjunction [38], dencting by
¢: C — P? the immersion morphism of C in P?, we have that the pull back bundle
v"Ope(1) = Og(1) is nothing but the canonical bundle K¢ of the curve C. This is

because the family of lines of P? induce on the quartic a family of divisors of degree
4 (the intersection of the lines with the quartic C') parametrized by a P?. Hence the
lines of P? induces on C what is classically denoted as a g2. But, as well known, there
exists a unique g§;_12 on a curve of genus g and such a linear series coincides with the
canonical series.

To further clarify the situation let us fix an open covering ¢ = {(Uy, 24)}, where
# : Up—C is a local coordinate and each U, trivializes K¢ over Og. Then we may
assume that the generator vy, of H°(U,, K¢) over H%(U,, Oc¢) is nothing but the
differential dz,. Thus, if w = (wy, w1, ws) is a C-basis of H°(C, K¢), we may write,
on each U,: :

Wy, = fa(za) ~dze = (fa,g(za)dza, fa,l(za)dza, fa,2(za)dza);
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so that the local wronskian relatively to a given U, is:

f o, f a,l f «,2
3
fao  Jar  Jan

a0 flag oz

As usual the derivatives occuring in (1.3.2) are taken with respect to the coordinate
Za

Walza) = £(2) A F2a) AN (2q) =

Exercise 1.1 Show, by a straightforward use of the chain rule for the derivative of the
composition of functions, that the local wronskians W, and Wj are related by:

dz, 8
Walza) = Wp(zs) - (d—z:) (1.22)

The above exercise, once solved, tells us some nice things. First, that the vanishing of
W, at P € U, implies the vanishing of Wy at P for each Us containing P. Moreover,

for each pair (¢, £),

dz, .

E‘;ﬁ' . Ua I 5—-—)@
are the transition functions of the canonical bundle. It follows that the collection
{(Us; Wo)taca (Wa € Og(U,)) defines a holomorphic section of the sixth tensor
power, K&, of the canonical bundle K. Such a section defines a Cartier divisor on
C. Its degree, as seen already, corresponds to the degree of the first Chern class of

the bundle KE°, i.e.
f el (KE5) = 6] e(Ko) =6-4=24
c c
and the result is now achieved.

Exercise 1.2 Let C; be a smooth plane curve of degree d. Using the Clebsh formula
d(d — 3) = 2g — 2 relating the genus to the degree of the curve, show that the number f of
the flexes of Cy, counted according to multiplicities, is given by:

F=3d(d—2)
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Exercise 1.3 Weierstrass points on a curve of genus g
Let C be a smooth projective curve of genus g > 2 defined over C (a Compact Riemann
Surface). Let L € Pic(C), that is L is (the isomorphism class of) a line bundle over C.
Suppose that k%(C, L) = dimgH(C, L) > 0 and that the degree of L is d (by this we mean
that each holomorphic section has exactly d zeroes counted according to the multiplicities
or, if we like, [oe1(L} = d). Let V € HYC,L) be an r + 1 dimensional C-subspace of
HYC, L). We say that the pair (L, V) is a g} on C. Let P be a point of C. For each non
negative integer n, set:
V—nP={oeV:ordpo>n} (1.23)

We say that P is a ramification point of the gj = (L, V) iff:
dimp(V — (r+1)P) > 0.

1. Show that the total degree wt(g]) of the ramification points of the g7 is given by the
Brill-Segre formula:
wi(gh) = (r +1)d+ (g— Vr(r+ 1}.

The ramification points of the canonical series, i.e. of the unique g.f,';_lz living on &
that coincides with (K¢, HY(C, K¢)), are said to be the Weierstrass points of C.

2. The total weight, 1.e. the total degree of the ramification divisor, is given by:

wt= Y wi(P)=(g—1)g{g+1).
PeC

3. Show that P € C is a Weierstrass point iff R%(C, Ko(—gP)) > 0.

4. Show that P € C is a Weierstrass point iff there exists n < g such that k%(C, Oc(nF)) >
2.

The non negative integer wit(P) is defined to be as the order of the wronskian section at
the point P € C. It is called the Weierstrass weight of P & C.

1.3.3 DPencils of plane quartics versus pencils of curves of
genus 3
Let us go back to Riemann surfaces of genus 3 such that K¢ is very ample, which is

a way of saying that the canonical system embeds C in IP? as a plane quartic. Once
having carefully thought about the exercises and examples of the previous sections, we
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are led to conclude that the Weierstrass points of a plane quartic are nothing but the
flexes. Let P € C'. We say that P € C is a hyperflex iff there exists a holomorphic
differential vanishing at P with multiplicity (exactly) 4. In other words, there should
exist w € HY(C, K¢) such that ordpw = 4. If C has been chosen in a sufficiently
general way it would not be reasonable to expect that. In fact, such P must be
described by the locus of points of C where the map:

3
HY(C, K) ® 02 J(Ko)
pra
c
11)
Spec(C)
drops rank. As the reader should now be able to guess by himself, if (U, z) is a local
chart of C trivializing K, the local representation of the map D? is given by:

f
fl
Dlsu I
£

where w is a C-basis of H%(C, K¢) and w),, = fdz. Now, the fact that, as mentioned
earlier, K¢ is very ample implies that rank(D®) > 2ateach Pe C. f Pe Cisa
hyperflex such a rank has to be exactly 2 and by the Kronecker rule that means that
at least two 3 x 3 determinants must vanish. The hyperflexes are cut out by two
independent equations (in fact it is easy to construct a gquartic having a flex which
is not a hyperflex). Hence the hyperflexes have expected codimension 2. This is the
reason why we should not expect to find a hyperflex on a sufficiently general quartic.
Actually, this is a consequence of a theorem which says that the general curve of
genus g = 3 has only normal Welerstrass points.

But then, we may ask ourselves the following question: let ¥—P* be a pencil of
plane quartics such that the general fiber is a smooth quartic with only ordinary f
lexes: how many fibers of such a family are quartics having at least one hyperflex?
This problem is in the same philosophical streatn of the question suggested in section
1.2.2, but more difficuit. The reason is, first of all, that in our pencil we should expect
non-isomorphic fibers (in the holomorphic category) and even singular fibers. The
latter, in particular, suggests that the space {whatever we mean by this word) of the
smooth quartic may not be complete. Actually this is the case and we advise the
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reader to look at the paper [17] for a complete argument. Hence, over such singular
fibers the map D® may give us some problem. May be not, but who knows? Moreover
we cannot argue in a very uniformly way as we did for the pencil of conics. To look
for fiber with hyperflexes we must use all the canonical bundles of all the fibers and
hope to be able to glue them together to have something global (a lire bundie? Yes,
a line bundle) on the total space of our family. More generally we may ask a even
more difficult question : let £—P* be a proper flat family of curves of genus 3 such
that the general fiber is a compact Riemann surface which is not hyperelliptic. What
may we say about the fibers of such a family? Are there singular fibers? The answer
is yes: but it is not easy to keep under control the singularities that may appear. Are
there hyperelliptic fibers? The answer is yes, but how to count them? Clearly we may
not expect to be able to embed all our family in the plane: one reason for this is the
existence of the hyperelliptic fibers. Let us sketch briefly the way we may count the
hyperelliptic fibers. First of all recall that a curve of genus g is hyperelliptic iff there
exists a point P such that h*(C, K¢{—2P)) = g — 1. Then we may solve our problem
in case there exists on the total space of our pencil 7 : ¥—P! a line bundle K, that
restricts on each fiber to the canonical bundle of the fiber itself. Then we would like
to write a vector bundle map similar to the one we already saw:

W*W*Kw—'D—" JUK,

x
|=
S
In this case we would be able, in some way to be explained in the next lectures,

to compute 2 class in A(E), let us call it [V H], and then we would push it down on
P' via . to compute its degree over P, that is:

‘/];1 [V H].

This is exactly what we shall try to do in the sequel.

But notice: on the one hand the idea is very simple, being exactly the same we
used to look for singular fibers in a pencil of conics or flexes on smooth quartics. But
on the other hand no object written in the map (1.3.3) has been rigorously defined
yet. For instance: what is the meaning K7 On P' we have reducible fibers and so
we need to know what is the substitute of the canonical bundle for singular curves.
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Secondly, what is the meaning of D, in this case, and what is the jets extension over
a family of line bundles patched together, where pathologies arising from the singular
fibers may very well happen?

Moreover: how to interpret the number of hyperelliptic fibers, or of the fiber with
a hyperflex or of the singular fibers? We may suspect that there exists some universal
space parametrizing holomorphic isomorphism classes of stnooth curves of genus 3.
Inside this space we may imagine “divisors” like the locus of the hyperelliptic curves
or of the curves with a hyperflex and think about the family ¥—P! as an image of
P! embedded in such a space. Then the number of special fibers may be thought of
as the number of the intersections of such a P* with the divisors of special curves.

The space we are looking for is denoted by Mz and, as a set, it is the collection
of all isomorphisms classes of curves of genus 3. Because of the singular fibers that
may occur in a family parametrized by a positive dimensicnal variety, we certainly
know that such a space cannot be complete, once that a reasonable scheme structure
has been defined on it. We may thence try to compactify it: but what is the most
reasonable compactification? Is it a good idea to simply add all the singular curves
of arithmetic genus 37 Let us suppose that a reasonable compactification of M; has
been achieved and let us denote it by 3;. May we hope that such a space is a fine
moduli space i.e. a space carrying a universel fomily of curves such that any other
family may be seen as the puli-back of the universal one? We shall see in the sequel
that the answer to this question is no. We shall look for a weaker solution, by seeing
that there exists a space M, which carries a structure of normal projective algebraic
variety, which is a coarse moduli space for the so-called stable curves of genus g.

The purpose of the next lectures will be to learn to make some intersection the-
oretical computation on such a space and to convince ourselves that the basic ideas
of the subjects have their roots in the classical geometry we studied in high school.

1.4 An appendix: The Quantum Cohomology Ring
of ¥%.

Let P* be the r-dimensional projective space. As for some other smooth algebraic
varieties enjoying some good positivity properties for the anticanonical bundle (like
strict Del Pezzo rational surfaces), see {11]), one may define an intersection ring of
different kind, which has been basically introduced in mathematics by the physicists.
‘We shall not want to be very general, here, but it is probably worth to axiomat-
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ically define the guantum cohomology ring of P2 To this purpose, let A*(P?) the
Z-module generated by the irreducible projective subvarieties of P? (we are forget-
ting the intersection ring structure). We shall try to put an algebra structure on the
Q[{To, T1, Tz]]—module:

A(P?) = A*(P) ®7 QliTo, T, T2,
where Q[[Tp, 71, T3}] is the ring of formal power series in the indeterminates Tg, 71, T.
Define now a misterious function (basically invented by physicists):

2 3d-1 dy
&0 yhy%) = % (@)% + @")s°) +ZN (3)d o (1.24)

where the Ng’s are rational numbers. Strictly speakmg the f defined in (1.24) is not
a function. It is rather a formal power series in the indeterminates (y°, ¢, ¥%) and
this is the meaning of the expression e there occurring. Define now coefficients as
follows:

of

dy'dyidy*’
Let (gi;) be the matrix (®o) that, as the reader may easily verify is exactly the 3x 3

matrix:
0 0 1
(gij) =[0 1 0].
1 0 0

Set (g¥) = (gi;) . Of course, the entries of the matrix (g¥) are the same as the entries
of the matrix (g ) However it is important to make the distinction because it is the
way this construction may be generalized to other situations. Define coefficients:

B = ¢ Oy (1.25)
In the right hand side of (1.25) we are using the Einstein convention for the sums,
i.e. we mean that the above expression is summed on the index . We use the t1>fj to
define an algebra structure on the module A(P?), by setting:

T+ Tj = BTy

i =

We call = the quontum algebre produet of A{P?). We ask whether this product is
associative, making (A, *) into a ring. As it may be easily checked, the associativity
is equivalent to check that the relation:

(Tl * Tl) * Tz = T1 * (TI * Tg), (126)
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holds. We have hence the following:

Exercise 1.4 The product * defined on A(P?)} is associative if and only if the rational
numbers Ny’s satisfy the following recursive relations:

3d—4 3d—4
Ng= > Na Ny | Bd% ~d3dp (1.27)
3ds—2 3da~1
da+dp=d
dg>1,dp>1

where N1 may be chosen arbitrarily.

If the recursive relations above are satisfied, the pair (A(P?), *) is a ring, which is
said to be the Quantum Cohomelogy ring of P? or, also, the Quantum Intersection
ring of P2, The following fundamental result is due to Kontsevich.

Theorem 1.1 Define Ny as the number of rational nodal plane curves of degree d
passing through 3d — 1 points of P? in general position. Then the quantum algebra
product defined by the generating function (1.24) is associetive.

The above theorem has a beautiful geometrical proof based on intersection theor-
etical properties of the moduli space of stable maps defined by Kontsevich and briefly
discussed in Section 3.3. As a corollary one has that the number Ny of rational nodal
plane curves of degree d passing through 3d — 1 points is prescribed by the recursive
formula (1.27). Now the initial datum cannot be arbitrary: we must set M =1
(Euclid’s theorem: there is a unigue line passing through two distinct points in the
plane), so that No = 1, N3 = 12, Ny = 620, known classically. The first out of reach
was N; = 87304 which was first confirmed by I. Vainsencher ([75])






Chapter 2

Moduli Spaces

2.1 What is a Moduli Space?

2.1.1 A quick review of “Abstract non-sense”

We recall, following [55] (p. 53. and if.), a few notions about categories, which will
be useful to clarify the notion of moduli spaces associated to a moduli problem. A
category C consists of a collection of objects Obj(C), denoted by roman capital letters
A, B,..., such that to each pair A, B € Obj(C) * of objects of C is associated a (true)
set, Homg(4, B), called the set of C-morphisms, which satisfy the following axioms:
1. Home(A,B) N Home(A',B) =9 wunless A=A A B =P, in which -
case Home(A, By = Home(A', B').

2. If A,B,C € Homc(A, B), then there is a map of sets:
Hmnc(A,B) X HO?ﬂc(B,C)-—-)HO'Inc(A, C)

sending (f,g) € Homc(A, B) X Home(B,C) to a morphism of Home(A, C)
denoted by go f, which is associative. In other words, if h € Hom¢(C, D}, then
ho(gof)=(hog)eof.

3. For each object A € 0bj(C), thereis a distinguished morphism id4 € Home(A, A)
characterized by the property that:

foida=f Vfe Home(A,B),

! For our limited purposes, the most important thing in the quite misterious definition of a
category is to recognize it when it happens to meet one somewhere.

29
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and
idpo f=f Yf& Home(A,B).

In particular, Home(A, 4) # D, for any A € Obj(C).
The collection of all the morphisms in C are the arrows of C. When one writes f €
Ar(C) one means that f € Home(A, B) for some A, B € Obj(C). f € Home(A, B)
is said to be a C-isomorphism iff there exists g € Home(B, A) such that fog =
ids € Home(B, B) and go f =ids € Homc(A, A). f € Home(A, A) is said to be a
C-endomorphism. If an endomorphism is also an isomorphism, then it is said to be
an automorphism.

Definition 2.1 Let C be a cotegory. One says that the category C has a product
iff for each pair of objects A, B € Obj(C) there erists an object P together with two
morphisms ps : P— A and pg : P—B

P:/ P\I'JB
A B
(2.1}

such that the following universal property is satisfied: for each @ € Obj(C) and
morphisms g4 : Q— A and gg : Q— B there exist a unigue morphism 7 : @Q—P
making the following diagram commuiatlive.

gl

gda P \F:]
‘/‘1 PE (2.2)
A B

Of course, if a product exists in C it is unique up to a canonical isomorphism. Another
important definition which will be used to define the notion of moduli space is:

Definition 2.2 A category C is said to admit e fiber product over each of its objects,
if and only if for each triple A, B, C € Obj{C) and each pair of morphisms ¢pa : A—C
and ¢ : B—C there exists an object T together with two morphisms pa : T—A
and pg : T-—— B, such that the following dicgram:

Pf/ T\I'-"B
A B
(2.3)
? ¢
XC/ B
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commutes and such that the following universal property 4s satisfied: for each S ¢
Obj(C) and each pair of morphisms ¢4 : §5— A and ¢5 : $— B making commutative

the diagram:
i \q"
\ /gba (2.4)

then there exists a unique morphism f : S—-»T such that gs = psof and g = pgof.,
.¢., the diagram: s
!

) T 1):]

LA -
B
;SNC ./bB

We now come to analyze the notion of functor which, for refined people, is the
way all the categories becomes themselves a category, called (Cat).

commules.

Definition 2.3 Let C and C' be two caiegories. A covariant functor F : € ~+ £ is
a law which assoctates to each A € Obj(C) an object F(A) & Obj(C") end such that
to each f &€ Home(A, B), associates a morphism F(f} € Homg (F(A), F(B)) such
that:

1. For each A € Obj(C), F(ida) = idp(a).

2. If (f,9) € Homc(A,B) x Homg(B,C) then F(go f) = F(g) o F(f)
in Home(F(A), F(C)). A contravariant functor is defined similarly, but by
replacing 2 by:

3. If (fig) € Home(A B)Y x Home(B,C) then F(go f) = F(f) o Flg)

In other words, a covariant functor is what educated people would define as a morph-
ism in the category (Cat) of all the categories while a contravariant functor would
be a morphism in the category (Cat)®, the opposite category of (Cat). We shall not
enter in details, here.
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The last important notion we need is the following. Suppose that C and (7 are,
as usual, two categories. A functor F : C ~» (' may be viewed as the object of a
category, Fun(C,C"), of all the functors from C and C’, whose morphisms are defined
in the following way. If F, G are two functors, a morphism H : F—G is a rule that,
to each A € C, associates a morphism 4 € Home (F(A), G(A)):

Ha : F(A)—G(A),

such that the diagram: 2
F(4) ——2—G(4)
F(f)l lG(f)
F(B) H—>G('B)

B

The diagram (2.6) has been drawn in the case of a pair of covariant functors. If F
and G are contravariant, one has simply to revert the arrows F(f) and G(f). The
morphism H : F—G in the category Fun{C,C") is said to be a natural tranformation
of functors. Of course, we have a corresponding notion of isomorphism of functors.
Two functors F, G are isomorphic if there are two natural tranformation H and H'
such that HoH' = ide and H’ o 'H = ide, where, if C is a category, idc is the functor
which sends each A € Obj(C) and each f € Ar(C) to itself.

(2.6)

2.1.2 Moduli Problems

The aim of such a subsection is to sketch the underlying idea of a moduli problem,
without being too formal: it is our aim to be more precise in the examples we are
interested in, to be treated below. We advise the interested reader to look at [23] and
(67] for more details. By the way, the general setting to formulate a “Moduli Problem”
is a sufficiently nice category C of objects to be classified in some way. Sufficiently nice
means, for instance, that in such a category there are fibered products and products.
We also want to be equipped with an equivalence relation ~ between the objects of C
and a suitable notion of a family parametrized by the object of some sub-category of
the category of schemes (e.g., as we shall do in the following, the category of schemes
of finite type over Spec(C)). Roughly speaking, a family of objects of C parametrized
by some scheme S, should mean a collection of objects X, one for each s € 5, which
are reasonably patched together according to the naiure of the parameter space. In
a sense, we look for a motion of continuously varying family of objects. The basic
features we would ask for our moduli problem are:
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1. A family parametrized by a point (in the category of schemes meaning the
spectrum of a fleld) is the same as a single object of C.

2. The equivalence relation ~ between objects of € may be extended to families: in
other words, we are given of a notion of equivalence between families of objects
of C which give us back the relation ~ for families parametrized by a single
point.

3. We may pull back families (this has to do with the fact that we required our
category C to be equipped with fibered products). In other words, suppose that
X—5 is a family and that ¢ : $'—S is a morphism in the category of schemes
we are working in. Then there exists a family ¢*X— §’, said to be the induced
family parametrized by S’, which makes certesian the following diagram:

X — X
1 1
g — 8

ie. ¢*X =5 xg X. The way of associating induced families to morphisms
between parameter spaces has to be functorial. Put otherwise we would like
that 15 be the identity of X, for each X—5, and that (¢ o9)* = 1" 0 ¢*. This
is the so called universal property of C.

4. The pullback of families has to be compatible with the relation ~ in the sense
that if ¥—.5 and X' —.5 are two equivalent families (parametrized by the
same space S) then for any morphism ¢ : §'— 5 we have ¢*X ~ ¢*%’.

To solve the moduli problem means to equip C/ ~ with a structure which, if possible,
makes it an object of the category where the parameter spaces have been taken.

2.1.3 Fine and coarse moduli spaces

Here we shall try to give a brief but possibly precise account on the basic definitions
of a given moduli space. Such definitions shall not be given in the most general
setting, but only in the one we are interested in. For details and generalizations see
[16]. For the moment let us denote by PS be a category which shall be called the
category of the parameter spaces. Moreover we are given of a moduli problem, i.e. of
a pair {C, ~), where C is a subcategory of PS and ~ is an equivalence relation between
families X—5 of objects of C parametrized by S. A family A—{pt} parametrized
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by a point {pt} is, by definition, an object of C which, by abuse of notation, shall be
denoted with the symbol A. This means, in particular, that ~ induces an equivalence
relations between the objects of C, thought as families parametrized by a point. Let:

F : PS—(Sets),

be a functor which associate to each S € PS the set F(S) of all the equivalence
classes of families of objects of € parametrized by 5. We have hence the following
fundamental:

Definition 2.4 The functor
F : P§—(Sets),

is said to be representable in P& iff there exists an object M € Obj(S) such that the
functor F is isomorphic to the functor Homps(-, M). In such o case M is said to be
a fine moduli space for the moduli problem (C,~).

This means, in particular, that for each S € Obj{S) there exists a set bijection
between:
F(8) & Homps(S, M),

or, for further emphasis, that each family parametrized by S corresponds to one and
only one morphism between .S and M.
We want to show now that 2.4 is equivalent to the the following:

Definition 2.5 A fine moduli space for the moduli problem (C,~,PS) is an object
M € Obj(PS) together with o family U— M which is universal in the following
sense. For each family m - £—8 there is a unique morphism f € Homps(S,M )
such that X = 8 Xp U == fU.

To construct I from Definition 2.4, one chooses the unique family {— M associated
to the identity morphism idys of M. In this case, if X—S is any family, there exists
by definition a unique morphism f : S— M. Consider the cartesian diagram:

SXMU — U

l i
S — M
f
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then § xp U—>S is a family parametrized by S which induces the morphism f :
S— M. By the uniqueness of f, it follows that S X s I/ —S must coincide with X.
Conversely, definition 2.5 clearly implies 2.4.

In general, given a moduli problem, the existence of a fine moduli space is not
guaranteed. This happens when, for instance, as we shall see with the moduli space
of curves, there is an object A with non trivial automorphisms, such that Au#(A) acts
non-trivially on PS.

Example 2.1 ? The existence of automorphisms for some objects of the category C does
not prevent, in general, the existence of a fine solution of the moduli problem (C,~). In
fact let C be the category of finite sets, and ~ the relation:

A~ B <= §(4)=§(B).

Let PS be the category of all sets. Then the set N of natural numbers is a fine meduli
space for the problem (C, ~, PS). The tautological family 1{—N (given by attaching the
set 0,1,...,n— 1 over the integer n € N) is the universal family over N for the given moduli
problem. Surely, objects of € (finite sets) do admit automerphisms.

Definition 2.6 A coarse moduli space for e moduli problem (C,~, PS) is an object
M of PS, for which there s e natural transformation of functors:

Wy : F—rHom(-, M),
such that:
1. U{{pt}) is bijective;
2. For any object N of PS and any nefural transformation of functors
Yy : F—Hom(-, N),
there is a unique trensformation of functors

x : Hom(-, M}— Hom(-, N},
2] am grateful to Prof. Anders Kock for pointing me out this example.
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making commutative the following diegram of natural transformation of func-

tors:
J"- _lIr..‘HL..p Hm(', M)
Up X @.7)

2.1.4 Examples of Moduli Spaces.

Now we turn cur sbstract pitfure seen in 2.1.3, into more concrete models by making
some choices. First of all, the category of the parameter spaces will be ihe category
(Sch/C) whose objects are (not necessarily reduced) C-schemes of finite type (i.e. of
finite type over Spec(C)) and whose morphisms are morphisms of C-schemes. Recall
that a C-scheme is of finite type if, locally in the Zariski topology, it is the prime
spectrum of a finitely generated C-algebra. Let us fix some sub-category C of (Sch/C).
The notion of family of objects of C is provided by the following:

Definition 2.7 A family = : X¥—5 is a proper flat C-morphism of C-schemes such
that, for each s € S, the scheme theoretical fiber Spec(k(s)) x5 X =: %, is an object
of C.

Notice that, because we are working over C, k(s) = C for each closed point s € S:
however, varying s, the isomorphism giving the identification with €, in general,
varies as well . Now, let m; : ¥1—8 and 7 : £:—5 be two families. We say
that these two families are equivalent if there exists an S-isomorphism between them.
Explicitly, we ask that there is F' : £;—¥> such that the following diegram

X _F__,ggz

M1 kY

g

commustes.

Notice that if X;—Spec(C) and X-—Spec(C) are two trivial families, then the
notion of equivalence implies an equivalence between objects of C, which says that
two objects Xy, Xs of C are equivalent if they are isomorphic as C-schemes. The
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moduli problem we shall deal with will hence be {C,~}. A fine moduli space for the
moduli problem would be a C-scheme M of finite type representing the functor:

F : (Sch{C) ~+ (Sets),

defined as:

F(8) = {isomorphism classes of S — schemes ¥——S5 such that
X, is an object of C}.

A coarse moduli space would be, instead, a C-scheme for which there exists a
natural transformation of functors:

Was: f_’Hmn(sm/C)(" M),
such that:
W ({pt}) :== F({pt}) = {isomorphisms classes of schemes € Obj(C)} = M,

is a bijection and such that for each C-scheme IV and for each natural tranformation
of functors ¥y : F—H Mg, /C)(" N) there is a unique natural transformation

x : Hom (s M)_’Hom(sch/C)(‘vN):

(Sen/C)

making commutative the diagram (2.7).

Example 2.2 Let us consider the functor:
F i (Sch/C) ~» (Sets),
defined as:

F(8)= { isomorphisms classes of locally trivial families over S
of 1 — dimensional vector C — subspaces of C**1}

We claim that such a functor is represented by P*, i.e. that P" is a a fine solution for a
moduli problem. This works more or less as in 1.2.2. Let  : £—.5 be a family where S is
a scheme of finite type over C. Over P* we have the tautological family (Opr(1))". Define:

vg 1 S—P",
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as
vs(s) = {the point of P" parametrizing the line X}

To check that v is a morphism it is not restrictive to assume that 5 is affine, i.e. that
S = Spec(R), where R is some finitely generated C-algebra which can be expressed as the
quotient of a polynomial ring C[T1,. .., Tin] by some ideal . In other words:

_Clh,..., Tl

R T

Hence the family ¥ can be locally expressed by means of an algebraic family of 1-dimensional
vector subspace of C"*?, i.e. as a family of lines:

Xp = E'UD(TI, ey Tm)]t
X1 = I'v1(T1, veey Tm)]t
Xo = [m(T1,....Tw)lt
where the v;’s are polynomials in C[T3, .. ., Tx] and [w] their classes in R. Hence, the map

f may be locally written as:
([T1]7 EERR] [Tm]) _ ['Uo(T]_, - -;Tm): . ":Un(Tla .. -:Tm)],

where [T;] means the class of T; modulo the ideal I, proving that vg is a morphism. It is
then clear that X & § xpn (Opn(1))Y (prove it!) Of course s is unigue, and one argues
exactly as in the example of the pencil of conics worked out in 1.2.2.

Exercise 2.1 Prove that the functor:
F : (8ech/C) ~ (Sets)
defined by:

F(8) = {locally trivial families/S
of & — dimensional vector C — subspaces of C"}

is representable by the smooth scheme G(k, C"), the grassmannian of k-planes in cm,
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Example 2.3 The Hilbert Scheme

I § is 2 scheme of finite type over C we may construct the fiber product P§ :=
P x spec(C) S. As a matter of fact, what we are going to say hold universally over Spec(Z),
but we are not interested in being very general. Hence, the reason for which we wrote
Py =P x Spec(C) S, specifying Spec(C) is to emphasize that we are considering PG as a
scheme over Spec(C) and not, e.g. over Spec(Z), or some other algebraically closed field
with non zero characteristic. We want to stay as rmuch adherent to the situations which,
later on, we shall be interested in. We start now with a definition:

Definition 2.8 A closed subscheme X of P% is a flat family of closed subschemes of B™ if
and only if the projection = : X— 5 induced by prq : Pg—8 is a flat morphism.

It is a very well known fact (see e.g. [42]) that any flat family of closed subschemes of
P" parametrized by some S enjoys the property that the Hilbert Polynomial is fiberwise
constant. Suppose that we are given of & polynomial of the form:

po-3u(" ) ey

i=0
where the a;’s are integers. Let us consider the contravariant functos:
Hilbpy) = (Sch/C) ~ (Sets),
where:

Hilbpy(S) = {flat S — families of closed subschemes of P*
having P(t) as Hilbert polynomial}

The important result proven by Grothendieck ([37]), in the most general situation, is that
there exists a projective scheme H ilbfp(t) that represents the functor _Ij’_i&};(t). This in
particular means, by recalling the definition of fine moduli space that there exists a2 universal
family &4 C & 'ilbfp(t) x P together with a projection m : W —H ilb‘};{t), such that each fiber
is a closed subscheme of P™ having P(¢) as Hilbert polynomial, and such that for each flat
family £—S5 of closed subschemes of P", having the same Hilbert polynomial, there exists
a unique classifying map vs such that viid = X.

Example 2.4 The Hilbert scheme parametrizing curves of a given genus and
degree.
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Let C be a projective curve in . Such a curve has a Hilbert polynomial which is given
by Pe(n) = x(Oc(n)) (If F is a coherent sheaf on a noetherian scheme, then x(F) is its
Euler Characteristic (see [42])). Such a polynomial has degres 1 (which corresponds to the
dimension of the scheme, in our case a curve). Hence it may be written as:

Fo(t) =dt+1—p,.

It turns out that d is the degree 3, while p, is said to be the erithmetic genus of the curve C.
The curve C hence corresponds to a point of the Hilbert scheme 40}, which universally
parametrizes projective curves in IP" of degree d and arithmetic genus p,.

Example 2.5 Any closed subscheme of P with Hilbert polynomial (*£¥) is 2 linear sub-
space of P” of dimension k. It follows that:

Hilb'(‘:tk) =QG(k+1,C*Y,

is the grassmannian of k + 1 dimensional subspaces of cre,

3 Such a degree is related to the degree defined in the introduction: the curve  defines a cycle
in P" which is equivalent to dH7—! in the Chow ring A*(P"). If one intersect such 2 curve with a
general hyperplane we get a cycle equivalent to dH", so that [pr dH™ = d.
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Moduli Spaces of Curves

3.1 An Informal Introduction

Fix an integer ¢ > 2 and let us consider the category C(g) whose objects are all
the complex smooth projective curves of genus g (Compact Riemann Surfaces) and
the morphisms are the morphisms between curves (i.e. regular or holomorphic maps
according to the algebraic or analytic language). Clearly on the objects of the category
C(g), which in this case is a set, we may define an equivalence relation, by putting
in the same class isomorphic curves (biholomorphic if we work in the category of the
Riemann Surfaces). Let us denote by M, the quotient, i.e. the set of all isomorphism
classes of smooth curves of genus g. We would like to get the right to call such a
set the moduli space of the curves of genus g. To do this we should provide the set
M; with some scheme or analytic space structure. Once such a structure has been
provided one may ask the following question: is the functor

Mg : {Sch/C) ~ (Sets),
defined by:

My(S) = {isomerphisms classes of flat proper families
7 : X—8, such that X% is a smooth curve of genus g}

representable? And, in case of positive answer, is M, its representing scheme? As it
will be shown later on, although in a sketchy way, the answer to this question is no, at
least in the above formulation. The reason, as we shall see, is that there are plenty of
curves having nontrivial antomorphisms. As a matter of fact M, turns out to be only

41
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a coarse moduli space for the above moduli functor. If M, were a fine moduli space
we would have a universal curve over M,, by considering the tautological family M,
of 1-pointed smooth curves. It would be defined as the set of all pairs (C, P) such that
C is a smooth connected projective curve and P € C. The projection w : Mg, — M,
would consist in forgetiing the marking.(i.e. the fiber over [C] would be the curve C
itself!). However, if C has a non trivial automorphism o, the point {C, P) and the
point (C,o(P)) must be identified, so that over such a [C], the fiber would consist of
C together with all its automorphic images. This is the reason, as we shall see, for
which the morphism 7 is not solution of the universal moduli problem for projective
smooth curves.

To go on, we may also observe that simple experiments suggest that M, is not a
complete scheme. Consider for instance the following proper flat family of curves of
genus 3 parametrized by the punctured disc:

syt +f— P Mz —y) =0

The fiber of such a family over X s 0 is a smooth curve. For A = 0 instead, we get
the nodal curve:
iyt +f—y* =0

which has still arithmetic genus 3, but has also a node at the point (0,0}). Hence we
cannot fill, in & holomorphic way, the family with a smooth plene curve of genus 3.
This is no yet sufficient to conclude that M3 is not complete: one should check that
it is not possible to replace the special fiber of the family with a smooth curve even
after a finite base change (see [17] for details). This is actually the case and hence M
is not complete. We shall not enter in the details of this proof, since it goes beyond
the scopes of these lectures.

It is natural to ask, then, if is there any natural way to compactify M;. More
precisely, one would like to find a proper, separated scheme of finite type over C {or
a compact Hausdorff analytic space), containing M, as an open dense subset. Such
a space may be constructed in a purely algebraic way by using geometric invariant
theory (see [64]) or, analytically, by using the analytic theory of deformation and
patching together the so-called Kuranishi families. We shall sketch the construction
of 'M-g using the latter method in the next section. By the way, we think it is worth
to declare here what (isomorphism classes of} degenerate curves should one add to
M, to get its so-called Deligne-Mumford compactification.

Definition 3.1 A stable n-pointed curve of genus ¢ is a connected projective curve
with at most nodes as singularities and having a finite automorphism group.
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It is well-known (for instance by using the theory of Weierstrass points, see e.g. [4],
[36]) that each smooth curve of genus g > 2 has a finite automorphism group Aut(C).
The curves of genus 1 have a 1-dimensional group of automorphisms. Hence the 1-
pointed curves of genus 1 are stable (because an automorphism must fix the marking}.
The smooth rational curves have a 3 dimensional group of automorphism (PGL2(C)).
It follows that a stable n-pointed curve of genus g is a reduced connected curve of
arithmetic genus g such that each smooth rational component has at least 3 special
points, where a point is said to be special either if it is a marked point or if it is a
singular point (i.e. an intersection point with the other components). For instance,
a stable curve of genus g is such that any smooth rational component must meet
the rest of the curve in at least 3 points. This suffices to make finite the group of
automorphisms. A stable m-pointed curve of genus g is the data of a proper flat
family X—S together with n disjoint sections oy, . . ., o, such that, for each s € 5,
(Es, 01(8), . . ., on8)) is a stable n-pointed curve of genus g. Clearly, if n is big enough,
M, is 2 fine moduli space.

3.1.1 A first example to warm up.

Let S be the set of all the configurations of 4 ordered distinct points on a projective
line. We shall denote any one of such a configuration as (P!, P}, B, P, P;), where
P, P, P, P, € P!, and we shall refer to it as a smooth 4-pointed rational curve. In
the set of all smooth 4-pointed rational curves, we can define an equivalence relation
~ by setting:

(-[Pls P11 P2, P3) P4) ~ (]Pls Qla QZ’ QS; Q4)7

if and only if there exists an automorphism ¢ € Aut(P!) = PGLy(C) such that
o(P) = Q. Let us denote by M4 the set of equivalence classes of elements of §
modulo the relation ~. We claim that My 4 is a 1-dimensional affine variety. Indeed,
since PG Ly(C) is 3 dimensional, for each 4 pointed rational curve:

(IP17 P17P2: 'P3: 'P4)

there exists ¢ € Aut(P') such that o(F) = 0, o(P) = 1, 6(P;) = co. Let
2 = ¢{F;). Hence any element of M4 has a unique representative of the form
(P',0,1,00,z), where z ¢ {0,1,c0}. Hence My, is parametrized by the coordin-
ate z defined above, which runs in & P minus 3 points. If [Xo, X1] is a system
of homogeneous coordinates such that oo = [0,1] and 0 = [1,0), it follows that
My 4 = Spec (C[Xg, KaJtxoxs (Xo— X1))) or, which is the same, coincides with the affine
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principal open subset D{(XpX1(Xo — X1)). On My, one may easily construct a tau-
tological family, which may be denoted as Mps, the set of ~-isomorphism classes of
smooth 5-pointed rational curves. If (P*,0,1,00,z,y) € Mys we define:

e M0,5-"_"M0,4;

by setting:
={((P},0,1,00,z,7)) = (F*,0,1, co, z).

Of course afirming that such a projection is not defined for z = y does not make sense
since on My s marks are always distinct. What we did is simply to construct a surface
which is fibered on Mo whose fiber over each z € Mg is the smooth 4-pointed
rational curve. The situstion may be pictorially represented as follows:

pt
Mgs= (P1x P a
oo
Ay
N
1 *x
1]
v] 1 x o5 pi

Mp.a = PP {0, 1,2}

where we have a total space Mp4 X Mp4 that projects onto Moy off of the diag-
onal A, We have three distinguished sectioms that, by abuse of notation, shall
be denoted as 0, 1 and co and that cut out on any fiber over z ¢ {0,1,00} the
points 0,1, co respectively. The point z on the fiber is, instead, cut out by the di-
agonal section. We claim that My is a fine moduli space for the moduli problem
{4 — pointed rational curves, ~}. In order to prove this, we begin by saying what we
mean by a stable 4-pointed rational curve over S. It is the data (¥—.S5,01,.. ., a4),
where ¥—S is a proper flat family such that for each s € § X, is a rational curve,
plus 4 disjoint sections o1, ..., 54, which for each s € S define the marking on %X,. We
say that (m : ¥1—8,01,...,04) and (7o : X2—5,71,...,T4) are isomorphic if and
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only if there exists an S-isomorphism ¢, such that the diagram:
n—2 .3,

M p)

S

commutes, and ® o 5; = 7. Let us consider the moduli functor:
My.4 : (Sch/C)—(Sets),
where:

Moa(S) = { ison-larphism classes of 4 — pointed rational
curves parametrized by S}

Then My4 is isomorphic to the functor Hom(sm /C)(-,Mo,,;). In fact, given any flat
map £—-5, consider the map:

S "'"_"MOA
s +— {the rational curve X, parametrized by s € S}

Arguing as in Ex. 2.2, one may easily see that f is & morphism. Moreover the
fiber product coincides with %. In fact there is a map ¢ Mps— X%, and hence X is
cancnically iscmorphic to ¢*Mys. However, M, is not compact or, if one thinks
algebraically, it is not complete. For instance, consider the tautological family over
Mp,q itself. It is parametrized by the coordinate z, but there is no holomorphic way
to fill the punctures 0, 1, co with 4-pointed stable smooth rational curves. Our hope is
to be able to fill the “holes” of My, to get a bigger compact space Mo4. Of course, in
the case we succeded in this attempt, such a Mp4 must be isomorphic, as a scheme,
with the projective line P!, The idea, which shall be made precise below, is to fill the
“holes” with 4-pointed stable reducible rational curves. In other words, imagine, as
in the picture, that the point z is running toward 1.

)
T.

OIS 3 1 ;( o
R spacial imTtion
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Then, when z = 1, the rational curve where z was walking on, splits in two
components: on one component we still have the marked points 0 and co and on the
other components two new points, say P, and P, corresponding respectively to z and
1.

This is the way to malke precise the above intuitive picture. Consider & = P x P!
{the product is of course taken over Spec(C}). Then S projects onto P! and we have
4 sections, three of which denoted, abusing notation, as 0,1, co, while the fourth is
simply the diagonal A. Notice that if z ¢ {0, 1,00} the 4 sections give us back the
configuration parametrized by z on the rational curve {z} x IP!. The problems arise
at z =0, 1, 0o, where the diagonal section meets each of the sections 0, 1 and co. Let
us call Qo, @1, Qe € P! such intersection points and define:

Uo,a = Blge,g1 Qe (S)z

the blow up of the surface & at Qy, @1, @os- Let us see what happens in correspond-
ence of each of this points. For example, blowing up @y we have in Up4 the strict
transforms O and A of the sections 0 and A, respectively, and the strict transform S
of {0} x P! (see the picture below).
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/ 1]
<

1 2

o L=t

Such stricts tranforms are mutually disjoint, but they are crossed by the exceptional
divisor Ep gotten by blowing up (Jo. Hence on & we have two markings due to the
intersection with the strict transforms of the sections 1 and co, while on F we have
two markings, Fy and F; due to the intersection of E with the strict transform of the
sections 0 and A respectively. Then the rational curve U Sy is the fiber of Uy 4 over
the point 0 € P*. Of course, iy 4 is isomorphic to Mpg off the points Qp, @1, Qoe. We
have a natural projection:

(g uﬁ,di"—")-ﬂo’li = ]P’l,

which makes Mg 4 & fine moduli space which parametrizes 4-pointed stable curves.

We incidentally remark that because of the isomorphism between My 4 and P!, we
may conclude that M4 is smooth and also complete. Notice, moreover, that all the
points of Mp 4 parametrize rational stable curves with no automorphisms other than
the identity. This is a feature that is shared by all the fine moduli spaces. As scon as
we have a parameter space parametrizing objects having non trivial automorphisms,
we may get in trouble for having a fine moduli space, as we shall see in the next
section.

‘We should end this example by observing that, this seemingly innocuous moduli
space plays a fundamental role in the algebraic geometric proof of the associativity
of the quantum cohomology ring of the projective plane.
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3.2 Construction of the Moduli Spaces of Stable
Curves via Kuranishi Families

3.2.1 Some Deformation Theory.

In this subsection we shall give some rudiments of the theory of deformations restrict-
ing our attention to analytic spaces of dimension 1 (curves). From now on, let C be
a stable curve of genus g > 2. A deformation of C' parametrized by a pointed scheme
(S, s0) is & pair (¢, f) where ¢ : —(5, so) is a proper flat morphism and

_f 7 (s0) =t Xoq—C

is an isomorphism between C and the fiber of ¢ over sp. Suppose that (¢1, fi) -
%1—(S, s0) and (@2, fo) : £2—(8, s0) are two deformations of C parametrized by
the same pointed scheme (S, sp). Two such deformations are said to be equivalent if
and only if there exists an S-isomorphism F:

¥ —r %

N g

such that, if fi : ¢71(sg)—C and fz : ¢35 (s0)—C are the two isomorphisms
between the fiber over sp and C, then:

fooFofil=fioFo f3! =idc.

For more emphasis, we should hence say that two deformations of C' parametrized
by the same (5, sp) and such that $; = ¢ have to be considered distinct if the
identification between € and the fibers over s; are different.

If £—(5, o) is a deformation of C and (T,to) is any other pointed scheme
together with a morphism g : (T,#)—(S, so) (ie. such that, g{to) = so), then
¢*% ;=T x7 X is another deformation of C parametrized by (T, 1o), which is called
the induced deformation on (T, %p), or the pull-back of the deformation (g, f) to (T, to)-

For the remaining of this subsection we want to concentrate our attention to
the case where ¢ is smooth connected complex projective curve (compact Riemann
surface). We will study the space of infinitesimal deformations of C.

Definition 3.2 An infinitesimal deformation of C is e deformation parametrized by
S = Spec(Cle]).
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We recall that the ring Cle] is by definition the quotient ring C{X]/(X?), so that
€ = X +(X?) and, consequently, €2 = 0. Notice that Spec(C[¢]) is naturally a pointed
scheme, since it contains only one (closed) point.

Let £—Spec(C[e]} = S be one such deformation. It will be convenient to think
of C as a complex manifold of dimension 1, so that it may be viewed as the quotient
manifold Unea ({a} X Us) / ~, where U = {Us}aea is an open covering of C (which
can naturally be chosen finite) such that each U, is the domain of a local coordinate

and ~ is the equivalence relation given by the glueing maps:

2o~ 2g > Za = fop(zg).
Jap 1 28(UanUg)—2a{UaNUs), being bi-holomerphic functions satisfying the cocycle

rule:
Jag(foa(zy) = far(2v)-

Hence, the deformation ¥-—S5 of the curve C may be thought as a deformation
of its transition functions. More precisely, the total space X of the family may be
covered by open sets of the form U, x S with coordinates {z,, €}, glued by means of
the transition functions:

(2r€) = Fas (2, €) = (Fab(25) + cbaa(zs), €.

Notice that the “first component” of the right hand side represents a first order
deformation of the transition functions for C. Of course we must require that the
functions f,p satisfy a cocycle-like rule, i.e. that:

(%ar €) = faﬂ(fﬁ‘r(z‘ﬂ €) = fq'y(z'y, €)-

Now:

Fas(For(221€)) = fap(For(z) + ebay(2y), €) =
(fos (fox(2y) + Ebﬁ'v(z'r)) + €bag (foy(2y) + €bgy(2y)) €} =

(Fap(fy () + €28 e85+ choal o)

5o that, if we want that the last side of the above chain of equalities coincides with
Joy We must require:

bay = bap(fay(24)) + faﬁbﬁq,
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which means, by considering the natural basis -&g- of the holomorphic vector fields
on U, (for each o € A), that: *

d a d
borg = baa(2} g~ + bﬁv@-

In other words, putting 8.5 = baﬁa:—; we have that

3,37 = 9.-,3 + 9,@-,,

i.e. we have {f,5} € Z'(U,O¢) where O¢ is the tangent sheaf of the curve C, ie.
the dual of the canonical bundle K. We have hence proven that an infinitesimal
deformation induces a cocycle with values in the sheaf ©¢c. It is left as an exercise
for the reader to check that if two infinitesimal deformation are equivalent, then the
two cocycle gotten from the deformations are co-homologous. Hence the isornorphism
classes of infinitesimal deformations of €' map injectively into H'(C,©9¢). But any
t € HY(C, ©¢), is represented, on some open covering of C, by a Céch cocycle, which
may be used to construct a deformation. Hence we have the bijection:

{isomorphism classes of infinitesimal deformations} & H'(C,O¢).

Clearly, the above bijection induces on the infinitesimal deformations a structure of C-
vector space isomorphic to H!(C, @¢). Now, by Serre duality and the Riemann-Roch
formula:

rMC,0¢) = K(C,2Ks) =1— g+ fc 2K = 3g — 3.

If ¢ : X—Spec(Cle]) is an infinitesimal deformation, then the associated class [6y] €
HY(C,©c¢) is said to be the Kodaira-Spencer class associated to the deformation ¢.
Let us now consider any deformation of C, ¥—(B, by}, parametrized by a pointed
scheme (B, by). Take any tangent vector to B at the point by. It is, by definition
of the Zariski tangent space, 2 morphism ¢ : Spec{C[e])—B, such that g(e) = be.
The pull-back of the family & to Spec(Cle]) gives rise to an infiniiesimal deformation
g*X£—Spec{C[¢]). Hence we have a natural vector-space homomorphism:

p: Ty, B—H(C,6¢),

called the Kodaire-Spencer homomorphism.
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Summing up, what we saw in this section is that a smooth curve of genus g may be
“infinitesimally moved” in infinitely many ways, as many as the points of a (3g — 3)-
dimensional C-vector space. The idea would be now to integrate such a distribution
of vector spaces to get a (possibly open) 3g — 3 complex variety, parametrizing iso-
morphism classes of smooth curves in a neighbourhood of C. This actually may be
done by using, e.g., the so-called Schiffer variations (see [5]) but we do not enter in
this subject which is largely beyond the goals of these notes. Rather, we shall state,
in the next subsection, the existence of some local universal moduli spaces around any
stable curve C, called its Kuranishi fomnily.

3.2.2 Kuranishi families for stable curves

Let € be a complex stable curve of (arithmetic) genus g > 2. Let (7,p) : ¥—(B, bp)
be a deformation of C, p : #~1(by)—C being the isomorphism which identifies the
distinguished fiber with C.

Definition 3.3 We say that e deformation (m,p) : £— (B, by) of C, parametrized
by the pointed scheme (B, bg), is o Kuranishi family for C if the deformation (w,p)
satisfies the local universal property below. For each deformation ¢ : Y— (5, s0) of
C, there exrists e neighbourhood (in the Zeriski or in the complex topology according to
the category one is working in} U of so and ¢ unique morphism fy : (U, so)— (B, bp)
such that Yy = fi&.

One may prove the fundamental theorem of deformation theory that, along with
the classical Geometric Invariant Theory by Mumford [64], is the corner stone for the
construction of the moduli space of stable curves of genus g. It states the existence
of a Kuranishi family around each stable curve € and gives a recipe to construct it.
For the details, which are not in the main goals of these notes, we refer to [5]. The
statement below is almost literally copied from [5]. We refer to that book for the
proof.

Theorem 3.1 Let v > 3 be an integer. Let C C " be a stable curve of genus
g, embedded by the global sections of the sheaf w®” (wc is the dualizing sheaf of
C). Hencer = (2v —1){g — 1) — 1 (by Riemann-Roch). Let by € Hilb,, .
be the corresponding point of the Hilbert scheme Hilby . 1, (Cf. ex. 2.8), and let
Aut{C)y = Gy, C PGL11(C) be the stabilizer of by. Then there is a locally closed
(39— 3)-dimensional smooth subscheme B of Hilby, ,_y) o passing through by such that
the restriction to B of the universal famaly over Hilby,_yy ., 15 a Kuranishi family
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for ali of its fibers and hence, in particular, a Kuranishi family for C. In addition
one can choose B with the following properties:

1. B is affine;
2. B is Gy,-invariant;
8. for every b € B, the stabilizer Gy of b is contained in Gy,;

4. there is a Gy,-invariant neighbourhood U of by in B, for the analytic topology,
such that {y € G:7UNU % 0} = Gy, .

3.2.3 Sketch of the construction of M, via Kuranishi families.

The purpose of this subsection is to sketch the construction of the moduli space M,
by means of Kuranishi families. Of course there is no room to go into details, but at
least we may achieve a quite important goal, namely to give the feeling that M, is
a quite complicated object. Moreover, using another result which shall be assumed
without proof, we may explain why M, cannot be a fine moduli space. Also, it will
be clear that the obstruction arises because of the existence of curves with nontrivial
automorphism group. Even in this subsection we shall mimic the exposition of [5].
Recall now that as far as we know M, is only a set, namely the set of all iso-
morphism classes of stable curves of genus ¢ (g > 2). Let € be a curve representing
[C] € M,. Then, by theorem 3.1, there exists a Kuranishi family 7 : £—(5B, by)
for C (of course we have also the identification map p : C—sw~*(z)), where B may
be taken as a locally closed 3g — 3 dimensional subscheme of the Hilbert scheme
H := Hilbl,_1y(g-1)-1,¢ of the curves of genus g embedded v canonically in P" (with
r=(g— 13(21/ - 15 — 1) Of course G = PGL,.1{C) acts on (B, bp) in an cbvious
way: if g € G, and b € B, g - b = {the action of g on 7~*(b) C P"}. The isotropy
subgroup (or the stabilizer), G, of each point b € B (i.e. the subgroup of G which
acts trivially on ) is contained in G}, and we know by property 2 of Thm. 3.1, that
B is Gy, invariant. Notice that Gy, may be identified with the group Aut(C) of the
automorphisms of €. This means that there is a natural map of sets:

¥ : B/Gyy—M,,

defined as: 9(b) = [x~1(b)]. Of course it may well happen that given [C1] € M,
C1 may have more than one preimage in B/Gj,. But using Thm. 3.1, property 4,
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there exists a Gj,-invariant open subset of by (in the analytic topology) such that
{7 € G/IAUNU # 0} = Gy,. This means that the map:

YU = Py, - U/Gp— M,

is injective. In fact, let by, by € U such that ¥{b1) = 9(b2). Then [~ 1{b)] = [ ~1(b2)).
This means that b, and b, beleng to the same orbit of G, i.e., that there exists y € G
such that by = «y- by, so that yUNU # §. But then, by virtue of Thm. 3.1,4, ¥ € Gy,
so thet b; and b give rise to the same equivalence class in I7/Gh,, proving the claimed
injectivity.

This easy remark tells us something very important: now we know that the moduli
space M, locally looks like the quotient of a smooth variety by the action of a finite
group. What we want to do now is to cover M, by means of charts (Uy, ¥, : Up—sM M)
and to check their compatibility in the category of the analytic spaces. We shall
remark here that given the Kuranishi family ¥— (B, bp) around C, then B/Gp, may
have singularities; however, it is a normal affine variety. This follows from a not very
difficult algebraic fact, quoted below for the reader’s convenience, copied from [5],
where we tefer the reader for the proof.

Lemma 3.1 Let Spec{A) be a normal affine variety acted on algebraically by a finite
group T'. Then the ring AT of y-invariant elements in A is an integrally closed finitely
generated C-algebra. Moreover, if X is the set of closed poinis of Spec(A), then the
set of closed points of Spec(AT) can be identified with X/T.

Now, let us suppose that (Vv : V/Ge—M,) is another local chart such that:
Ayv = Pu(U/Gy) N v (V/Ge) # 0

Now 15 (Ayv) and ¥ (Ayy) are open sets in U/G}, and in V/G,, respectively. In
fact let b be a point, say, of ¢! (Ayy) and let b be a preimage of b in /. Recall now
that U is a Kuranishi family (see Thm. 3.1) for each of its points. The same as for the
pre-image Ay of 17 (Ayv) in U with respect to the quotient induced by the action of
Gly,. Hence there exists a Gy invariant neighbourhood W C Ay of b, such that W/Gj
is an open set of Ayy containing b, by definition of the quotient topology. Of course
here we have used the fact, stated in property 3 of Thm. 3.1, that G C Gj . Hence
we now have to look at the transition functions:

Tuov = ¥5" o ¥y : ¥ (Avv)—¥g (Auv),
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by inspecting the commutative diagram: v
AV e} AU

a B

¥ (Aov) 255 () (31)

M

Now ¢ and § are finite and helomorphic, and ~vy is holomorphic. Hence 95" oty
is certainly holomorphic off of the branch locus of o But now, ¥ (Apv) C V/G,
which is normal, and hence it is normal, and its image through ¥ o ¢y lands in
U/Gh,, which wlog! may be thought of es a bounded analytic subset of CV for some
N. These are the needed hypotheses to apply the Riernann extension theorem, which
ensures us that ;" o ¢y may be extended holomorphically to all ¥y (Ayv).

Hence we have equipped M, with a structure of a normal analytic space. The
construction tells us that M, cannot be a fine moduli space for the problem of clas-
sifying all the isomorphism classes of stable curves. This result is a consequence of a
fact which is far from being trivial and whose proof can be read, e.g., in [5].

Lemma 3.2 Let C be a stable curve and let w : X— (B, by) ¢ Kuranishi family for
it. Suppose that Aut(C) is non trivial. Then Aut(C) acts non-trivielly on B.

In other words, if g € Aut(C) then there exists at least one b € B such that g-b 9& b.
Using lemma 3.2, we may prove the following theorem:

Theorem 3.2 The analytic space M, constructed above, parametrizing stable curves
of genus g > 2 is not a fine moduli space.

Proof.

Let C be a stable curve such that Au#(C) is non trivial and assume, by contradiction,
that 7, is a fine moduli space, so that there exists a universel family = : C;—M,.
Then, in particular, the universal family C;— M, would be a Kuranishi fam11y for C'
But this is impossible, because on one ha.ud Aut(C) should act non-trivially on M,
(lemma 3.2) while, on the other hand, M, is already the set of stable curves modulo
isomorphisms (and hence Aut(C)) should act trivially on it).?

QED

1 see footnote 1, Sect. 1.2.1
2] am grateful to Joaquim Kock for suggesting me this argument which is much easier than the
one shown in a previous form of these notes.
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3.3 Appendix - An Example in the Trend: the
Kontsevich Moduli Space of Stable Maps

3.3.1 Introduction

In this appendix we want to give another example of coarse moduli space, without
proving that it is so (for details see [31]). This example is quite important in the actual
trends of geometry, because it sets up a rigorous framework for some enurnerative
questions to be treated with techniques borrowed from gquantum cohomology.

3.3.2 An informal discussion

Let P? be the complex projective plane. Choose in P? & points and 7 lines in general
position, whatever it means, such that o + g = 3d — 1. Look for all plane rational
nodal irreducible curves of degree d passing through the assigned « points and tangent
to the assigned ( lines. It turns out that the set of such rational curves is non-empty
and its cardinality is finite. The numbers N, g (e + 8 = 3d — 1) will be said the
characteristic numbers of the plane rational curves-of degree d. If 5 = 0 (no tangency
condition imposed) Nzz_1p will be simply denoted by Ng, and by the associativity
law in quantum cohomology [51] it can be proven that the Ny's satisfy the recursive
relations:

N =1,
and, for d > 2,
3d—4 3d—4
Ne = 2 Naules (d?"*d% (Sd -2) ~ dids (3d,’ - 1)) '
da+dg=d A 4
di>1l,dsg>1

This recursive relation can be obtained via intersection theory on the Kontsevich
moduli space of stable maps on rational pointed curves Moy (r,d). The aim of this
appendix is to provide a friendly and informal introduction to the moduli space of
stable maps of pointed rational curves in IP", just to give the reader the favour of the
new exciting directions which intersection theory is moving to.
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3.3.3 Some elementary plane geometry

The feature of this subsection is very informal and so I do not want to start by axio-
matically describing all the objects I need for the purpose of computing characteristic
numbers. Rather, the aim is to start from the bottom, showing that elementary and
concrete enumerative problems cry for the definition of the moduli space of stable
maps. To achieve this goal, let us consider a very simple question: kow meny plane
cubics do pass through 8 points in general position 37 Everybody knows that there
are infinitely many such cubics and, actually, that such curves are parametrized by
a line in P°. Such a line is gotten by intersecting the 8 hyperplanes corresponding
to cubics passing through any of the specified 8 points. The idea is now to intersect
such a line with a hypersurface not containing the line to get a finite number of cubics
which, beside passing through the 8 points, enjoy some other properties depending on
the hypersurface we are intersecting with. For instance: choose a point I in general
position with respect to Fi,..., P and look for all the cubics passing throngh those
9 points. One finds exactly 1 cubic. We are in fact intersecting our line in P® with a
hypersurface (the hyperplane of plane cubics passing through FPo). But we may like
to impose some non linear condition, e.g. “how many rational cubics pass through 8
points in general position?. It is not difficult to realize that the space of rational
cubics is represented by a hypersurface in P®. To see why, it suffices to notice that,
after all, a rational cubic is the image of a P! in P2, under a morphism of degree 3,
6 : P'— P2, that can be expressed as:

[u,0] = [21%® + agu®v + aguv? + aqw®, o + boulv + bauv® + by,
cyu® + coutv + cguv® + cqv?].

At least one coefficient must be # 0 and moding out by the automorphisms of P, we
see that our maps are parametrized by an eight dimensional space. Let us incidentally
notice that since the general rational cubic is nodal, the general line in P® will intersect
the locus of rational cubics in its open set of irreducible nodal ones. As we have seen,
we translated the problem of “counting” rational cubics in a plane into a problem
of counting maps from P* to P? of degree 3. We may then restate our enumerative
problem in ancther way: let My g be the moduli space of eight-pointed smooth rational
curves, parametrizing the configurations of 8 distinct points in P*. Clearly, due to
the 3-dimensional automorphism group of P! acting on such configurations, one has

2 Whatever that means.
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dim(Mpg) = 5. Fix Q1,-.., Qs general points in P? and look for all the maps:
H: (IPI'IPIl"'lPB)—’st

such that deg{p) = 3 and u(P;) = @;. This is a subset of the space Mpg(2,3) of all
the maps from the eight labelled PYs to P? of degree 3. Here the degree has to be
meant in the sense that the image is equivalent to three times the class of a line in the
codimension 1 Chow group of P2, Notice that dim(Mpg(2,3) = 6+2+3+8-3 = 16,
which is exactly the dimension of the parameter space of 8 distinct points in the plane.
If Q; = (24, %) (in an affine chart), then (B!, Py, ..., Ps; ) is such that u(P) = Q; if
and only if u(F;) belongs to the lines Ly, : z; = 0 and L,, : y; = 0, i.e. if and only if
P, € p LNy~ Ly,. Such a condition defines a 2-codimensional cycle which could be
intersected with the other codimensional cycles defined by analogous conditions. In
the full space Mps{2, 3) we are hence led to consider some very natural line bundles:
roughly speaking, define maps

Vi M0,8(2, 3)—’]1’2,

as follows: if &£ = (PY, P,,..., B, ) € Mps(2,3), 145(£) = p(B;). Define line bundles
Li in Mo‘s(z, 3) as: .
Li = V;OPZ(].)

and notice that ¢;(L;)? represents the two codimensional locus of stable maps such
that p{F;) = @;. The cup product:

Cl(L1)2 u...u Cl(Lg)z,

is a cohomology class in top codimension, which may be evaluated on the fundamental
class of Mpg(2,3), hopefully giving the desired answer to the enumerative question
we asked ourselves.

3.3.4 The moduli space of stable maps

The time has come to make precise the last part of the previous heuristic discussion.
Let us consider the following data:

(7‘- : C_)S;Pla'-wpﬂ;“)a

where:
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1. 7 is a projective flat morphism over an algebraic scheme S %;
2. P,..., P, are disjoint sections (n > 0);

3. Fach geometric fiber C, together with Pi(s),..., Pu(s) is an n-labelled tree of
projective lines,
4. p: C—IP% is an S-morphism.

We say that (C——Spec{C), {F;}; ) satisfying 1, 2, 3, 4 is a Kontsevich stable map
from C to P if weys(P+ ... + Pa) ® p*Opr(3) is w-relatively ample. This means
that if an irreducible component of (C—Spec(C), {F;}; £) is mapped to a point of
IP", then that component contains at least 3 special poings.

Notice that a Kontsevich stable map to P° is nothing but a Deligne-Mumford
stable curve.

Let Mo (7, d) : (Sch/C) ~» {Sets) be defined as

Mo a(r, d}(S) = {isomorphism classes of Kontsevich stable maps /8}

Then the following holds:

Theorem 3.3 There exists o projective coarse moduli space My ,(r,d), i.e. e natural
transformation of functors:

¢ : Moa(r, dy—Homg,, c{—; Mon(r, d)),
satisfying 1 and 2 below:

1. &({pt}) : Mon(r, d)(Spec(C))—ernswlc(Spec(C) Myn(r,d)) is a set bijec-
tion;

2. Ifyp : Mon(r,d)y—>Homg,, (=3 Z) is another natural transformation of func-
tors (Z being an clgebraic scheme), then there exists o unigue scheme homo-
morphism:

5 : Mon(r,d)—2Z,
making commutative the following diagram:

-Mﬂ,ﬂ(r! d) -L) Hmsch/C("-MO,n (T, d))
5
v (3.2)

4 A short way for saying of finite type over C HomSch/C(" Z)
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where ¥ 15 the obvious map induced by 7.
Proof.

See [31]
Notice now that we are given of a set of natural transformation of functors:

8; : Mon(r,d)—Hom(—,P"),

defined as follows. If S is a scheme and (C—.S, {F;}; i) is a stable map representing
an element € of Mo ,(r, d)(S), then 6;(S)(€) = po P. It follows that there exists a
unique map:
Ml ngn(r, d)—)IPf,

so that the marking induces on My, (7, d) natural line bundles L; = yiOpr(1). It
is very reasonable to expect that top codimensional intersection of the cohomology
classes ¢1{L;} should represent solution of enumerative questions. We shall continue
to analyze such an example at the end of chapter 4, after reviewing some basic
intersection theory.






Chapter 4

Intersection Theory: a Quick
Review

4.1 Chow Rings

4.1.1 Introduction

In this section we shall list briefly some basic definitions and properties taken from one
of the most fascinating subjects of Algebraic Geometry, named intersection theory.
Needless to say there are very big treatises and very important papers on the subject,
so that such a review is not intended to be a reference, but it is only an attempt to
list some results which may be used later on, when we shall perform computation on
the moduli space of curves, and in order to keep these notes self contained. Clearly
there is no hope to be exhaustive. No details will be fully worked out and we shall
not provide proofs that the reader may easily find in very good books such as [29],
or expository paper such as [48] and [49]. On the contrary, we shall try , for the time
being, to heavily appeal to the geometrical intuition of the reader.

4.1.2 Chow groups and Chow rings

We start from an n-dimensional (r > 1) ambient variety X. A variety will be,
throughout this chapter, an irreducible reduced C-scheme of finite type. For the time
being a priori no smoothness assumption on the variety X is made. Let K(X) denote
the function field of X. For each affine open subset U of X, K(X) = K(U) is the
quotient field of the integral domain Ox(U7), where O is the structural sheaf of X.

61
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Let now V be a Weil divisor, that is to say & l-codimensional subvariety of X (i.e.
an irreducible, reduced closed subscheme of codimension 1 of X)) and suppose that
VNU £ B Let a € Ox(U). Such an e induces an element in the local ring Ox v,
the stalk of the structural sheaf Oy at V, that shall be still denoted by a, abusing

notation. Define: o
X,V
m”dV (G,) - EOx,V ( (G.) ) 1
where £ denotes the lenght of a module. The positive integer ordy{a) is said to be the
order of the element @ along V. Let us suppose then that r € K(X)* and let V be any
1-codimensional subvariety of X. If U is an affine open set of X such that NV # @,
then r a.gmits a representation as a quotient of two elements in the domain Ox(UV),

say T = 3.
Definition 4.1 The order of a rational function r = a/b along the subvariety V is
the integer ordy (1) defined as:

ordy(r) = ordv(a) - ordy (b). *

By working a little bit on Definition 4.1 one may prove that such a function is well
defined (e.g. it does not depend by the representative a,b of 7) and that it defines a
group homomorphism:

ordy | K(X)*—Z.
Let now W be a k-dimensional subvariety of X' (hence an irreducible scheme). To such
a subvariety we associate a symbol, [W], which shall be called a prime k-dimensional
cycle. We may hence give the following:

Definition 4.2 The group of k-cycles of X, denoted by Zp(X) is, by definition, the
Z-module freely generated by all the prime k-cycles.

Hence, by definition, a cycle ¢ is nothing but a formal finite Z-linear combination in
the symbols [V], V' running over the set of all k-dimensional subvarieties. We shall

often write:
c= ZHV[VL
v

where ny € Z.
To each rational function r € K(X)* one may associate a {n — 1)-cycle, div(r),

defined as:
div{r) = ¥ ordy (r)[V].
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The above sum is meaningful because {[V] € Z,_1(X) : ordy{r) # 0} is a finite set
(see {29], Appendix B.4.3.). Suppose now that f : X—Y is a proper morphism of
C-schemes. Then there is an induced Z-module homomorphism:

b 2 X)— 2 (Y),
defined as follows. If [V] is & generator of Z;(X), then:

_[deg(fi) FOY] i dim(V) = dim(F(V))
f,.[V]—{ ’ 'o[ ] ifdz'm(f(V))<din£(V)’

where by deg(f,,) we mean the degree of the algebraic field extension [K (V) :
K(f(V))]. Moreover, if f : X—Y is a flat morphism of relative dimension m,
one may define a pull-back map f* at the level of cycles by:

o Zkl(Y)—Zem(X)
[Vl (VD =17(V)).
We may now define the Chow groups of X as follows. Suppose that o is a k-cycle.

Definition 4.3 The k-cycle o is said to be rationally equivalent to 0, and one writes
a ~ 0, if and only if there exists finitely many (k + 1)-dimensional subvarieties
Vi, Va, ..., Vi and rational functions r; € K(V5)* such that:

a =Y div(r).
One says that two k-cycles a1 end ap are rationally equivalent iff
] — Qg ~ O,
where the “difference” in the left hand side is taken in Zp(X).

Let us denote, following [29], by Ratp{X) the set of all the k-cycles rationally
equivalent to 0. As it may be easily checked, Rati(X) is a Z-submodule of Z(X),
so that &g ~ @y < oy — az € Ratp(X) is an equivalence relation. Taking the
quotient, we set:

A(X) = Ei%‘
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The Z-module Ar{X) is said to be the Chow group of the k-cycles modulo rational
equivalence. The graded Z-module:

dim(X)
A(X) = G% Ai(X),
is said to be the Chow group of the variety X. Now, let f : X—Y be a proper
morphism. If & € Ratx(X), then fi(a) € Rati(Y), while if f is flat of relative
dimension m and a € Ratp(Y), then f*o € Raty,m(X). This means that f, and f*
define two homomorphisms of graded Z-modules:

fo 1 AX)—A[Y) and (4.1)
o AY)——A(X). (4.2)

Such a fact is proven in [29], Ch. 1. The homomorphisms (4.1) and {4.2) shall be
called respectively the proper push-forward (under the assumption that f is proper)
and the flat pull-back (under the assumption that f is flat). From now on, if V is a
k-dimensional subvariety, by the symbol [V] we shall intend its Chow class, i.e. the
k-cycle determined by it, module rational eguivalence.

Let now W be a k-dimensional scheme. Let W; be its irreducible components.
Then the local rings Ow,w; are artinian local rings (7). Define the multiplicity as the
Oww,-lenght of the module Oy, itself. Set:

m; = EOw,w,- (OVV.W-)

Definition 4.4 The fundamental class of a k-dimensional subscheme is defined to be
the Chow class:

(W] =3_miWi} € Ax(X).

Notice that if W is irreducible and reduced then the fundamental class of W is simply
the rational equivalence class of the cycle [W].

Another very important definition, which we already used more than once, without
setting it, is that of the degree of a cycle.

Definition 4.5 Let X be a proper scheme of finite type over Spec(K), K being any
field. The degree homomorphism:

fx : A(X)—7Z,
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15 defined as:

Terpk(P): K] if a=mnp[P]e Ap(X)

fo-{

In the above formula [k(P) : K] denotes the degree of the algebraic extension of K by
the field of the point P, k(P) = mp/m%, mp being the marimal ideal of the local ring
Op. Clearly, if we take {as in most part of these notes) K to be algebraically closed,
[k(P): K] = 1, for all closed points.

0 if o€ 4i(X), i>0.

If f : X—Y is a morphism of schemes proper over Spec(K), then:

j;(a=£,f,(a).

4.1.3 The Chow Ring of a smooth variety.

In this section we shall make an additional hypothesis on our ambient variety X,
namely that it is smooth. Set, by definition, 4*(X)} = A,x(X). Then, we may
consider the Chow group A..(X) graded by the codimension instead of the dimension.
As a notation set:

mm=§ﬁm (43

where, of course, A¥(X) means the Z-module freely generated by all the prime cyeles
of codimension k& medulo rational equivalence. If X is a smooth variety, its Chow
group has an extra nice intersection product which make A*(X) into a (graded) com-
mutative ring, which is said to be the Chow ring of the variety X. From a formal
point of view, if @ € A(X) and o/ € AJ(X), then o - o' € A(X). Morally this is
what should geometrically happen. Suppose that V' and W are two subvarieties of
X of respective codimension ¢ and j. Suppose that they intersect transverselly. To
the last sentence one may give a precise meaning, but morally it means that, in an
affine open set, their intersection is described by means of the zero-scheme of an ideal
having ¢ + § independent generators, which may be extended to a regular system of
parameters, With these hypothesis, let V NW be the scheme theoretical intersection
of V and W. Set
V- %] =V nWw],
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where the right hand side means the fundamental class of the scheme V MW in the
Chow group A (X). Of course it may well happen that V and W do not intersect
transversally. In this case the intersection product may still be defined: to this
purpose lock at [29], p. 141, and it coincides with the usual one when V' and W do
intersect transversally. In some case one may avoid additional definitions.

For instance if X is a smooth surface, then one may compute the product of
divisors {V]-[W], evenif V and W do not cut transversally each other, essentially using
only the notion of transversality. More precisely, if V' and W do cut transversally,
fV] - [W] is nothing but the number of points of intersections of V' and W times the
class of a point. If V and W are not transversal then, as explained in [42], p. 359, one
can find divisors V1, Va, Wi, W5 such that they are mutually transversal, V ~ V) — 15,
W = W; — W, (~ means linear equivelence and, hence, rational equivalence). One

then define:

V] W] = (1] = [V2]) - (IWA] — [W2]),
estending by Z-linearity. The definition above does not depend on the choice of V1,
Ve, Wa, Wa, but only on the linear equivalence class of V' and W. For more details
see [42], p. 358-359.

The above discussion is quite heuristic and not much mathematical, but we do
not need to be too much formal here. For future applications it is better to try to
understand the geometrical meaning of the intersection product in the Chow ring.

The Chow ring is attached to each smooth wvariety in a functorial way, i.e. if
f: X—Y is a proper map and g : X—Y is a map of relative dimension m one has
two Z-module homomorphisms:

fo: AX)—A(Y),
the proper push-forwerd and:
g A(Y)—AY(X),
the pull-back.
If X is not smooth and the map ¢ is flat, then the pull-back of cycle module

rational equivalence is still defined and is known as flat pull-back.
In these notes we shall frequently need the projection formula:

Proposition 4.1 The projection formula. Let f : X—Y be a proper morphism
between smooth varieties. Then the projection formula holds:

flffa-B)=a-f.5, (4.4)
for any « € A*(Y) and any B € A*(X).
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4.1.4 Chow Rings of varieties with nice singularities

If X is not smooth it is not possible in general to define an intersection product on
A*(X). By the way there are some cases where if the singularities are not so bad
there may be found a nice substitute for the intersection ring. However, there is a
mild price to pay, that is that we need to extend the coefficient ring Z to the field
Q of the rational numbers. This is the case in the situation we shall encounter in
studying the intersection theory on the moduli space of curves, namely the one where
X is globally the quotient of a smooth variety X modulo the action of a finite group
G. In other words X = X /G. The purpose is then the following. We are given of the
Chow group of X: .
A(X) = D AX), (4.5)
i=1
and we shall define & product, called again infersection product, on the Q~vector space:

AX)ey Q= [@ Ai(X)] ®7 Q.
4]

We proceed as follows. By construction, X is the quotient of X by G. On A.(X)
we have the usual intersection product for smooth varieties. Notice now that the
action of G on X induces an action of G on the group A. (X) itself. Indeed, if
g € Gand L, : X—~X is the left tronslation by ¢ € ¢ on X, which is, indeed,
an automorphlsm of X, then, for each prime cycle [V] in A.(X), we may define
the transiated cycle (L,)«({V]), where (L), is nothing but the proper push-forward
from A,(X) into itself. Notice that, because L, is an isomorphism, it follows that
deg(L,) = 1, so that we have (L), ([V]) = [Lg(V). It is a trivial matter to prove that
the group G acts on A,(X) via the push-forward of the left translations. In particular
it is meaningful to consider in A. (X) the subgroup A.(X)C of the G-invariant cycles
classes of A.(X), but we shall not need that.

We are now in position to define a product structure on A.(X) ® @, making it
into a ring,.

Let p : XX be the canonical projection of X onto X and let &, 8 be two
arbitrary cycles in A,(X). Set:

1 * *
a-fi= @(p*[? (o) -p"(B))). (4.6)

As one may see, in general, the right hand side does not land in A.(X) but in some
rational number times a class in A.(X). This has to do with the fact that we are
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dividing out (but what else may we do? We are just using the definition of the proper
push-forward) by the order of the finite group G. Of course, the product defined
in (4.6) can be extended by Q-linearity , so that it works for an arbitrary pair of
linear combination of (@-cycles. _ ;

1t is easy, using the fact that A.(X) = A*(X) is a ring, to see that A.(X)®Q s
a ring with the product defined by (4.6). We shall index it by codimension, writing
A*(X) and omitting in the notation the fact that our coefficients are taken in Q. It
will be, by definition, the intersection ring of a variety which is globally the quotient
of a smooth variety by the action of a finite group. One may check that if X can be
viewed in two different ways as the quotient of a smooth variety modulo the action
of a finite group, then the product defined on A,(X) ® Q does not change.

Fortunately enough, as we shall see in the next chapter, M, and M, are two nice
examples of such varieties.

4.2 Chern Classes

Let X be a variety and let L € Pic(X), i.e. Lisaline bundle on X or, equivalently, an
invertible sheaf of Ox-modules. Let ¢ € HY(X, L) be a holomorphic section of L. Let
Z{o) be its zero scheme. Either Z(c) is empty, or it is a 1-codimensional subscheme
said to be a Cartier Divisor. Its class in A'(X) , [Z{0)], does not depend on the
section chosen and it will be denoted by the symbol ¢y (L), said to be the first Chern
class of the line bundle L (if Z(¢) = @, such a class is 0, which also means that the
line bundle is trivial, possessing a never vanishing holomorphic section). Hence, 3(L)
represents the class of linear eguivelence of the Cartier divisor Z (o) defined by any
o € H°(C, L). This procedure may be generalized. Let E be 2 holomorphic vector
bundle of rank r over a n-dimensional scheme X. Let ¢ be a non-zero holomorphic
section of E. Suppose that on an affine open subset of X, o is represented by the
r-tuple of holomorphic functions:

Oy = (S1,...,8).

The zero scheme of o, Z(r), coincides, on the affine IF, with the common zero-locus
of the functions f;’s. Suppose that either Z(o) = @ or the fi’s form a regular sequence
in the ring Ox(U). In this case we say that ¢ is a regular section. Hence, the locus is
either empty or its ezpected codimension is r (we have r equations!). When the zero
locus is not empty, saying that the section is regular in the above sense, mesans that
the expected codimension coincide with the actual codimension of the locus Z(o).
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Therefore, in this situation, Z(¢) is a (n — r)-dimensional closed subscheme giving
rise to 2 cycle [Z(o)], modulo rational equivalence, in A7(X). Such a class [Z(o)] is
said to be the r-th Chern class, ¢.(E), of the bundle E, and it is defined to be O if
Z(o) = 0. In general, to each vector bundle of rank r over a scheme X, it is possible
to associate an element of A*(X) for each 0 < i < n = dim(X), c:i(E), said to be the
i-th Chern class of the bundle E. We list below the basic properties of the Chern
classes of a vector bundle, whose geometrical meaning has been explained at least for
the top one, i.e. for ¢ (E) when rk(E) = r.

Properties of Chern classes
1. &(E) € AX);
2. If E is a trivial vector bundle, then ¢;(F) =0, for each i > Q.
3. ¢(E) = 0if i > dim(X) (this, trivially, because AYX) = 0 if > dim(X):
there are no cycles of dimension less than 0!).

The expression ¢(E) = 3; ¢;(E) is often said to be the total Chern class. How-
ever we shall use more often an analogous substitute, the Chern polynomial,
defined to be:

e(E) = gci(E)t*.

5. co(E) = 1=[X].

6. o(E) =0for i > rk(E).

We have also some normalization properties, which reflects the geometrical
meaning we recalled above for the top Chern classes. In particular:

7. If D is a Cartier divisor on X, and Ox(D) is the invertible sheaf associated to
D, then:
ee(E) =1+ Dt

ie. (E)=1D]
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Naturality For any morphism g : Z—X and any holomorphic vector bundle
on X, one has:
ct(g"E) = g"ci( B).

. The Chern polynomial is a homomorphism between the Grothendieck group

KO(X) of locally free sheaves on X and the Chow ring A*(X). In other words,
* 0—E'-—E—sE"—(
is an exact sequence of vector bundles on X, then

e B) = el B')eu( B).
Let BV be the dual bundle of E, then:

a(EY) = (=1)'a(E).
Suppose that F is a vector bundle of rank r over X and that its Chern polyno-
mial admits a linear factorizations like:

a(E) =(1+at)-...-(1+ad)

Then the coefficients a; € AX(X) are said to be the Chern rootsof E. The Chern
classes may hence be expressed as the elementary symmetric polynomials in the
Chern roots. For instance, c1(F) =a1 + ...+ 6.

Exercise 4.1 Let E = L& L, L being a line bundle over X. Write the Chern
polynomial of E and describe its Chern roots.

Chern character. Let E be a vector bundle of rank » over X. Let ai,...,a,
be its Chern roots. Then the (exponential) Chern character is defined to be:

ch(E) = X" eapla),

where of course ezp(a;) has to be thought of as a formal power series. The first
few terms of the Chern character are given by:

i 1
ch(E) = r+c+ 5(6513 — 202) + E(Ci' —3ciee +e3) +

1
+ ﬂ(c‘f —dckes + dercy + 205 — 4ea) + .-, (4.7)
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where in (4.7) ¢; is a shorter way to denote ¢;(E). The Chern character enjoys
of a nice behaviour with respect to exact sequences of vector bundles and with
respect to tensor products. If:

0—E — BE—E"—0,

is an exact sequence, then ch(E) = ch(E') + ch(E"), while if E = E'® E”, one
has that ch(E) = ch(E")ch{E").

Todd Class.
If E and X are as above, the Todd class of E is defined to be:

d(E) = 1] Q(a2), (48)

=1

where the a;’s are the Chern roots of E and Q(z) is the generating function of
the Bernoulli numbers:

Qlz) =

T 1 2 Bk
_ : _1)#t 2%
===t 2“"’,;( T

In the above formula, By stands for the k-th Bernoulli number. The first few
terms of the Todd class of E are: |

1 1 1
td(E) = 14 '2—01 -+ 'i-z'(cf -+ Cz) =+ ﬂclcg -+

1
+ ﬁo(—c‘f + 4cic, + 4a16s + 265 — dg) + ... (4.9)

The Todd class td(X) of a variety X is, by definition, the Todd class of its
tangent sheaf.

If 0— B'— E— E” —0 is an exact sequence of vector bundles, then one has:

td(E) = td(E") - td(E”).

Projective Bundles.
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Let P(E) be the bundle Proj(S(£)}, where S(£) is the symmetric algebra as-
sociated to the locally free sheaf £ of the sections of E, and let p: F(E}—X
be the structure mep and:

be the tautological ezact sequence. Set £ = ¢; (OIP(E)(l))- One then gets:
g —palBX ' +...+(-1)pe(E)=0.

15. Let L be a line bundle and F any vector bundle. Then:
r—k-+i :
W(BE®L)=Y ( 7; )ck-,-(E)cl(L)'-
For instance, if rk(E) = r, one has:

C1 (E & L) = C]_(E) —+ 7€) (L)

16. If A™F is the determinant line bundle, one has that:

[5] (/\TE) = (E)

These are the only properties we shall need in the following. All what should we
do, in the next sections, is to learn how to get familiar with the manipulation rules
of the Chern classes of bundles on the moduli space of curves.

Examp_le 4.1 Suppose that X is a variety which is globally the quotient of a smooth
variety X modulo a finite group acting by left translations on it. Let & be a vector bundle
on X. Then we may still define the Chern classes as elements of A*(X), where A*(X) is
the intersection ring of X defined in the subsection 4.1.4. In other words we may associate
the Chern class ¢;{E} € A*{X) by setting:

1

G(E)= RG—)P*G(P'E)- (4.10)

Notice that ¢;(p*E) are the Chern classes defined above, in this section.
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4.3 Porteous’ Formula

The main purpose of this section is to introduce a fundamental tool for performing
computations in several problems coming from enumerctive geomnetry: the Thom-
Porteous’ formula, briefly said, in the following, Porteous’ formula. We shall not try
to sketch a proof of such a formula, which may be found, e.g., in [4], p. 86-fT. Rather,
we prefer to explain how to use it and what it serves for. To this purpose, recall
our informal discussions about the geometrical meaning of the top Chern class of a
vector bundle ¥ of rank n . Suppose that X is a C-scheme of finite type and that ¢
is a regular holomorphic section {in the sense that locally it is expressed by a regular
sequence of holomorphic functions) of a vector bundle F over X. Then we said that
the class [Z(c)] in A™(X) of the zero scheme of the section ¢ is the same as c,(F),
the top Chern class of the bundle F'. The section ¢ canonically induces a morphism
between the trivial vector bundle Ox and the vector bundle ¥:

Ox—  F

X (4.11)

Such a & may be locally expressed (like when we thought of it as a section) by a
(1 X n)-matrix (sy,...,s,) of holomorphic functions. Generically on X, the rank of
such a matrix is 1 (i.e. min(l,n)) and hence Z{o) is the locus of the points P of
X such that rankp(o) < 0 = min(l,n) — 1. The ezpected codimension of such a
degeneracy locus is n (because we are considering the simultaneous vanishing of all
the 1 x 1 minors of a 1 X n» matrix). Since the section was assumed to be regular,
the expected codimension of the locus Z(o) coincides with the actual codimension of
it. Hence we may compute the class in A*{X) of the degeneracy locus of the map o
in {4.11) as:

2] = ol ~ Ox) =
= the degree n part of (c,(F)}(c;(Ox))™?

where the inverse is taken in the local ring of the formal power series in £. But Ox is
the trivial bundle, so that ¢;{Ox) = 1. And we hence get:

[2(0)] = ca(F),
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as (of course) we already knew. To go further let us introduce a piece of notation:
Let Al[t,t7Y]] be the ring of formal Laurent series with coefficients in a commutative
ring A (e.g. Z, the rational field Q, or even the Chow ring of 2 smooth variety) and
let P(t) € A[[t,£7Y), and:

+o0
=3 apt?,
Define:
Qap Qptl oo Opig-1
G Gp ... -
PP =| Tt T Mgy
Op—g+1 Op-g ... @y

It turns out that if one thinks ¢ as a map of vector bundies like in (4.11), ¢,{F) is
nothing but:

By (c(F — Ox),
which is a particular case of the Porteous’ formula, which deals with the following
general situation, keeping the same underlyincr idea. Let

F—>G

™

be a mep of vector bundles over a Cohen-Macaulay algebraic variety, such that
rank(F) = m and rank{G) = n. Let r = min(m,n) and set, for each k <

(4.12)

Zr(d)={PeX :rkpd < k},

For k = r— 1 we shall abbreviate Z,_,(¢} by Z(¢), consistently with the meaning of
Z for morphisms induced by sections of vector bundles. We then have:

Theorem 4.1 (Porteous’ Formula} If Z.(¢) has the expected codimension (m —
k}(n — k) or it is empty, then the fundamental class of Zi($) in AJX) is given by
the Porteous’ formule below:

[Ze(8)] = Dn—tm—1(c(G ~ F)).

We shall get more than one pretest to digest Porteous’ formula by applying it.
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4.4 The Kontsevich Moduli Space of Stable Maps
(continued)

Notation as in section 3.3. As we claimed there, top codimensional intersection of the
cohomelogy classes e;(L;) should represent solution of enumerative questions. We
would like to feel why. Suppose n > 3. Then, for any £ € Mon(r, d)(S) there is
a map S—Mon(r, d) (the DM compactification of stable pointed rational curves),
hence a unique ¢ : Moa(r, d)~— Mo n.

Definition 4.6 Let H denote the class of the hyperplane in P". A tree level system
of Gromov-Witten classes for " is the family of maps:

Ion(r,d) : A7) — A (Mo,
defined as:
Lalr,d(H* ®...® H™) = G(a(L)™ N...Ne(L)*)

The reason for this terminology is because of Witten's paper [78] where T classes are
defined and because Iy, (r, d) satisfy the properties in [51].

By abuse of terminology and following Fulton [31], the Gromou-Witten invariants
for My,(r,d) are the numbers:

Ton(r d) {0y, ..,an) = fﬁon(r,d)(m(Ll)al U...Ue(L)*)

i.e. the evaluation of the cohomology class gotten by the cup product of the c1(L;)’s
against the fundamental class of Mo a(r,d). For notational convenience, in the fol-
lowing we shall denote:

Ion(r, ), .., an) =< L® ... L2 Mon(r,d)} > .

Clearly, by the very definition of the degree of Chow (or cohomology) class, one has
that fon(r,d)(0n,-..,an) =0 on+...+0n # rd+r+d+n—3. A relevant property
of the Gromov-Witten invariants is:

< L® . L8 Lo Mon(r,d) >=d- < L .. L2 Mop(rd) >.  (4.13)

n—1

It is worth, at this point, to sebtle a remarkable geometrical meaning of the Gromov-
Witten invariants.
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Theorem 4.2 Set:
Ni=:Tosa1(2,d)(2,...,2) =< L}-...- L3j_1; Mo34-1(2,d) > (4.14)
LM 2

3d-1 times

Then Ny is the number of irreducible nodal rational plane curves of degree d passing
through 3d — 1 general points in IP2.

Proof.

First we show that, from a set theoretical point of view, we get exactly the locus we
are searching for. Fix 3d — 1 general points in P2, Qy,..., Qas_1. The point Q; is the
intersection of two lines L; and M;. For & = (C, A, ..., Pag-1, &),

w(P) = Qi < £y LinyM,

ie. if and only if: .
£ € er(Li)* N Moza1(2,d)

Hence c1(L1)> N ... N ea(L:)? N Mpze-1(2, d) represents the locus of curves we were
looking for. By Bertint’s theorem, the scheme theoretic intersection cycle above is
reduced and of dimension 0 (the general line of P is transverse to the map u). As
we noticed before, the general intersection cycle corresponds to an irreducible nodal
rational plane curves of degree d passing through 34 — 1 general points in P2,

QED
By using an analogous proposition, we argue that:
< LngLng, —'M—o‘4(3, 1) >=2,

which is the number of lines in P* meeting four lines in general position. Notice
that, if we were able to compute it, Jos(2, . .., 2) would represent the solution of the
enumerative problem about cubics stated in the subsection 3.3.3.

The first reconstruction theorem by Kontsevich and Manin, in such a setting, says
that there exists an explicit effective algorithm for calculating all the top intersection
pmd‘uc“ I(O‘l n)(al: e Otn,) ([51])



Chapter 5

Jets Extensions of Relative Line
Bundles on Stable Curves

5.1 The Relative Dualizing Sheaf.

Let # : £—8§ be a noded curve over S, meaning that if some fiber of the map «
is not a smooth curve it has only ordinary nodes as singularities. Each such family
comes equipped with two important sheaves: the former is the sheaf of the relative
differentials le s+ end the latter is the relotive dualizing sheaf wz. They are both
coherent sheaves of Oy-modules which coincide if all the fibers of # are smooth curves.
Moreover, as we shall see below, for families of stable curves, w, is an invertible sheaf.

From now on we shall make, for simplicity, the assumption that S is a smooth
scheme. This assumption, which is not necessary for the validity of the properties of
Q}{ /5 and w, we are interested in, is not restrictive in our case, because in the sequel
we shall be mainly concerned with families having a smooth connected base. Let now
s € S be a point such that X;, the geometric scheme-theoretical fiber of X, is a noded
curve.

We say that P € ¥, is a node if and only if the completion of Op thought of as
70, algebra, is isomorphic to:

C[[X:Y':le - a’I;']]/(XY - f(Tl, e iTT))
thought of as a C[[T7,...,Tr]]-algebra and where
..., Ty eClT,.... T

77



78 CHAPTER 5. JETS OF RELATIVE LINE BUNDLES

and that the map # is induced by the structural morphism:
Cl[T, ..., W] —C[X. Y. Ty, ..., TN/AXY - f(Th,..., T3))

In the complex analytic langrapge such a definition means that a holomorphic map
7 : ¥— 5 between complex analytic spaces has a node at P if and only if there is a
complex analytic neighbourhood V of P and a complex analytic neighbourhood U/ of
w(P) such that the projection 7 : V—U is given by (X, Y, T1,..., T7)—(T1,..., T7)
and U looks like the set of points (X, Y,Th,...T,) such that XY — f(T1,...,T.) =0
for some holomorphic function f € Ox(V). The locus f(T1,-..,T7) = 0 is a local
equation of the so called diseriminant locus or the nodal locus of the family. In the
sequel, by definition, for a noded curve over S of genus ¢ we shall mean a proper flat
family # : £—5 such that each geometric fiber is either smooth or noded.

Now, by standard basic commutative algebra (see e.g. [18], [6], [62]), the module
of sections on V' of the sheaf of relative differentials (2} (V) is generated by dX, dY

and dT; over C[[X, Y, T},. .., Tn]], subject to the relatlon
XdY +YdX —df =0.
By virtue of the well know exact sequence:
T Qy— QU — 0 0, (5.1)

it follows that Q4 y 5V is gemerated as C[[X, Y, T,..., Tm]]-module by dX and dY
subject to the relation:
XdY +YdX = 0. (5.2)

The relative dualizing sheaf wy, instead, is such that the module w, (V') is generated,
over C[[X,Y, T4, ..., Tw]] by & and %, subject to the relation:

g + g =0
X y 7
which, after all, is a way of formally rephrasing (5.2). By the way, it turns out that
the relative dunalizing sheaf w, of the family « is an invertible Ox-module.
If s € §is such that X, is smooth, Qx and wyg , their restriction at X,, coincide.
In other words, if = : ¥— 5 is a family of smooth curves, the dualizing sheaf is the
same as the sheaf of the relative differentials.
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Suppose that C—5Spec(C) is a trivial family and C a curve having only nodes
as singularities. Let NVy,..., N be such nodes and let

n: C—C,

be the normalization of C' and (B}, @) the preimages of N; through n. Then the
relative dualizing sheaf, in this case simply said the dualizing sheaf of the curve C,
is the sheaf of regular differentials x on C with possible exceptions at the points
{{F;,@:)}, where p may have at most simple poles such that:

Resp,(11) + Resg, () =0,

for each 1 < ¢ £ k. The reason of the name dualizing sheafwc for the curve C is that
if F is any coherent sheaf on C, then there is an isomorphism:

Hom(HY(C, F),C) & Homoo(F,we)
If 7 : X—5 is any stable curve on S, by what has been said there is a natural map:
R: le/s_"w’r' (5.3)

On the restricted family my : V—U as above, it iz %eﬁned simply by sending the

1 : 3 ——— - _—— =
generators dX and dY of Q% , S(V) into, respectively, X and v If¢ e v
is a generator of w, around a node of a fiber of X, then the image of (2}, /s Via the
map R is given by, in the above open set:

dX — X({ and dY - Y,

ie,if ¥ € X is a node we are looking at, Q%/SN = {X,Y){ where (X,Y) is the
maximal ideal in the fiber 7~*(w(N)) corresponding to the node N. In other words
the image of the map R is nothing but ZLinodesjwr) Where Zjnodes is the ideal sheaf
corresponding to the closed subscheme of nodal points on fibers of the family «.
Following {63], p. 101, we shall give the proof of the following remarkable fact, that
we shall need in the sequel:

Theorem 5.1 Let 7w : £—S be a stable curve over a {germ of) smooth curve S and
assume that X is integral. Let Sing(X) be the closed subscheme of the singular points
on fibers of m and let Tyny be its ideal sheaf. Then:
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i) codim(Sing(X)) =2
i) the canonical homomorphism le 15 W induces an isomorphism Ql% s =
ZLinodes] * Wa-
Proof.
‘We are going to check that all the stalks of
Ug/s omd Do = Tinotes "

are isomorphic. They are clearly isomorphic off the singular locus Sing(%), by what
has been previously said. Around a singular point N, X has a local equation of the
form zy = t*, where (z,y,%) are generators of the maximal ideal corresponding to
N and t is a local parameter on S. Locally, ¥ is singular only at the point (0, 0,0)
corresponding to the fiber ¢ = 0. It follows that Sing(C) has codimension 2 in X (a
point in a surface). We already saw that locally around NV:

Ql%/s = (Ogdz 4+ Oygdy)/(zdy + ydz)Oy,

while w, is invertible, generated by ¢ which may be expressed as dz/z for £ # 0 and
—dy/y for y # 0. We have the map:

9_1{/5_’(1:: y)C = I[nodzs] s W

Now eedX + dY is sent, via the above map, to (aX — 8Y){. Such an image is 0
iff X — fY = 0. Now, o, € O¢(U), and hence, since X,Y are local parameters
around N, one may write o = Y& and 5 = X, so that:

adX + dY = (YadX + XGdY)

which is sent to: _
XY(a - B). (5.4)

Now, since ¢ generates wy, 5.4 gives:
T (1) (& — ,C:f) =1,

- where 7*(¢) is the local parameter of the base S pulled back to X. But 5.1 is an
equation in an open set of X which is integral. Hence, because 7*(t) # 0, one has
& = f3, giving adX + fdY = 0 as required.
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QED
As a consequence we have that the following exact sequence must hold:
0—0% s—wn—wr ® Ofnazeq —0, (5.5)
as may be easily seen by considering the standard exact sequence:
O—iIIMmI-—-—)Ox——?O[m]ﬁO,

tensoring it by the invertible sheaf w1, and using theorem 5.1.

5.2 Jet Extensions of Relative Line Bundles

Let @ : ¥—5 be, as usual, a stable curve over 5. The sheaf of the relative differentials
le /5 COmes equipped with a universal dertwation ([6], p. 108):

dx/s* Ox—»Q%E/S. (5.6)

Unless X is a family of smooth curves, le /s is not in general invertible, but fortu-
nately enough we are given of the natural map (5.3):

R: Q.lx/s—-w,,,

having as e target the relative dualizing sheaf of the family w,, which is invertible.
Let us denote, in the sequel, by d- the composition of R with dy /5 In other words:

dﬂ=R0dx/S : Ox—-)wﬂ-

The map d,. will be called, in the following, by a slight abuse of terminology, the
exterior deritvative along the fibers of m (compare with [56], where in the case of
families of smooth curves, an analytic description of d; is provided). As it is well
known, w, and d, enjoy some nice functorial properties (see, e.g. [16], p. 77}, which
reflects in a nice behaviour of the map d, by base change. More precisely, combining
the properties of the dualizing sheaf under base change with the behaviour of the
universal derivation described, e.g., in [6], p. 110, we have that if:

D2

Xr——""—X%

SO -

T e———S

¢
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is a cartesian diagram, i.e. Xr is the induced family over T, defined by T x g X, then
Py = Wy, (5.8)
and
Pty = dp,. (5.9)
In particular, if s € § and T = Spec(k(s)), then pjwr = wp, = wyg , the dualizing

bundle of the fiber X, and dp, = d : Og —uwyx . This in particular means that wy is
a dualizing bundle along the fibers, i.e. its fiber at a point P € X iswyg_ |

We want to use the previous remarks for defining a suitable notion of n-th jets
ertension of a relative line bundle £ on X/5 along the fibers of «, where 7 : ¥—S§
is a stable curve over S of genus g > 2. By a relative line bundle £ on %/S we shall
intend a line bundle over X modulo pull-backs of line bundles over 5. Let £ be a
representative of such a line bundle and let & = {U, : @ € A} be an open affine
covering of ¥ such that w,(U,) and £(U,) are generated by o, and 4,, respectively,
over Ox (Ua).

If )\ & HO(X, L), we can then write A, = {u¥. , for some £, € Og{Us,). The
purpose is now to define the higher order derivatives of A with respect to the generator
0. (compare with [53] and [54]). We set d”(£,) = £, and, recursively,

&= (dF 7 (8a)) = 45 (£a) 0. (5.10)
It is now a standard patching game to show that the data relative to the open set Uy:
(U (tar dater - ,df,")fa)T} ,
is related to the data relative to the open set Ug:
(U (t0.dst5.--.45°%5) "}
in the intersection U, N U through the relation:
(bar oty -, d0)" = Mg - (£5,dsts, .., dt5) " . (5.11)

where M,g is 2 {n + 1) x (n + 1) matrix whose entries are regular function on
Ua NUp C %. Moreover, it turns out that {Meg} € Z' U, Glo4a(Og)), Le:

Moo = idox(Uu)aa(nm ond  Moag - Moy = Mo

Hence, the collection {Mz} so described, defines a rank n + 1 vector bundle.
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Definition 5.1 The vector bundle of rank (n+ 1) defined by the transition functions
Mg relatively to the covering U = {U, : & € A} is said to be the n-th jets extension
along the fibers of the relative line bundle L, and, following [56], will be denoted by
JiL.

Example 5.1 For the reader’s convenience it seems worth, here, to sketch the construction
of J*£. The construction of J*£ may be gotten from this example by imitating an inductive
procedure used by F. Ponza in [72]. Let & = {U, : @ € A} be an open covering which
trivializes sirnultanecusly the representative £ of a relative line bundle on X/S and the
relative dualizing sheaf w,. Let A € HY(X, £) be a global regular section of £, and on
Up NUs # @ write: ’\luanvg = £oWo = {s93. By v and 95 we mean the restriction to
Ua N Ug of the generators of L(Us) and L£(Up) over Ox(U,) and O (Ups) respectively.
Similarly, we shall denote by o and o the restrictions to U, N Ug of some generators
of we(Us) and wy{Us) over Ox(Ua) and Ox(U,g) respectively. Let log and ks be the
transition functions of £ and w,, defined by:

g =lape and og = kapoa.

Set:
d‘iT(Uu) (fa) = dofats.
One has then:
Ly = lapls, (5.12)
while:

dolo = dallapls) = kapda(lapls) =
kapds(lag) - £ + kaplagdals. (5.13)

One may hence organize the transformation rutes (5.12) and (5.13) in the following
matrix equation:

£ _ lop 0 ( £ )
(da-‘fa) - (kaﬁdﬁ(luﬁ) kaﬁlaﬁ) dgls )’ (5.14)
Set: ; 0
Mg = = ) 5.15
of (kaﬁdﬁ(la.s) kaplas (5.15)

Let us check that {Myg} € Z' (U, Gla(Og)). One has:

l 0
Moo = ex ) .
o ( kcmda (lucx) kaulua
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Now, dalloc) = da(lo x(Ua)) = 0 while the other entries are the identity of the ring O (Us).

Hence: 10
Moa = (0 1)'

Moreover

l 0 g 1]
et = (o 1) ol )
laglpy 0 )
kaplgydp(lag) + Keplapksydy(lsy)  Koplagkaylsy

Now, by construction, l,5ls, = lo-y, while
kaplagkpylgy = kapkgrlaglay = Kaylay-
For the entry located in the second row and in the first column, cne has:
kaplpyda(la) + koplapkaydy(ipy) =

kaployds(las) + Koydy(lay) = kaylprkendy(lag) =
Koyl (ley),

so that:

! 0
Mag- M, =( Ay )= M.
BB T N kpydo(lpy)  Kovlsy =

Hence {Map} € Z'(U,GL2(Ox)) defines a vector bundle of rank 2 denoted by JIL.
Let us check that such vector bundle is well defined on the class of £ modulo pull-back
of line bundles ¢n the base. Let A be a line bundle on S, and let £ ® 7" M be another
representative of the class which £ belengs to. The transition functions of the line bundle
£ ® 7* M are the product of the transition function {los} of £ and the pull-back #*{mgg)
of the transition functions of M, which are fiberwise constant. Hence, d(7"(mag)) =0, so
that the transition functions of the bundle J(£ ® 7*M) are Mag - 7*(mag), i.e.:

JHeerMy=JHL)en M

which means that the first jet of a relative line bundle is defined as the first jet of a
representative modulo the pull-back of line bundles on S.

By the above definitions, it turns out that the collection:

{Us; (Lo, dalls), - - - df;‘) (Ea))T}
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defines a global holomorphic section, written D" A, of the bundle J*£. The construc-
tion outlined above is the relative version of the jet bundles for Gorenstein curves
constructed in [33). If 7 : ¥—5 is a family of smooth curves and £ = w, is the
relative canonical sheaf, then JPw, is exactly the n-th jet of the relative canonical
bundle along the fibers defined by Lax in [56]. There, the construction was performed
by using Patt’s local coordinates ([69]) in the Teichmiiller space.
To continue with, because of the property (5.9} of dr, we also have, referring to
the diagram (5.7),
pi(D*7) = D¥(ps7), (5.16)

and, hence:
P(IL) = Ty, (B3L)

where the D on the right hand side is precisely the D relatively to the induced family
p1 : Xp—T. In particular, if T’ = Spec(k(s)), D is still defined as above and J¥ £,
is the k-th jet of the bundle of L;x =psl = L,.

Now we come to prove one (eafsy) technical result that establishes an exact se-
quence of vector bundles which shall be useful to compute Chern classes. It is nothing
but formula (2.1.1) in [63], p. 138, rephrased in the language of jet bundles. How-
ever, we should say, the present framework is more general, since we shall prove it
for bundles defined on a family of stable curves. Before stating such an important
technical proposition, let us remark that if Mg is the transition matrix of the bundie
J*L, then such a matrix is upper triangular. This cormes out because each k-th de-
rivative of, say, £,, by passing to a trivialization (U7, g), changes through a linear
combination of all the df;) {€s)’s, with 0 < i < k. Moreover, the i-th diagonal entry of
Mag is exactly the transition function of the bundle £ ® w,® (for 0 < i < n), as the
reader may check himself by doing an easy exercise. We may now prove the following
fundamental:

Proposition 5.1 For each line bundle £ over X/ and each n > 1, the following
exact sequence holds:

0—L @ wr®— JPL—J 1 L—0 (5.17)
Proof.

Let U, € U be an open set in X belonging to a trivializing open covering. Let
(P, (ua0,---r%an)’) be a point of JPL in the given trivialization. The data
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(a0 - - Uan)T is a (n + 1)-tuple of complex numbers: they do not need to come
from the evaluation at P of a section D"X of J®£. The only constraint is that if
(P, (ug0,...,usn)" ) is the representation of the same point of J7L in the open trivi-
alizing set Ug, then these two sets of data must be related by the transition functions
{Mag} of the bundle J*(£). Define the map pa—1 : JpL—+J77 L as follows:

(P, (a0 - - - » Uarn) T )} = (P, (U0 - - - » Yoyne2s Yarym—1) )-

This map is clearly surjective, and its kernel is formed by all the (n 4 1)-tuples
(P{0,....,0 ,v14)7) belonging to J2L. The latter sentence means that such

(n—1)—times .

n-tuple corresponds, in the trivialization (U, 9z) to the n-tuple:

(Uu,ﬁ1 ey Uﬂ—l,,@)T = Mﬁa . (0: [REE) 0: vn--—l,a)Ta
n-—=times
which, because of the remarked structure of the matrix Mg, means that:
(P’ (Uﬂ.ﬁ’ v ?Un—l.ﬁ)T) = (P; (Os -0 Uﬂ-l,alﬁ& ) (kﬁ&)n)T)1
* n—times

i.e. that Ker(p,-1) may be identified with a line bundle isomorphic to £ @ w,*".

QED

5.3 Partial Jets

The title partial jets means that we want to learn to make partial derivatives of sections
of line bundles on families which are fibered products of good families « : ¥—5. To
be more precise, let 7 : £—.5 be a stable curve over S and let w, be its dualizing
sheaf, Let p: X"—.S be the natural map from the n-fold fibered product:

.IXs...Xs}:

of X over S. The notation X" is certainly abused. For each 1 < ¢ < n we have the
projections onto the i-th fector
D xr _—)x:
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so that p = wop;, foreach i € {1,...,n}. Let len/s be the sheaf of relative
differentials of X"— 5. By general theorems on the sheaf of the relative differentials,
(see [18], pp. 392-393) it turns out that:

1 — *0l * y1
anls = plﬂxls S... EBanx/S (518)

The geometrical meaning of the above equality shouid be clear: it means that such a
module is locally generated over Og~ by expressions like df;, where f; is the pull-back
of a regular function on the i-th factor. Using the map:

R: Q}f e
we have an induced map:

R: Qhen /s Piwn S .. © Prun. (5.19)

The target of the map R in (5.19) is a vector bundle of rank n and it is the Whitney
sum of the line bundles pjwr. Pick f € Ogn(U). Then df € $%m / 5(U)- In a sense
we want to take the component of df along the ¢-th factor and to call it the partial
derivative along the i-th factor. It would be nice to denote such a partial derivative
by dp,(f), but this may create some confusion and we need to invent a new symbol
for it, as it will be clear in a moment. In fact let us consider the cartesian diagram:

n—times
XxXg...xgX L—*.’f
B, it .nl ' J T
(5.20)

xXS...sz——i’S
N, ettt

(n—1)—times

Here p;_;.33441,.n means the projection onto all the factors but the i-th (the
“hat” over the “” means that “” is omitted). The i-th partial derivative we are
looking for is something living in pjwy. Now, there is 2 map p}d. : Ogn—spjwn,
which, by functoriality, is the derivative along the fiber of the map p; _; 13..: .-
Hence, strictly speaking, the i-th partial derivative of the function f in our sense
would be:

dF1.....i—1,§,i+1,....n (f) € p;w”(U)’
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which is a clearly too long expression. Hence, from now on, we shall denote by the
symbol &; the derivation dy .» and to furtherly simplify notation, we shall
set:

..... i—1,3,641,...,
* — .
pt- Wy = Wy,

Moreover we shall set K; = ¢1(w;). If the morphism 7 : ¥—5 is smooth (i.e. if all
the fibers are smooth}, in X" we have also others Cartier divisors, corresponding to
the diagonals: D;; shall mean the big diagonal P; = F;. We shall be interested in
their intersection properties stated and proven in the following:

Proposition 5.2 (Formularium)
Let K; and Dy; as above. Then the following properties hold:
1. Dy« Dy = Dy - Dype.
2. K;Dy; = K;Dy;.
8. D} = ~KiDy=—K;Dy
Proof.

The proof of 1 is as follows: on an analytic neighbourhood of ¥*, with coordinates
(Xi)lsigk: one has that Dij = Z(X-,- - Xj), while Djk = Z(Xj - Xk). Sinece X; — X_-,:
and X; — X; are linearly independent linear form, it turns out that D;; and Dy
do intersect transversally each other. Hence the classes Dy Dy and Dy Dy, are the
classes of the scheme theoretical intersections Dy; N Dy and Dy N Dy, which locally
are defined by Z(X; — X;, X; — X) and Z(X; — X;, X; — Xi), and hence equal. It
follows that even their classes in A*(X")} are equal, so that:

Diijk = .D,'jD.'k.

as desired.
As for 2, let us denote by ¢ the natural embedding:

L Dij — X",
‘We hence have:

Ki- Dy

Ii

HEG) = s pie(wn) = (pio ) alw) =
(Pj N t’)*cl(wﬂ') = L*p;cl(w.,,) = Kj . Dij.
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It remains to prove 3. For such a purpose, we shall use the fact that the self
intersection of a divisor coincides with the first Chern class of its normal sheaf. Hence
we use the exact sequence defining the normal sheaf:

0—Tp,,— " Tpn—N, %" 0

We have

el(N, b)) = alTen) — a(Toy),
ie.:

D‘fﬁ‘ = —cl(/\mavan) - Dij + KD{j'
But ¢; (/\mTin)Dﬁ = Kan,-- = (K1 +.. .—I—Kn)Dij, while KD‘.J. is equal to K,'Dij +
KpD;; with £ 4 and £ 5 j (We passed from the product of n-curves to the product
of n - 1-curves. Hence:

Df =KDy — K;Dy; — 3 KiDyj + KiDyj + 3 KiDyj = — KDy,
) Gt L,

as required.
QED

The above results are functorial, in the sense that they are independent on the
base of the family. For instance consider a single curve C of genus g. Then it may be

seen as a trivial family:
C—8pee(C),

In this case C? is simply the two-fold product of the curve by itself. Let A be the
diagonal and K; = a1(pjK¢) (i = 1,2).

Exercise 5.1 Prove that [, A% = 2 — 2g and that [, KiA = 2g — 2. May you feel
the underlying geometrical idea of the latter equality?

Let us go back to the jets bundles, and let £ be a relative line bundle over X"/5.
The bundie J*L is the bundle gotten in the following way. Take a section A €
H°(X™, £). Here we are making the simplifying assumption that £ has non-zero
non constant global sections, which is more than enough for our purposes. Take a
trivializing open set U C X". Themn:

A=,
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where £ € HO(U,0y»). The bundle JP(L) is hence the bundle whose transition
functions are prescribed by the transformation rules of the set of date:

(U; £,8:4,...,000).
Obviously we have the exact sequence:
0—L @ WP —as JPL—s JP L—0. (5.21)

The proof works out exactly as the one for the exact sequence {5.17).



Chapter 6

Intersection Theory on the Moduli
Spaces of Curves

6.1 Introduction

6.1.1 The Chow rings of M, and M,

Let g > 2. Studying the intersection theory of M, means primarily to understand
what should one mean by the Chow ring of M,. In fact, to begin with, M, is a
singular variety. Hence, if on one hand we have no trouble in defining the Chow
groups, on the other hand we should try to make precise what should be a reasonable
intersection product in the Chow group A.(M,). But even if one doesn’t aim to be
particularly sharp, one sees that problems arise already in the divisor theory. For
instance: what is Pic(M,) and what are its generators? The answer to this question
has been provided during several years of studies by several authors. And once one
has understeod what the generators are, how to express classes of natural defined loci
in terms of such generators?

The first big step toward the foundations of the intersection theory on the moduli
space of curves has been walked by Mumford in his pionieristic paper [65]. At that
time it was of course clear that M, was a singular variety, due to curves possessing
non trivial automorphisms. However the difference between M, and M, (its Deligne
Mumford compactification) was quite relevant. In fact M, is a singular variety, but
fortunately enough, it is globally the quotient of a smooth variety modulo the action
of a finite group. The smooth variety which does the job is the so called space M},
the fine moduli space parametrizing smooth projective complex curve with a level n-

9
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structure. Roughly speaking, a level n structure is a choice of an explicit isomorphism
between the group (Z/nZ)? and the subgroup Jac(C)[n] of the Jacobian Jac(C),
parametrizing n-torsion points!. We are not interested to enter in details here. For
our own purposes it will be sufficient to know that we may define the Chow ring of
M,, A*(M,) exactly as explained in 4.1.4.

However, for M, it was not known, at the time of [65}, if it was globally the quotient
of a smooth variety by the action of a finite group. To circumvent this difficulty,
Mumford used the fact, that is clear from the construction of the moduli space via
Kuranishi families, that M, is at least locally the quotient of a smooth complex
variety by the action of a finite group acting on it. Moreover he notices that, globally,
M, is the quotient of a Cohen-Macaulay variety by the action of a finite group. In
such a way, using the theory of the operational Chow rings developed by Fulton and
MacPherson (see [29] and [30]) Mumford succeds in defining a Chow ring structure
on the Chow group A*(M,), whose classes are called Q-classes. In the @-Chow ring
of M, the rational coefficients are used. Of course Mumford knew that life was much
easier for M, and in fact in the introduction of [65] he claims that if M, “were
globally the quotient of a smooth variety by a finite group, it would be easy to define
a product in A.(M,) ® Q.”

Fortunately, in recent years, Looijenga ([59], see also [70]) was able to prove that
actually M, turns out to be globally the quotient of a smooth variety by the action
of a finite group, confirming the best possible hopes. We will not describe here the
work of Looijenga, but his result is enough to allow us to know what is the framework
which gives a rigorous meaning to the computations to be performed in the following
of these notes. As a conclusion of this brief introduction, we may hence set the
following fundamental:

Definition 6.1 The Chow ring of M, is the ring whose support is the Q-vector space
A(M;}®Q end whose product is the one induced by the subring of the G-invariants

of any of its smooth global covering M, such that M, = M,/G, where G is a finite
group acting on M,. The Chow ring of My, A*(M,) is defined similarly.

6.1.2 Basic Classes in A*(3,).

From now on, and for all the rest of these notes, by a stable curve over S we shall mean
a flat proper family of stable curves of genus g parametrized by a stnooth scheme of

! A n-torsion point of the Jacobian of a curve C' is a line bundle L € Pic%(C) such that L®™ = Op.
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finite type over Spec(C). Let 7 : £—5 be one such. Let w, be the relative canonical
sheaf of the family . One can then define some classes in the Chow ring, A*(S}, of 5:

s = 7 [er ()] (6.1)

the so-called k-classes, and

g
M =A=ca(mwr) =a(Amw,) and A = c(mw,), (6.2)

the so-called A-classes. .

As for definitions (6.1), one has that (see [13]) xo = (2¢ — 2)[5], where [S] is the
fundamental class of S (the identity of the ring A*(8)). This comes out because if
7 : £—=S is a good family of stable curves, the restriction of 7 to the zero scheme
of any holomorphic section of the dualizing sheaf w,, is generically finite of degree
2g — 2. Hence, by applying the definition of the push-forward one has:

ko = Me(er(wa)) = (29 — 2)[5)-

As for definitions (6.2), instead, we rernark that m.wy is a locally free rank g
sheaf of Os-modules, often denocted in the literature as E and called the Hodge bundle
relative to 7. Let M, and M, be respectively the coarse moduli space of DM-stable
curves and of the DM-pointed stable curves of genus g. Let now 7 : M,,—M,
be the natural morphism that “forgets” the marking. As already remarked, due to
curves with non trivial automorphisms, 3, is not smooth for g > 2. However, via
non abelian level n structures (see [59]), 3, can be globally seen as the quotient of
a smooth variety M, under a finite group G acting faithfully on it.

This allows, following [29], p. 142, to define an intersection product on A,(M,) ®
Q= [@Ai(ﬂg)] ® Q which makes A.(M,) ® Q itself into a ring. This will be, by
definition, the Chow ring of A7,. In the following it will be denoted as A*(}1,),
with contravariant notation. Moreover there is a proper flat family of curves e
My—M,, with G acting faithfully on M1 compatibly with the action of G on M,
and the morphism 7, such that M,,/G = M,,. Hence, following Mumford ([65], p.
298), the morphism

i Mg1——M,,

comes equipped with a ¢-line bundle w,,, represented by the relative canonical bundle
wi, which shall be briefly said to be the relative dualizing sheaf of &, with no further



o4 CHAPTER 6. INTERSECTION THEORY ON MODULI SPACES

mention. Similarly, E = Fut; is a Q-bundle of rank g over M, represented by fruws
over M,. The k~classes and the A classes will be defined as in (6.2) and (6.1), where
the Chern classes are taken in the sense explained in Example 4.1. The A-classes and
the x-classes are said to be the tautological classes of A*(M,) (CL. [65]). It is worth
of mentioning that:

AN(M,) = Pic(M,) @ @ = Pic(M,) ® Q,

where the last right hand side means the Picard group {with Q coefficients) of the
moduli functor My ([44], p. 50), which is briefly described below.

6.1.3 Some known facts on Pic(M,) ® @

Let M, be the Deligne-Mumford compactification of the moduli space M, of the
smooth projective curves of genus g, defined over the field C. For studying intersection
theory on M,, one of the first goals would be to describe the Picard group of line
bundles on it. Unfortunately, M, is a singular space and Pic(M,) is not known
in gemeral, and is very hard to describe. The way to overcome this difficulty is io
study a better behaving object, the so called Picard group of the moduli functor My,
Pic(M,), which is going to be explained. The underlying idea of Pic(M,) is to
consider line bundles on families of curves all at once. More precisely, a line bundle
on the moduli functor of stable curves is a line bundle L(w) on the base 5 of every
stable curve 7 : X—8 over S, enjoying the following property: if

X1 — Xa
m l I m
5 — 5
f

is a morphism of families with cartesian square (i.e. X; = 5] X5, ¥2), then there is an
isomorphism between L{m;) and f*L{m;). The isomorphisms should be compatible
in a obvious sense. Namely, if both the squares of the diagram:

xl f.z xs
™ l 7{'2J’ 71"31
6.3
5 —5s S (6:3)
are cartesian, then: fi Ja

L{m) & f{L(m) & f] f3 L(ms) = (f2 0 f1)" L{ms).
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Two lines bundles Ly and L; on the moduli functor are isomorphic iff for any family
m 1 X—5, there is an isomorphism between L;(m} and La(w) whick respects the
above compatibility requirements.

As the reader can easily check, the tensor product is also wel! defined and it
is compatible with the relation of isomorphism, so that we can attach an abelian
group Pic(M,) to the moduli functor M, the Picard group of the moduli functor.
Analogously one can define Pic(M,): one simply considers families of stooth curves
of genus g instead of families of stable curves. Here is a list of known results:

1. A theorem by Harer implies that Pic(M,) ®Q is 1-dimensional for g > 3. From
this, Pic(M,) ® Q is (h+2)-dimensional, h = [g/2], generated by X (see below)
and the boundary comporents of M,. The boundary of M,, M, — M, is the
union UL ,A;, where:

Ag ={closure of the locus of irreducible curves having one node}
and

A; ={closure of the locus of the connected curves having two irreducible
components, one of genus ¢ and the other of genus g — ¢}.

—1 i —i
Int &D g Intﬁi o

Pictorially, Int Ay and Int A; are represented in the pictures above, where the
integer near each irreducible component is the geometric genus of the component
itself.

2. Let Hy be the locally closed subscherme of a suitable Hilbert scheme parametriz-
ing stable curves in a fixed projective space P“~!. For instance one can construct
such Hy by means of the tri-canonical embedding as in {16}, with » = 5g — 5.
Over Hy, lives a universal family p : Z,—H,. The group PGI(v) acts on H,
in the obvious way, so that it makes sense to consider the group Pz'c(Hg)PG’(")
of isomorphisms classes of PGI(v)-invariant line bundles on H,. In {63] it is

shown that Pic(M,) = Pic(H,)F*) and Pic(34,) is a subgroup of these of
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finite index. Moreover, Mumford shows that Pic(M,) is torsion free, so that
Pic{M,} and Pic(My) are related by the identification:

Pic(M,) ® Q = Pie(M,) @ Q= PiC(Hg)]PGI(u) ®Q
1.e. all the Pica:rd groups are lattices in the same Q-vector space Pic(-) ® Q.

. By 1 and 2 above, it follows that Pic(M,)®Q = Q{), Aq, -, Ax}, where with

A; we have denoted the divisor classes that they determine as well.

. More results:

If g > 3 {which will be supposed from now on} we have:

Pic(Mg) =Z- X (X to be defined below)

Pic(My)=Z-{\bo,...,6n}

The two preceeding results are due to Arbarello and Cornalba ([2]). To continue

" with, let us define A on the moduli functor M,. Ifw: £— S is any stable curve

over S and if wy, is its relative dualizing sheaf, then 7w, is a rank g vector bundle
over S such that

oty ® k{s) = Ho(fs,wxs),
%, being X xg Spec(k(s)) (the scheme theoretical fiber over s) and we, the
dualizing sheaf of the fiber. A line bundle on the moduli functor is hence given
by the assignment A — A;, where A, = A9(m.w,;) € Pie(S).

We are going to define now, the classes &;’s related to the divisors A; in M. Let

us fix a family o : ¥—5 with dim(S) =1 and § smooth.

1. Assume that the general fiber does not contain a singular point of type i (0 <

i < h). Locally around each singular point of the special fiber, the family is
given as zy = 7y(s), where §; is the divisor given by [f;e: 7 = 0.

. Assurmne now that the general fiber does contain singular points of type i. We

want sections of singular points (of type ¢): after a finite base change, we can
obtain this: X,,...,% sections of singular points of type ¢, and A,..., R
isolated singular points of type . Then one partially normalizes the family
along the Zj, obtaining a family of (not necessarily connected) nodal curves,
plus sections Sk, T of smooth points (in such a way that identifying Sy and T}
we obtain Ti). Then one has:

b= B (@) + (V) + S mifon) (64)
]
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mm,; being the multiplicity of p;: locally, o is given by sy = ™, where t is a local
parameter on the base.

In Pic(M,) ® Q the relation between &; and A; is given by the formula:

R Y B
5= Sautnay) — Be

the so-called “)-class”, where by 7, we mean the generic point of A;.

For g > 3 and ¢ # 1 one has, e.g. & = [Aj] and & = 1/2[A4] while for g = 2 one
has dy = 1/2[Ag] and & = 1/4[A,]. In fact, for general curves of type ¢, with g > 4
and {7 > 2, there are no automorphisms. If ¢ = 2 this is still true, provided that the
intersection point P is not a Weierstrass point for the component of genus ¢, If i = 1,
and g > 3, all the curves of A,

aj b

E
X E E,

have an automorphism of order 2 which is given by the map which sends £FUp X onto
t(E) Up X, where E is an elliptic tail, «: : E—FE the unique involution of E which
fixes the intersection point P and X is a component of genus g — 1.

If ¢ = 2, arguing as above, we see that if Cy = E; Up E; then the two involutions
of By and E; fixing P give rise to an automorphism group of Cp of order 4, ie.
{(51: 1),(511L2):(1,52)!(1! 1)} _

Another interesting class in Pic(M,) is k1 = 7. (c1{wx)?) computed on each good
family (i.e. proper and flat) x : ¥—5. There is an important relation linking r;, A
and 6 =3, &;.

6.1.4 The relation x; = 12\ — 4.

In the computations of the examples worked out in the following of these notes, we
shall use the following important thecrem, which is interesting in its own right.

Theorem 6.1 The following relation holds in AY(M,):

R
kK1 =120 -8 where =1 4. (6.5)

i=0
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The rest of this section shall be devoted to prove this theorem. The main tool
to achieve such a result is the Grothendieck-Riemann-Roch formule for families of
curves (GRR in the following), whose statement shall be briefly recalled below in the
particular case we are interested in.

Suppose then that 7 : X —5 is any flat proper family of stable curves of genus
g, where S is a regular scheme of dimension 1. After normalizations and blow-ups we
can suppose X is a smooth surface. For such a situation, the GRR formula says that:

chy(mws) = m.[(ch(wn)) - (t:(Tass))], (6.6)
where Tx/g is the relative tangent sheaf of the morphism = : X—5.
Proof of the formula (6.5).

Cne applies the GRR formula, by computing both sides of {1.3). Due to the fact that
the fibers of 7 are 1-dimensional, M, is given by:

Ty = Roﬂ'#w'rr e Rlﬂ-*w‘lr,

where the sum is taken in the Grothendieck group of the coherent sheaves on S. Since
wy is flat and ho(Xs,w,rlxs) = ¢ and A (X, wr),,) = h%(X;,0x,) = 1 are constant,
RO, and —R'wuw, are locally free of rank g and 1 respectively. Moreover, by
properties of duality, R'zw.w, & Os. We have then:

chi( BTy ) = chy(muwr) = g + er{mawg)t + . . .

and
chy(R'mw,) = 1.

The right hand side of (1.4) is:
hu(wr) = 1+ exlwn)t + ser(wel 4.,

and there are no higher order Chern classes involved, because wy is a line bundle. For
the polynomial Todd class {whose definition follows obvicusly from the one of the total
Todd class, see 13 in Sect. 4) tdy(Tx/s), recall first that c(Txss) = (—1)'ei(Q5)-
Let us suppose now that in our family = : ¥—9, the singular fibers occur in
codimnension 1. Then, as shown in [63], Qs = wr ® Zjnodes) (Zjnodes) is the ideal sheaf
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in X of the zero-dimensional closed subscheme of the nodes), from which it follows
easily (cfr. [13]) that e1(R/s) = c1{wx) and 2(Q%/s) = [nodes]. Hence:

tdy(Tiss) = 1 — %c;(w,r)t + %(cl(u)ﬂ)z + [rodes]#?), (6.7)

where [nodes] denotes the class of the nodes.
Plugging all of these data in (1.2), we get the equality:

g—l4+a(mwt+...

= m, [(1 + cy{wq Y + %cl (we) 22 +...)(1 - -;-cl(w,;)t + 1i2(c1(w,r)2 + 6t2)] .

Multiplying and equating terms in equal codimension (notice that applying =, the
codimension of the pushed down classes “decreases” with respect to S}, one gets:

ma(c(wr)) =29 — 2 (6.8)
together with the formula we wanted to prove:
K1 = mu(er(wn)?) = 1201 (Motwrr) ~ 7w [n0des] = 12X — §,

with the obvious meaning of the symbols.

QED

6.2 Review of some basic facts on the Brill-Nother
Matrix
6.2.1 A Riemann-Roch formula for effective divisors on curves.

In this section we shall review some elementary classical geometry of curves which,
neveriheless, seems to be very important for stating and solving some enumerative
problems in the moduli spaces of curves. To begin with, let D be an effective divisor
of degree d on a smooth complex curve of genus g > 2. Let us write:

D=diP+...+dp B, (6.9)
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with 3;d; = d. Let O¢{D) be the line bundle associated to the Cartier divisor
induced by D. Then, the dimension of the C-vector space of global holomorphic
sections of Og (D) is prescribed by the Riemann-Rech theorem (i.e. Riemann-Roch
formula + Serre-Duality):

R(Oc(D)) = 1 — g+ d+ h°(C, Ko(—D)), (6.10)

By HY(C, Ko(—D)) € H%C, K¢) we mean the C-vector subspace of the holomorphic
differentials vanishing at B; € Supp(D) with multiplicity prescribed by D itself.
Thanks to the work we made in section 5.2, we can make precise such a condition.
Let w € HC, Kc). We say that w vanishes at P with multiplicity at least d; iff
D~y € HYC, J"1K¢) vanishes at . Let now w = (wy,...,w,) be a C-basis of
HY(, K¢). I w is any non zero section of K¢(—D), then there is a non-zero g-tuple
{@1,...,a,) € C¥ such that:

W= gy +...+agy =1w- A

where we set A= (a1,...,a,)7. Hence the following equations must be satisfied:
DU () - A=,
D 1u(P) - A =0,

) (6.11)
D y(F)-A=0

The system (6.11) admits a local representation as follows. Pick £ local (analytic)
charts (Uj, 2;) trivializing K¢ such that P; € U; and 2;(FP;} = 0. Then, we have local
representations of the w; in each open subset I/ = U; of the form:

w, = Fglzs)dz,

By the very definitions of the jets bundies, the system (6.11) may be translated in
theopenset U= U1 x ... xUp CCOx...xC as:

BNy(D) - {a1,-..,a)T =0 (6.12)
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where we set:

[ORB) . R(R)
AR) o f(R)
@-Dpy .. pa-n(p
BNy(D) = fi _ (A1) _ fs _ () (6.13)
AFY o (B
\A*(R) ... [0
Obviously, the notation fi(k) (P;) means that we are considering the h-th derivative
h £
of the local holomorphic function f; with respect to the local parameter z;, Ecilz_')’:l’
§

evaluated at z; = 0. The system (6.12) has a non trivial solution if and only if
rank(BNu (D)) < g.

Exercise 6.1 Prove that the rank of the matrix BA (D) depends only on the divisor I,
In particular it does not depend nor on the choice of the basis w of holomorphic differentials
neither on the local trivializing charts (U}, 2;) chosen around each P; (1< j < k).

By the above exercise, in equation {6.13), we may hence skip in the notation the
dependence on the open set I/ and on the local coordinates z;’s. We may so speak of
the Brill-Néther matriz associated to the divisor D. We shall simply write BA/(D)
to denote the expression:

WP)ADW(PYA ... ADF  W(P ) A... Aw(P) A Dw(P) A ... A D% y(PR)

where the wedge serves to recall us that we are looking at the rank of the matrix (6.13),
and the use of the basis w is to remind us that such a rank does not depend on the
local coordinates (indeed it does not depend on the basis w too).

Example 6.1 Let C be a curve of genus ¢ and consider the divisors D; = 2P+ Q + R,
D3 =3P +20Q. Then:

BN(D1) = w(P)A Dw(P)Aw(@)Aw(R),
BN(Dz) = w(P)A Dw(P) A D%w(P)Aw(Q) A Du(Q).

Il
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Exercise 6.2 This is a revisiting of the exercise 1.3. A Weierstrass point on a curve € of
genus g > 2 is a point P such that h®(C, Kc(—gP)) > 0. What does it mean in terms of
the Brill-Néther matrix? Once one has fixed a basis w of H%(C, K¢), the determinant of
the matrix BN (gP) is said to be the wronskian section associated to w. Shows that there
are only finitely many Weierstrass points, and count them.

By the above considerations it turns out that the dimension of the vector space
H®(C, Kc{(—D)) of all holomorphic differentials on C venishing at B € Supp(D)
with multiplicity at least the one prescribed by D itself is g — rank(BN(D)). Hence
formula (6.10} can be rewritten as:

K (Oc(D)) = d + 1 — rank(BN(D)).

6.2.2 Pointed jets bundles on curves.

In this section we want to deal with some useful tools sometimes called in the literature
pointed jets bundle and used quite often for solving enumerative problems. The idea
consists, inspired by what have been seen in Section 5.2, in trying to interpret the
Brill-Nsther matrix as the local representation of a map of vector bundles on some
n-fold cartesian product of a curve by itself.

Let C* be the k-fold product of C by itself, i.e. the k-th fold fibered product of
C over Spec(C). Let p; : C¥—C be the projection onto the i-th factor. Let iKc
be the pull-back of K¢ via p;. Let D= di P + ...+ dpFy be a divisor and consider
the following map of vector bundles over C*:

Dit—1g..sD%~1

CF x H(C, K¢) JEYBKR) @ ... ® J* i Ke)

M L / (6:14)

Cx...xC
pt
Spec(C)

defined by:
((Qla neey Qk):w) = (Ddl—lw(Ql)s e )de_lw(Qk))'
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For sake of brevity we shall adopt the following notational convention: d will denote
a multi-index d = (di, - .., dx) such that {d| = d. Moreover we shall set:

DE=phlg.. . g D% L.

Clearly, if D = d1.Py +. . .+di Py, is such that 2%(C, Kc(—D)) > 0, then (A, ..., F) €
C x ... x C is such that:
N e

k times
k(D% ®...e D% 1) < g,

or, which is the same, rk(BA(D) < g. If D is general, then rk(BA (D) = min(d, g).
The degeneracy locus of the map DA~1@. . .@ D% ig the locus of points (@1,-.., Qk) €
C* such that rk(BN(D) < min{d,g). A point of C¥, (Q1,-.., Q) which lies in the
degeneracy locus of the map D2 will correspond to a special divisor in the sense that
it imposes to the canonical divisors less conditions than it should do. However the
degeneracy locus of the map D2 contains the diagonals D;; = {(Q1,...,Q%) € C* :
@Q: = Q;} as fixed components. In fact, if P, = P;, one has that the rank of BN{D)
is certainly less than min(d, g). In fact one has at least 2 equal rows in BA(D). The
purpose now is to figure out the multiplicities of the diagonals. Let us start with an
example.

Example 6.2 Let d < g. Consider the points (P, Q) € C x C which are in the degeneracy
locus of the map:

D2 D0 02 x HYC, Ko)—J**piKc @Ko,

Then, by writing down the local representation, it turns out that this is eguivalent to

consider:
{(P,Q): w(P)A...AD2u(P) Aw(Q) =0}

where by the vanishing of the above formal ezterior form we mean the locus of (P, Q) such
that rk(BN((d — 1)P + Q)) < d. We want to compute the multiplicity of the diagonal Dy
in such a degeneracy locus. Pick P € C which is not & Weierstrass point. Thern:

@(P)ADw...AD2(P) Aw,

vanishes at P. By derivating the above expression as a section of a subspace of H%(C, Kc),
we see that: )
W(P)A...A D %u(P) A Dlw,
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vanishes at P for all 0 < 7 < d — 2, because for ¢ in that range:
w(P)A...AD¥2y(P) A D'w(P) =0,

because two rows at least are equal. Hence w(P) A ... A D% Zu(P) A w vanishes at P with
multiplicity at least d — 1. Moreover:

w(PYA...D¥2y(P)AD* 'w(P) =0 <= P is a Weierstrass point.
Hence, for a general P, the form:
w(P)A...A D7 2w(P) Aw,
vanishes at P with multiplicity exactly d — 1, so that, as a matter of fact, the map
D2 @ DO

induces an evaluation map from the bundle C% x HYC, K¢) to a bundle F4—1,1 which has
the same Chern polynomial of the bundle J¢ 253 K¢ @ piKo(~(d — 1)D;a) (or, in other
words, it is an extension of the bundle J%?p] K¢ by means of p§Ke(—(d — 1)D12)).

Example 6.3 We modify the above example a little bit. We now look for all the points
(P, Q) € C x C such that {d — 2)P + 20 imposes less than d conditions on the cancnical
divisor. This means that it should live in the degeneracy locus of the map:

D3 @D 0% x HYC, Ko)—J4 3 pjKc & J'p3Ke.
As above, by fixing P, this means that:
W(P)A...AD¥3u(P) A Dw,

must vanish at ¢. But the above expression surely vanishes at Q = P. fw= f-dzina

neighbourhood of P, the above expressions may be locally represented as a 2 x d matrix of
functions:
(w(2) Ax'(2),
where u(z) is a local representation of:
w(P) A ... D 2(P) Aw

that by example 6.2 vanishes at P with multiplicity d— 2, so that D93 @ D induces 2 map
which lands to a bundle 73_3 2 which has the same Chern polynomial of the bundie:

J3p Ko @ J'psKe(—(d — 2)Dyg)
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The matter of the two previous examples may be easily generalized. In fact, for any
d, if deg{D) = d, the support of the divisors dh P + ... + d.F; that imposes on Ko
less than min(d, g) conditions, must be searched in the degeneracy locus of the map
of vector bundles:

DA -1, @D% =}

C* x HY(C, K¢) Ty
Cx...xC (6.15)
r
Spee(C)

where Fy, . 4, is defined as follows. Let D be the closed subscheme of C*+! whose
corresponding cicle in A} CF) is given by:

[D] = diDygs1+ ... + deDrpra, 7
and let u : €%+ = C% x C—C* be the projection onto the first & factors. Then:
Fiy et = (O'D ®P?§+1KC) .

This is a wvector bundle on C* whose fiber at (P,...,P) is exactly
H® (C* Ko/Ko(~diPy — ... — diRy)).

Exercise 6.3 Check that the following exact sequences hold:

0—s ikt (PZKC (““ Z diDik))) _’}-dl,---,dk_“"Pltfdh---,dk—-l_"o'
1<i<k

The above exercise proves that the Chern polynomial of Fg4,, 4 coincides with
the Chern polynomial of the direct sum bundle:

1<i<k

Jh=! (PIKG @ J% g Ke(—di Dy} @ ... @ J%! (PEKC(“ b diD"’f)) - (6.16)

We shall often denote the bundle Fy, .4, as:
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£ (J“l"l (031 Ke) ® JE g Ke(—diD1) @ ... @ J% (p,';Kc(— 3 d,-D,-k)) ,

1<i<k
(6.17)
for the following reason: if k = 2,

Farts =€ (J47 Ko & J% (Ko(—diDra)))

is the eztension of the bundle J%~1K¢ by the kernel bundle J%~! (Ko(—dyDya)).
In other words, the notation (6.17) is to emphasize the fact that the Fy,,. a, are (in
general non-split) extensions of bundles Fg,,. 4,, With A < k and the fundamental
blocks appearing in the direct sum on the right hand side of (6.17).

Before going on we give a couple of examples to get familiar with the above
formula.

Example 6.4 Let C be a curve of genus 5. Consider all (P, @, R) € C3 such that:
4P +3Q + 2R,

move in a canonical divisor. Then (P, @, B} must lie in the degeneracy locus of the map
D* @ D% @ D of vector bundles:

Ocs ® BY(C, Kc)—€ (PpiKc @ Jp;Kc(~4D12) & J'p3Ko(~4Dss — 3D3))

The bundle Fy____ 1 is denoted in the literature (see [65}, [26]) by F4. Consider
’ ¥

d times

the natural surjection:
Fa—p1p,. a-1Fd-1—0

Hence, by recalling the meaning of formula (6.17) one has the exact sequence:
0—piKc(—Ad)—Fa—pia,. a2 Fa1—0, (6.18)
having set, following [26],
Ag=Dig+...+Dar4.

Using the multiplicativity property of Chern classes, its hence a simple computational
exercise to show that:
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Proposition 6.1 The Chern polynomial of the bundle Fy is given by:

ce(Fa) = (14+ Kt)(1+ (Kz— Di2)t) - (6.19)
-(1 =+ (K3 — Dz — .Dz;;)t) LI (6.20)

d—1
2+ (Ka— 3 Digt)- (6.21)

=l

In particular
d—1

Cl(fd) =K+ FKp+...4+K;— (ED,@) R (6.22)

6.3 Some Easy Classical Enumerative Problems

The purpose of this section is to provide some easy examples of application of the
above techniques.

Example 6.5 The total weight of the Weierstrass points on 2 curve of genus
g = 2. Let C be a curve of genus g > 2 and (Y its g-fold fiber product over Spec(C).
D;; are the big diagonals and K; = c1(pfKc). We shall use the following relations (see
Proposition 5.2).

D} = —K:D;; = —K; Dy,

and
f KiDI:Z'---‘-Dd—l,a':fKC=29_2-
cs 24

On (9 define the divisor Z(w A ... Aw), l.e. the support is given by the points in the

g times
degeneracy locus of the map:

D’eD’@...eD": C9 x HY(C, Kc)— 7,

Then, by applying Foerteous’ formula, we find:

ZwA- .. Aw)] = aa(F).

g times
By virtue of formula (6.22), the right hand side is

61(F9)=K1+...+Kg— Z Dij;
1<i<i<g
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and this is the class [Z(w A ... Aw)] in the Chow group AY(C9). If we intersect with the
g times

cycle Dia-...- Dy_1 4, we should get the canonical divisors of the form gP. One finds:

j;g (K1+K2+--.+Kg- 3 Dij) Dyze...-Daa=

1<i<i<g
glg=1)

=29(9_1)+T'2(9'1) =glg~-1){g+1).

Exercise 6.4 Example 6.5 may be also treated as follows. The map:

D’eD°a...eD":CY x H(C, Kg)—F,

induces a map between the top exterior powers of the two bundies above. In other words
we have:

g g
ADP’eDe...eD%:0cs— A7,
hence a section AY(D* @ D & ... @ DY) € HO(CY, AT Fp).

i) Prove that the line bundle A? 7, is isomorphic to the bundle

g d
®p;’Kc ®Ocs (— E Ai) .

i=1 =2
and that: .
ADP°eD’s...e D) =wn...Au.
——
g times
ii) Use i) to get the expression of the class [Z{w A ... Aw)]
g times

The exercise explains why we used the notation [Z{w A ... A w)] in example 6.5.

g times
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Example 6.6 Weierstrass points again. Fixe,b>0and a+b=g. Let
ZwA... A DNy AwA.. ADEDy)
be the divisor in € x C defined by all the points (P, () such that
(Ko —aP —bQ) > 0.
Its class is given by applying Porteous’ formula to the map:
DE-D g DN : Ocxe ® HY(C, Ko)—E (7°7\(piKc) © TN p3Kc(—aDra))) . (6:23)
Hence we get:
[Z(wA...A.DE Dy AwA . AD )] = e (J* N piKc) @ TP (53 Ko(-aD1s)).
ie.:
[ZwA...A... D"V Aw AL ADE D) = ¢ (J7 Y pike)) + (P (p3Ko(—aDr2)).
Now we use the exact sequence (5.17). For instance we have:
0—(p3Kc)®(—aD1g)— "7 (p3Kc(—aDrg))—J" " (p3 K o(~aD1z))—0,
so that:
(PN g3 Ko(-aDr2)) = er(@3Kc)® (~aDia)) + e1(P 2 (ps Ke(~aDia))).

By repeatingly applying the exact sequence, at last, one finds:

1l s ala+1
a(*piKe) = & 5 ke,
d B(b+ 1
. +
e (I (P K o(—aD12)) = %Kz — abDys
Hence:
[Z(wA...A...DED pwA . A DO = “(“; Vg, + b(b;r Y Ky~ abDis

in AY(CxC). Of course, intersecting with the divisor Ds and taking the degree, one should
obtain the toial weight of the Weierstrass points. In fact:
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[Z@A...A...DE Dy AwA . ADE D) Dy =

_ (a(a;— 1) b(b;— 1) abDu) Dip=
1 bb41
= (“(“;' S ‘2*‘ ) ab)K1Dis.

ie.
f [ZwA...ADC By AwA ... ADE W) Dyp =
(a(a + 1) b(b ;--1) " ab) f KyDys =

=(g— 1)(a® + b+ 20b+a+b) = (g~ 1)(¢* + 9) = (9 — Dglg+1)-

Exercise 6.5 The other way to solve the above enumerative problem is to consider the
top exterior product of the map (6.23), namely:

/g\(D“-1 ® DY) : Ocxc— /g\e ((J“-l(p;Kc) & J*} (p3K, c(—GDm))) ,

which may hence identified with a holomorphic section of the line bundle

g
A= piKe)) © 7 (p5Ko(—aDiz)).
i) What is the line bundie A?(J*(piKc) ® J*~ 1 (p3K(—aDi2))) isomorphic to?

ii) Describe explicitly the section AZ(D®~1@® D*1). It should be represented by a g x g
matrix which, in a sense, looks like a wronskian.

Example 6.7 The number of the bitangents on a plane quartic Of course this
number is 28. It is a very classical number that may be easily gotten by passing to the dual
curve and repeatedly using the Pliicker formulas.

Exercise 6.6 Compute the number of bitangents on a smooth quartic by using the Pliicker
formulas and the duel curve.
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Here, we shall use instead our vector-bundles’ maps machinery to make some practise. We
are given of a smooth plane quartic C inIP%. A bitangentis a line L such that L-C = 2P42Q.
Since the canonical series on 2 plane quartic is cut out by the linear series of the lines of P2,
it turns out that the number of bitangents corresponds to the number of unordered pairs
{P, Q) such that 2P + 2@ is a canonical divisor. The map we should look at, is:

DeD:C xC x H(C,Ko)—& (J'piKc © le;Kc(—2D12)) ,

The expected codimension of the locus is 2 and it coincides with the actual codimension
(for evident geometrical reasons). We may hence apply the Porteous’ formula, getting:

3 1 * x
bitangents) = fc o (7'FiKc © J'psKo(~2D12))

By the two exact sequences:

Oﬂp;KgQ—»leIKC—rp;KC—rO

and:
0—p3 KE*(—2D10)— T pi K o(—2D13)—p3 Ko (—2D12)—0
one gets:
c{ D Ke) = (14 Kyt)(1 + 2K ) = 1 + 3Kt + 2K3,
and
co( S p5Ko(—2D12)) = (1 + (K2 — 2D12)t)(1 + (2K2 — 2D12)t) =
= 14 (3Kz—4Dy)t + (2K% — 6K2D12 + 4D%)t
Hence:

ca(J'p{Kc @ JpyKo(—2D13) =
= OK1K»—12K;Dyp + 2K? + 2K3 — 6K2D13 + 4D%,.

Now Kf = K% = 0 (because is the self-intersection of a fiber on a surface - £ x € -
mapped on a curve - C - thought as first or second factor. Moreover

f KDy = j KyDyp = ‘f D}, =4
OxC CxC OxC

and ICXC K]Kg =16.
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The solution of cur enumerative problem is then:

1 " *
i{bitangents}) = EL-xccz(lecheJIP2KC(_2D12))

= %(9x16—12-4-—6-4—4-4)=28.

6.4 Working with Families of Curves

The nice thing of the speculations we did above about these pointed jets bundles, is
that one may extend them for families of curves. Let 7 : ¥— 5 be a smooth curve
of genus g over 5. In this case, since all the fibers are smooth, the relative dualizing
sheaf w, coincides with the sheaf of the relative differentials 91% /90 which may hence
also called the relative cononical bundle. By the way, for sake of uniformity, we shall
denote such 2 bundle with the same symbol w,. Let us consider the k-fold fibered
product of X gver 5.

k—times

i —
Xxg...Xs %

d

(6.24)
Then, associated to a multi-index d = (dsl’v s+ - -, dp) of lenght d, there is a map of vector
bundles over X% := % = x%_ .¥ defined as:

Dh=lg g D1 P’E ——Fy 4

/

k
x (6.25)
le
where we are setting now: 5
Fdy e =
= E(JE 7 Bwe) &... ® JE(plwn(—di Dk — daDos — . .. — dia De10)))

The particular case corresponding to d = (1,...,1) gives rise to the bundle Fy (see

d times

[65], [26]), together with its standard exact sequence:
O——spjwn({—Ba)—Fa—pl 5, a1 Fa1—0 (6.26)
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6.4.1 Generalities on the classes of A*(M,)

Recall the definition of A*(M,). It is nothing but the Q-vectorspace [GA:(M,)] @ Q@
equipped with the product induced by the ring A*(M )¢ of any smooth branched
covering M — M. Consider the forgetful map:

71 My1—M,.

It is equipped with an invertible Q-sheaf, wr, which is represented by wz, the relative
dualizing sheaf of the map 7 : M, ;— M,. We define:

ks = Mooy (wn)?,

and
= a(E),

where E is a locally free (J-sheaf of rank g called the Hodge Bundle over M,. In the
sequel the following result by Mumford, ([65], p. 307), here assumed without proof,
shall be used.

Proposition 6.2
1
EY) = —— = (1 — Mt + Aat® — ...+ (=1)92,#7
Ct( ) Ct(]E) ( 1 2 ( ) g )
The Chern classes are taken in the following sense:
1
eifwr) =: m(%,l)*(cz(wﬁ)))
where ¢, : M—';,l — Mg, is a global smeoth covering of M ;.

6.4.2 The hyperelliptic locus

The purpose of this section is to convince ourselves that the fundamental class of the
hyperelliptic locus in the Chow group A9~2(M,) may be easily computed by means
of the tools developed above. Recall that a smooth curve is hyperelliptic if and only
if there is a point P € C such that k%(C, Ko(—2P)) = g — 1. This means that the
Brill-Nother matrix associated to the divisor 2P, BA(2F) = w(FP) A Dw(P) has rank
1.
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The equation w(P) A Dw(P) = 0 means the common zero locus of the g — 1
minors of the matrix BA(2P). The ezpected codimension of the hyperelliptic locus is
therefore g—1 in M, ;. But we also know that the hyperelliptic locus has codimension
g— 2 in My we are hence in condition to apply the Porteous’ formula to the map of
vector bundles:

T*E— J .
It turns out that:

1

[Hy] = 29 + 27"*{2 (D)) = & gmi (e wn — 7°E))

Now, using Proposition 6.2, one has:
e(mE) = 1+ 7"X + 1 gt + 7 Ag 877
So that:
g 1
e (nE)
The Chern polynomial e;(Jlw; — m*E) is hence given by:

=1—7"Mt+ 7!'*)\2152 - ...+ (—1)9_27T*Ag_2t9_2

Ct,(th)-,-r —7'E) = (1+3Kt+ 2Kzt2)ﬁ‘*(1 — At At —. .+ (—1)9_271'*)\9_2i9_2)

Porteous’ formula gives us:

[} Co sas Cgoi
1 1 1 e .. Cg_2 L
Hy] = gomgmleD =g |, . |Ter— B
0 0 .an 4]

After some combinatorics, the above formula yields ([63], p. 314):

(Hy] = 29—+-§{(29 — Diga =~ (2 = DAikga+... + (6.27)

(- 1)(9—3) ~TeAgg kot (—1)°"% - (6g — 6)Ag—2}-

Exercise 6.7 Check the above formula, by direct computation, for g=3 and g =4.
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There is another way to perform the computation of the fundamental class of the
hyperelliptic locus in M. For the purpose, let us set for simplicity, C; = M ;1. Firstly,
we learned how to characterize the triples P = (C; P, ) € Cj such that P, + B,
moves in a g} on C, which is the same as claiming that C is hyperelliptic . It is matter
of studying the map D @ D° : p*E——JF;. Notice that at P € ng, i (wry...,wy) is
a basis of the holomorphic differential on C, and if wy = afu)du around P, and
w; = b;(v)dv around B, then:

0 0 4. (20 ... a0
D ®DP_A_.(b1(0) 59(0))’ (6.28)
so that P+ P, movesin a g} if and only if the rank of the matrix A is less or equal than
1. Using the well known fact, here assumed without proof, that as (C; P, P;) moves
in Cg, then the matrix A varies analitically, it follows that the hyperelliptic locus can
be described determinantally so that its expected codimension in M, is g — 2. Since
we know for other geometrically reasons that H,; actually has such a codimension, we
mnay apply Porteous’ formula 4.1 to the map D° & D° : s*E—7; to compute the
class of [Hy). One gets:
Ay ga16e(F2 — E)

In this case, recall that:
ca(Fz) = (1 + Kit)(1 + (K3 — Dy 2)t).

In the next section we shall show, on a very nice example, how one may get relations -
between the tautological classes by computing the fundamental class of some locus
using different ways.

6.4.3 Computing the class [H;] in two different ways

We shall work out the computation of the class of [Hj] in A'(M;) in two different
ways, providing all the details 2 . Firstly:

Ap(a(F—E)=

c; Ca
1 o

(F2 = E).

Now
CI(FQ — ]E) = (K1 + Ky — DLg — Al),

2 T learned the beautiful idea to compute the class of Hs in two different ways from Carel Faber,
during his Levico’s Lectures on “Intersection theory on Moduli spaces of Curves (1985)".
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while:
cz(fz - IE) = Kl(Kg — D1,2) —_ (Kl + Ko — D1‘2)/\1 + Ja.

Hence:

Ma(c{Fo—E)) = (Ki+Ky—Dig~ )\1)2 - Ki(Ky — Dha2) +
+ (K1 + Ky — Dl,z)Al — Az.

Notice that A; 2(¢,{F>—E) describes the class of a codimension 2 locus in C3 X 57, C3.
One knows that dim C? = 8. Hence, if p : CZ-—s M3 is the structural morphism from
C? to Mz, then [H3] = p.dy2(c{F2 — E)) has codimension 1 in Mz. Let us now
compute [H3] in two different ways.

1# method

First we cut the class H = A; o(c(F2 — E)) with Dy ». That means to find the locus
of points (P, P} such that P is a Weierstrass point on a hyperelliptic curve. Then we
shall push down via p., where p : X xg ¥—5. We have:

pu(Dy2- H) = pu(Dia(K1 + Ko — D12 — M)%) +
—Pt(DI,‘ZKl (K2 - D1,2)) +
—p*(Dl,.Z _ (Kl -+ K2 —_ D1,2)A1) -+ p,.(Dl,z - A2) (629)

Keeping into account the relations, described in 5.2,
Diy = —KiDyp=—K2Dp,
we shall proceed in computing separately each summand of (6.29):

Pue(D12(Ky + Ky — Dyg — M )F) =

= puDip-Ki+Dig-(Kz— Dip— Dig- M)y + Ky — Dig— M) =
Pl((B3K1 — X)) - Dig- (K1 +Ko—Dyp—N)Da- (Ki+ Kz —Dhp— X)) =
Pa(D12(3K1 — M) = (p1) ((BK1 — M)P) =

(}Jl)*(QK? — 6K + /\?) = 9K; — BKoAL.
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—pa(D12K1 (Ko — Dy 2) = —pa(2 DioK3) = —9(p1). (K?) = —2r1.
Pu(D1,27(3K71)) = 3rpA1.
—p.(Dh222) = —(p), A2 =0

The last piece of information we need to achieve the result is that ko = (2-3—2)[M;] =
4[M;] = 4. Hence, by summing:

[11+[2)+[3}+[4]

one finally gets:
S[Ha] =08y — 64X\~ 25+ 3-4X =Ty — 124 = 72X

the last equality coming from the relation gotten in Sect. 1, k3 = 12A. The factor
8 multiplying [Hs] is due to the fact that the locus is counted with multiplicity [8],
because the morphism (1), : Dy 2- H—[Hj] is finite of degree 8 (the fiber consisting
in the 8 Weierstrass points on each hyperelliptic curve of genus 3). We hence conclude
that:

[H3] = 9X

97¢ method.

In the locus & described above, we can require that the 1% point lies in a fixed
canonical divisor. This correspond to intersecting I with K;. What one gets is the
class of 4[H3] {the factor 4 being due to the degree of the canonical divisor). One has
then:

4Hs) = pu(K,-H)=p, [K1 - [(K1+ Ko — D1z — M)+
— Ki(Ky— Do)+ (K1 + Ky — Dio) — A =
= p(KiKa + K1K3) + 1. [Kl(K12 — K1D1p = 2KoDy o + D} o+
— K — Koh + Digh + X = X)]. (6.30)

‘We shall compute separately the two summands of the right hand side of the last
equality.
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[1] pu(KEK + K K3) = p(K2KR) + pu (K1 K3) =
= mop.(pK -piK - pK)+ T ope (1K - p3K - p3K),

and, by repeatingly applying the projection formula, one gets:

Tu(K? - 1. (02 K)) + Tu(K? - 2 (p1* K)) =
m(4K?) + m.(4K?) = 8k1,

p*(Ksz -+ K1K22)

1

where we used the fact that
Pr.(p2"K) = p2. (01" K) = 4[C3],

[Cs) being the fundamental class of C3. As for the second summand of the r.hs. of
the last equality of (6.4}, one has, by applying the projection formula and using the

relations:
DZy=—Ky-Dip=—Kz-Dip

Pr [K1(Kf - Ky D1y — 2Ka Do + D o+
—Ka\ — Koy + Digha + X = Ag)] =
= m[K - pu(K} - 4KiDy2 — Kady — Koy (6.31)
+ Dia+X =) (6.32)
Now, in the r.h.s. of (6.32) one has:
PLKE) = pr (Kid) = pr(hbE) = p1.(Ae) = 0
{for example, p1,(K?) = p1. (1" Kp1* K) = K - p1,p}(K) = 0). On the other hand:
P1.(—4E1Dy2) = —4K - [C4];
Pr(—KaA) = —4[Glm* A

and
p1.{D12M) = A-[S].
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Plugging all these data in the r.h.s. of (6.32), one has:
r.h.s. of (6.32) = m,[K - (—4K — Ar* A+ %)) = —4r; — 12X

Hence:
4[Hs]) = pu(Ky - H) = [1]+[2] = 451 — 1220
Kk

Patching together the results gotten with the first method and the second one, i.e.:

4%1—12A_7I€1—12)\
4 8

one gets [Hs] = 9A and the relation x; = 12X which we already knew by the general
result coming from the Grothendieck Riemann-Roch formula (see Sect. 2).

For g = 4: do the same for Hy in codimension 2. We find 2 expressions for
[Ha) involving %, k2, Ay and Ap. This time we use relations (derived by Murnford)
expressing A; (on M,) in the ;. The formula by Mumford is:

,_Zé’\t _e‘”p(fg T+ D™ ) e

where % is a formal variable and b; are the Bernouilli numbers with signs. Recall that
boag = 0. The first few values of the &;'s are: &2 = 1/6, by = —1/30. Plugging these
numbers in the above formula one finds, ¢.g.,

K1 Ny =
g = =,

=1 288

We have 2 expressions, 1 relation: «} = 32x./3, and [Hy]q = (nonzero)x?.

A corollary of this fact is quite rema.rkable suppose S € M, is a projective surface
{it is not known whether S exists!). Then: § N Hy 5 0, since &, is ample. Moreover
the intersection is finite.

6.4.4 Some divisor classes in M,

.. This subsection is devoted to compute classes of naturally geometrical defined loci
in M, as a way to practise with Porteous’ formula. The reader will realize that it is
matter which may left as an exercise.
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We want to deal with the loct in M, {g > 3) set-theoretically described as:
D1 = {[C] € M, : C has a point P such that k°(C,Oc((g — 1)P)) > 1},
introduced in [13],
EQ1) ={[C] € M, : C has a point P such that h°(C,Oc((g + 1)P)) > 2}
introduced in [13] and studied in [12], and:
wt(2) = {[C] € M,/C has a Weierstrass point P of weight at least 2}

introduced in [72] and studied in [72], [35] and [34].
Qur aim is to endow the above sets with a scheme structure and then to compute
their Chow class in the group A*(M,). To this purpose it is useful to define the loci:

VD1 = {[(C, P)] € My : K(C, Oc(lg — DP)) > 1},

VE() = {[(C, P)] € My : K(C, Oc((g + 1)P)) > 2},
and
Vurt(2) = {[(C, P)] € M,1/P is a Weierstrass point of C/wt(F) > 2}

where wt(P) is the Weierstrass weight of the point P.
Notice that if (C, P) belongs to VD,—1, by the Riemann-Roch formula it follows
that A%(C, Ko(g — 1)P) > 2), i.e. that:

Th(BN((g—1)P)) <g-2
Similarly (C, P) belongs to VE(1) if and only if:
rE(BA((g + 1)P)) < g — 1.

The idea is, clearly, to pick in M, all the pairs (C, P) fulfilling the above conditions
by globalizing the above description. The way to do that is to consider the following
two maps of vector bundles:

a) x b) X (6.34)
! !
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so that to VD, and to VE(1l) we may put a scheme structure by setting, for each
good family 7 : £~ 5"
VD, (S) = Z(D97?), (6.35)

referring to the map (6.34) a), and:
VE(1)(S) = Z(Df), (6.36)

referring to the map (6.34) b). For each general family x : ¥——5 of smooth curves
over S5, we may hence define on the base S the 2 closed subschemes:

]Dg_1 (S) = W(VD9—1 (S))7

and

E(1)(S) = n(VE(1)(S)).
By looking at the local representations of the map D92 and D¢, it turns out that the
ezpected codimension of the schemes Z(D972) and Z(D?) is 2. Z(D9~2) and Z(D?)
are loci of special Weierstrass points, and since the general curve of genus ¢ has only
normal Weierstrass points, it turns out that the expected codimension coincides with
the actual codimension.

We may hence apply the Porteous’ formula for computing the fundamental classes
of D,_; and E(1) in the Picard group of the moduli functor Pic(M,)@Q of the smooth
projective curves of genus g > 3. We may hence solve the following two exercises here
recalled as propositions:

Proposition 6.3 The class of Dy_y and E(1) in Pic(M,;) ® Q are given by:

Dg—1] = -;-92(9 = 1)(3g — D)As. (6.37)

and
[BOY) = 59+ 1)(g + D3 +3g + 2 (6.39)

-Proof.

"~ We may assume to work on a family parametrized by a smooth curve S. One has:

[Dg—l] = WmA1,2(ct(Jg—2w1r - 7'[J.IE)):
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Now:
e(J9 2wy — 1°E) = (1 + e2 (S 2wn )t + o TS 2w)t?) (1 — m7At),
so that:
a1 {(J9 2w, = m°E) = ¢ (J9 2wy) — 72
and

ea(J7 2wy — T°E) = ea(J %wy) — ey (S 2w A

Applying the fundarnentsl exact sequence (5.17) one may easily get:

e (TR = %(k + 1)k + Des (wn), (6.39)
and B 1
eofJFwy) = 7k + 1)k +2)(3k + 5)er (wne)®. (6.40)
Hence: 1
ca{(J 2w, —m'E) = -2—g(g — ey (wx) — A
while:
1 i .
o Jo g — T°E) = 5199 —2)(g - 1)(3g ~ )er{wn)? — 599 — Da(wn)m™2.
‘We have all the needing data to plug in Porteous’ formula:
Dy =
19(g — Ves(we) =7 A  F29lg — 2){g — 1)(3g — Ler{wn)? ~ 29(g — Ver(we)w™2
1 7‘]'* =
1 39(g— Der(wa) = 7"

= (59200 — D%ex(n)? - 399 = Derfe)"+

— 51900 - Do - D39 - D)) =
= (59"~ 556" = 30"+ 159) Ml wa) — 5900 = Dme(caln)N).
(6.41)

As a matter of the first summand of {(6.41) we recall the definition of the tautolo-
gical class &y = m.(c1(wr)?). As for the second summand, we apply the projection
formula (4.4):

Moy (wr)T*A) = meaa(we) - A= (29 — 2)A.



6.4. WORKING WITH FAMILIES OF CURVES 123

We hence got, from (6.41):
1 1 1 i
D._ =(_4__3__2 _) — ofe — 112\
Dy1] = (58" — ;59" — 39" + 159} 1 — 9lg — 1)*A
Using the relation x; = 12X one finally gets:

[Dg—a] = %gz(g = 1)(8g —~ Az

as required.
For the class E(1) we argue exactly in the same way (skipping some details in the
easy computations):

[B(1)] = mu(Ag (s (JOwy — 7*E)) = w.[ea( JPwy — 7*E)).

Now:
eo{ Sy — TE) = e(Jo%wy) — oy (Jowy)m* A

Applying the formulas (6.39) and (6.40) one gets:

1 i
[BL)] = m;9(g + D){g +2)(3g + B)es (wr)* — S{g + 1)(g + Dex(wn)n*N]
Performing all the computations, using the relation x; = 12 one finally gets:
1
[B(W] = 5(g+ (g +2)(3g" + 3 + 2)A.
and the proof is now complete.

QED

We are still left to deal with the divisor w#(2)} of curves possessing a Weierstrass
point with weight greater than or equal to 2. Such a locus has codimension 1 in the
moduli space M (the reason being always the same: the general curve of genus g has
only normal Weierstrass points).

The quickest way to define a scheme structure on such a set is to consider, for
each smooth curve over §, 7 : ¥—— 8, (whose general fiber is not hyperelliptic), the
following map (already studied i [12], [53] and [54]):
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g
E = J Y,

N\

T” (6.42)

S _
The closed subscheme Z(D?"!) represents in ¥ the locus of all the Weierstrass
points on fibers of .

Exercise 6.8 Compute the class of Z(D91) in 41(X).

To study the locus wt(2) we shall take the top exterior product of the map (6.42},
getting:

g1
ANTE ADIT AT Y

x
|
S

The map W, = AD97! is said to be the relative wronskian. It may be identified with
a section of the line bundle AY(J9 " Yw,) @ (AT E)Y.

Exercise 6.9 1. Show that the bundle A9(J9Lw,) @ (A97*E)Y is isomorphic to the
bundle w,®25" @ (* A g )Y,
2. If C—Spec(C) is a trivial family (a single curve), show that W, is the usnal wron-
glg+)
skian section of the bundle wg 2, where we is the canonical bundle.
Trom the above exercise, it turns out that the locus of the Weierstrass points on
fibers of 7 : £—.5 are described by the scheme Z(W,) where W, € H(X, ww‘g’witﬂ@
(m* Af mawn )V

Exercise 6.10 Show that the locus of the Weierstrass points on fibers of 7 having weight
at least 2 is scheme theoretically described by Z{DW, ), where

g
DW,_ e H° (%, Jl (w,@“*’i”) ® (x* /\mwfr)v) .
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By using exercise 6.10, we may hence define, for g > 4:
wit(2) = w(Z(DW,)).

Because the general curve of genus g has only normal Weierstrass points, DW is a
regular section of the rank 2 vector bundle

JL (w,,®ﬂ%l) ® (z* /g\mwﬂ-)“'.
We may hence prove the following theorem, due to Ponza ([72],[35]):
Theorem 6.2 The class of wt(2) in Pic(M,) ® Q is given by:
[wt(2)] = (3¢* + 45° + 99° + 69 + 2)A.
Proof.

To compute the class of wt(2), [wi(2)} in A*(M,), it suffices to compute it on the
base of a 1-parameter (proper, flat} family m : ¥—.5 of smooth curves of genus g.
One has just to push down on A(S), via 7, the top Chern class of the rank 2 vector

bundle J! w5 & (m* AS w.w,r)"). ‘We have, hence, using standard properties of

Chern classes:

T [Z(DW?F)]

I

(1) g
e Co [J,fw,Q 7 ® ((W*/\w*wﬂ)v)] =
)
= mep(Jiw,® P N\ Tatr),

where the “difference” is taken in the Grothendieck group of coherent sheaves on
%/5. One has:

g
[wE(2)] = mocp( T2 @ D — 2% A atry) =
= m [@(Jiwﬂ-em#l) - cl(J#w,Pm#l)] A =

_ m{lg(g; 1) +1] 9(9;1)

crfen)? — lolg + 1) + Tr*Aey (w,,)} ,
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where the last equality is gotten by applying the fundamental exact sequence to the
pbundle w,® 72 forn =2 and n = 1, and taking the Chern classes. Now, by using
the push-pull formula and simplifying all the expressions involved:

1
[wt(2)] = Zg(g3 +2¢% 4 3g + 2)ky = 2(g° — L)\ (6.43)
Using the relation s, = 12X one gets the desired result.

QED

As the reader may easily guess there is some relations between the divisors ,_;,
E(1) and wt(2), clarified at the level of divisors classes in [72].
By direct computation it may in fact proven the following:

Proposition 6.4 Forg > 4
[wt(2)] = [Bg—1] + {B(1)).

If g = 3 then Z(D) is the locus of hyperelliptic points, and the above formula must be
modified as:
m.[Z(DW.)] = 16[Hs] + [E(L)].

where [Ha) is the class of the hyperelliptic locus.
Actually, for g > 4, in [34] it is proven that wt(2) is the scheme theoretical union
of E(1) and Dy_;. This turns out to be useful for computational purposes, see {34].

Exercise 6.11 ([35], Proposition 4.9) Let 7 : X—5 be a general smooth curve of genus
g = 4, such that dim(S) > 2. For g > 4 it has been proven in [35] that:

wit(3) = n(Z(D*Wo)),

has the expected codimension in 5. Compute the class of w(3) in A2(M).

(Solution:

[wt(3)] = %g(g+ (g +g+2)(g°+g+4)m+

— 1Pgg+ 1) +g+3)+ (¢ + g+ 2 +g+ 9] M
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6.4.5 Concluding remarks

What we have basically done, until now, is to compute the classes of some natural
loci of the moduli space in the Chow group A!(M,). With the class of wt(3), see
exercise 6.11, we also got a Chow class in A2(M,) for g > 4. A natural problem arise.
How to compute the classes of such loci in the Deligne-Mumford compactification of
M,7 As a matter of the divisors classes Iy and F(1) this problem has been solved
by Diaz in [13] and [12], respectively. To this purpose they heavily use the theory of
the compactified Hurwitz schemes developed by Harris and Mumford ([44], see also
(13] p. 22 and [12] p. 329). We give a brief account of such a theory in Sect. 7.1.
The proof by Diaz and Cukierman are very long and they probably would need a full
course to study them in all the details. The results they find are:

Bo] = 59%9— 13— DA~ 39(g — D2+ D+

1 ,
- 9" +g-49) X ilg—i) (6.44)
1<i<fg/2]

and
BD] = 50+ D{o+2)(30" +3g+2)A~ Zalg+1)(s+ 2)éo +

- S+ D@+ Y g— ik (6.45)
1=i<[g/2]

However, we think it is important to see at least one example of explicit computa-
tion of a class in A*(M,). Fortunately enough, it is very cheap to compute the class
of the closure of wt(2) in M,. This has been shown in [34], by using the absolutely
standard techniques we learned in this chapter. Hence, next chapter will be devoted
to explain this example providing all the details which in a research paper must be
referred to the existing literature. The interesting thing is that, as the reader may
easily check (after computing it} the class of the closure of wit(2) in My, is the sum
of the expressions found by Diaz (6.44) and Cukierman (6.45). In a sense, while it
seems to be hard to get their results, the sum of them is not.






Chapter 7

The Divisor Class of Special
Weierstrass Points

7.1 A Review about the Hurwitz Schemes.

Let S be, as usual, an algebraic scheme over C. By a 2g + n pointed smooth rational
curve we mean the data (compare with the appendix 3.3) (D—5, P, ..., Poygyn)
where D—8 is a flat proper family of rational curves together with an ordered
(29 + n)-tuple of disjoint sections, P, ..., Pagtn. Consider the functor:

Ha : (Sch/C) ~ (Sets), (7.1)
associating to each scheme S an isomorphism classes of maps:

X —D

s

such that for each s € S, X is a curve of genus g which is a branched n-fold covering of
D, = P* with branch points Pi(s), ..., Pagn(s) and totally ramified at P, (s) (notice
that such requirements agree with the Hurwitz formula for computing the degree
of the ramification divisor in X,). Two such families, say (X,D,5, P, .., Pogin)
and (X', D,8,Q1,...,Q2g:n) are said to be isomorphic if and only if there is an
S-isomorphism between D and I, sending the sections F;'s into the sections ;s
compatibly with an S-isomorphism between X and ¥’ such that the ramification

(72)

129
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points of X—D are sent to the ramification points of £——D¥. It may be shown
that the functor (7.1) is coarsely represented by a C-scheme Hy,, said to be the Hurwitz
scheme, whose points are isomorphism classes of n-fold covering of a curve of genus g
over P! branched at 2g-+n ordered points with a total ramification point. The scheme
H,, is not complete, for the simple reason that the moduli space of smooth curves M,
is not. The way to compactify it has been elaborated in [44]. As a matter of fact
it is possible to get a natural compactification of H,, Hn, by adding the so-called
admissible coverings. We state formally the definition for the reader’s convenience.

Definition 7.1 Let S be o C-scheme of finite type. A n-fold admissible covering over
S is the set of data described below:

i) A stable 2g -+ n-pointed curve (D—8, P, Py, ..., Pagyn)-

ii) A proper flot family = : X—S5 such that each scheme theoretical fiber s o
reduced connected curve with at most ordinary double points'.

i) A morphism f : £— D which factors n : X—5, which is elmost everywhere
étale. More precisely it is simply branched elong sections Q; (2 <i < 29 +n)}
and totally branched along o section Q1 : S—X over the sections F; : §—D.
Moreover:

iy} for each s € S and any N € X, projecting onto a node M of D;, X, has an
ordinary double point. In a neighbourhood of N the family may be described as
Sollows:

Xy:ey=a, a€Ogx, andzygeneratemy y
D:uww=2a" andu,v generate fip, nm
T:u=2z",v=y" for somer.

Exercise 7.1 Let P be apoint on a curve C of genus g and let n < g. Onesaysthat n is the
first Weierstrass non gap at P if and only if h%(C, Oc{n—1)P) = 1 and k%(C, Oc(nP)) = 2.
In such a case P is said to be a Weierstrass point having n as a first non gap.

! Warning: we are not requiring that the fibers of = are stable curves. They may well have
smooth rational components intersecting the rest of the curve in only one point.
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i) Prove that if P is a WP having n as first non gap then (C, P) defines a point of d,,.
In other words: there exists a n-fold branched covering § : C—P* having P as a
total ramification point.

i1} Let I, be the closure in M, of all the points [C] such that C has a Weierstrass point
whose first non gap is » (see [14]). Can you guess the codimension of Dy, inside M,?

7.2 Computations in the Space of Stable Curves

7.2.1 A degeneration problem

The purpose of this subsection is to prove the following theorem:
Theorem 7.1 Let g > 3 and let Cy = X Up Y such that:
1. X s a rational nodal érreducible curve. Let N be its non separating node.

2. Y is o connected smooth curve of genus ¢ — 1 intersecting X transversally ot
the point P which is not o Weiersirass point for Y.

Then N is not a limit of a Weierstrass point of weight ot least 2 on nearby smooth
curves.
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Xox. X
X
P
Yy
O
3

Some remarks are in order. At first, notice that a Weierstrass point of weight
at least 2 on a curve C is either of type g — 1, i.e. its first non gap is ¢ — 1, or of
type g+ 1, i.e. there exists a non-zero holomorphic differential ¢ vanishing at P with
multiplicity at least g + 1 {or, in other words (o) > (g + 1)P}. The former case has
been studied by Diaz, by using the theory of admissible covers, introduced by Harris
and Murmford in [44] (Cf. Section 7.1).

Theorem 7.2 (Diaz, see [13]) Suppose that Cy = X Up Y and that X s @ rational
nodal curve tntersecting transversally an irreducible smooth curve Y of genus g — 1
at a point P. Assume that P is not a Weierstrass point for Y. Then the node N (see
picture) cannot be a limit of @ Weierstrass point of type g — 1.

Proof.

Suppose, by contradiction, that there exists a 1-parameter family of smooth curves of
genus g, X—Spec(C[[T]]), such that the generic fiber is geometrically smooth and
possesses & Weierstrass point P, of type g—1. This means that the generic fiber may
be exhibited as a (g — 1)-sheeted branched covering of P! with a total ramification
point F,. By the theory of the compactification of the Hurwitz schemes ([44], p. 56
and ff, [13] p. 22-23}, such a covering must degenerate to an admissible covering, that
we may assume having a base with two rational components, and a total ramification
point F on the component X, the normalization of X. Let us denote the reducible
rational base as D = D, U D,. First of all we claim that no both components X and
Y may cover Ds. In fact, if it were so, we should add some rational components that,
after a contraction, should give back the curve Cp with the node N and the node P,
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the intersection of X and Y. In fact, any rational curve connecting Px and Py (the
preimage of the point P of the partial normalization of Cp at P) must be part of a
(g — 1)-sheeted covering of D;. The other sheets would necessarily connect points of
X and Y other than Px and Py. But then, blowing down the resulting curve, we
would have extra singularities. This is not possible.

The second more serious possibility is the one corresponding to the situation in
which X covers I, and Y cover Dy. We may construct an admissible covering as
follows. Let @ and Q; be the points of X that when identified give rise to the node
N. Then observe that there exists a function fz : X—P" such that the principal
divisor defined by fg, (Fz), is given by:

(f2)=(g= DR —-Q1—-Q~(g—3)P.

Now, to get the identification of ¢}, and s, we must connect these two points by
means of a rational curve which covers at least 2 : 1 the P! labelled by D,. Hence,
the curve Y must cover P! with at most g — 3 sheets and must totally ramify at P,
as in the picture below.

at least (g-2)-fold

(g-1>-fold led C
total ‘}'{ ramification
ramification

poin

aov

extra
rational
component

0, \}

Dy

But this contradicts the generality of the curve X UY, since ¥ would be a curve
with a (very) special Weierstrass point. QED

Omnce established the above result by Diaz, we are left to prove that the non
separating node of a stable curve like in Fig. 3.1 cannot be limit of a WP of type g-+1.
‘We shall get such a result by relying on a lemma on families of curves degenerating to
a cuspidal curve which seems to be interesting in its own. From now on the exposition
will be adherent to the content of section 3 of ([34]).
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Lemma 7.1 Suppose that w : ¥—.5 is a flat proper family of curves of arithmetic
genus g > 3 parametrized by some smooth scheme of finite type over Spec(C). Suppose
that the general curve of the family is smooth and that the special fiber X is a curve
having o cusp at a point Fy. Let n : Fo— %o be the normalization of %y and let
Q = n~Y(FRy). If there is a section of WP’s having weight at least 2 degenerating to
the cusp By, then @ is a Weierstrass point for X,.

Proof.

Let w, be the relative dualizing sheaf of the family. Then, by hypothesis, there is
a section g, such that (o) > (g + 1)P,. This section extends to a section ¢ on all
the family, such that (o) = (g + 1)Fs. The induced oy is a section of the dualizing
sheaf of the curve ¥y. Let n*¢p be the pull-back of oy to %o. It is a section of
the sheaf n*wc,, which is isomorphic, by adjunction theory, to K¢ (2Q), K4 being

the canonical sheaf of £y. Hence oy induces a section 6o € H° (%g, ) such that
(G0) = (g — 1)@, which is the same as claiming that @ is a WP for xo

QED

Lemma 7.2 Suppose that Co = X Up Y and that X is a rational nodal curve in-
tersecting transversally an irreducible smooth curve Y of genus g — 1 at o point Fp.
Assume that Py is not a Weierstrass point for Y. Then the node N (see Fig. 3.1} is
not a limit of a WP of type g+ 1.

Proof.

Suppose that there is a family x : ¥—S parametrized by Spec(C[[T]]), ¥ a smooth
surface, such that X, is geometrically smooth, and that there is a WP of type g+ 1,
P,, such that Py € {F,}. We can assume, up to replacing the special fiber by an
equivalent semistable model, that P, is C((T))-rational. Now we play with our family
as follows. Let us consider the sheaf w,(—2Y"). One has wﬁ(—2Y)|x = Wy, -

7 4

Therefore:
Tu[wr (—2Y)] ® C(0) = wufwr (—2Y)| ® C = H(X Uy, wWr(—2Y )jyiv )
‘We now claim that:

HY(X UY,we(—2Y ),y ) = HY Y, wy(2P)).
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In fact R°(X UY,wz(—2Y)),,,) = g- Moreover the inclusion ¥ — X UY induces a
natural restriction map:

P+ HYX UY,wn(=2Y )0 ) —H (Y, w0y (2P)), (7.3)
defined by ¢ = 0|, The map p is injective. In fact, suppose that:
o€ H(X UY,we(—2Y )| xip)s

identically vanishes on V), i.e.:
O‘]y = (.

Hence o(P) = 0, and since deg{c|,) = 0, it follows that o), = 0, i.e. that o = (.
This proves injectivity. By dimension reasons, (7.3) is actually an isomorphism.

Now the sheaf Tatdy (—2Y) embeds the family
7 : £—8 in P(muwn(—2Y)), i.e. we have the following diagram:

% MP(R,(%(—ZY)))

\ S/ (7.4)

The generic fiber is a geometrically smooth curve of genus g while the special fiber
is a cuspidal curve having a cusp in F, with the rational nodal component of C
contracted in Fy by the map ¢y (,(-2vy). In fact such a map has degree (0 when
restricted to X. The generic fiber has a WP P, of type g + 1 degenerating onto
the cusp P (because it degenerated onto X in the initial family and X has been
contracted in the cusp). But then Fp would be a Weierstrass point by Lemma 7.1,
contradicting the hypothesis. Hence the node of X is not a limit of a Weierstrass
point of type g+ 1.

QED

Patching together Theorem 7.2 and Lemma 7.2 we have proven Theorem 7.1

We are now interested to an intersection theoretical consequence of 7.1.

Let us consider in M, a family lying entirely in the divisor A;, whose general
point corresponds to a stable curve consisting of an elliptic curve E intersecting
transversally a smooth curve X of genus ¢ — 1 at a point P which is not a WP for
X. The one parameter family one wants to construct is gotten by fixing the curve
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of genus g — 1 and the point of intersection on it and varying the j-invariant of the
elliptic curve (for a rigorous and detailed construction of such a family see [HM], p.
83). It is a family of curves parametrized by the j-line (hence the parameter space is
complete). According to Diaz [13], we denote it by F». We claim that:

Fo - [wi(@)] =0, (7.5)

in A'(M,). In fact if E Up X is a stable curve where E is elliptic, with X a geperal
curve of genus g — 1, we know, by a rough dimension count, that X UY is not in the
closure of wt(2) in M, . Otherwise one may find & family of curves 7 : ¥—5 with
%, smooth and 2 WP P, € X, degenerating to EUp X. The only possibility would
be that P, degenerated to the node N of E Up X, when E is rational nodal. But
Theorem 7.1 says us that such a curve cannot be in the closure of the locus of curves
having a. WP of weight at least 2. Hence:

[wi(2)] - F2 = 0. (7.6)

Example 7.1 We want to show the rigorous construction of the family . This construction?
will turn out to be useful later on, in order to determine some intersection theoretical mum-
bers. Let By, F> € HO(P?, OIP2(3)) two irreducible forms of degree 3. Their zero scheme
correspond to two smooth elliptic curves. We shall make a pencil out of them by considering
the family of cubic forms:

Fi)\..u] = A+ pFy.

Let G; = Z(F;) and Cjy, ) = Z(Fjp ). Consider the rational map:
¢:Pr. .. P (7.7)

sending & general point P of P? in the unique [}, z] parametrizing the unique cubic of the
pencil passing through P. Clearly, such a map is not defined in the ¢ intersection points
{P,.... P} e CiNCa Let e S—F2 be the blow-up of P? in the 9 points Pp,. .., P Let
E,, ..., Eg be the nine erceptional divisors corresponding to P, ..., Po. The composition
of the map ¢ with e yields a family:

é: 8—P,

2] learned such a construction of the family Fz, from C. Faber during his Levico’s Lectures on
intersection theory over moduli space of curves.
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of elliptic curves together with 9 sections Ei, ..., Ey. Pick one of them, say E1. Notice that
the fiber of ¢ over a point [A, u] of P? is the stnct transform in § of the cubic Z(AF) + pl%),
whose class will be denoted by F. Of course, recelling that ([9], p. 17):

Pic(8) = Pic(P*) @ Z|EY) @ . . . ® Z[Fy),

it turns out that P = 3L, L being the first Chern class of Opz(1).

Let now C be a general curve of genus g — 1 and let @ € C be a general point of it.
Construct the surface 7 = P! x C and dencte by 51 the section P! x {Q}. Construct a
surface X by glueing 7 and & along the sections 5 and E respectively. What we get is
a family X—P" of stable curves whose general fiber is an elliptic curve glued to a fixed
curve C of genus g — 1 at a point @ € C, in such a way that the intersection is transversal.

7.2.2 A useful theorem by Cukierman

The purpose of this section is to prove the following important theorem proven by
Cukierman, which is especially important for our purposes.

Theorem 7.3 Letw : £—5 be a flat proper family of stable curves, of genus g > 3,
with X a smooth surface, S = Spec{C[[T]]), smooth generic fiber and special fiber:

Xp=XUpY,

o general member of A; (so, in particular, P is not o Weiersiress point neither for
X nor for Y ). Then one has:

2w = (70 )+ (7 e+ (% . a9

For proving this fundamental theorem we need few steps. We recall, for the reader
convenience, an algebraic result. If ¢ : M— NV is a2 morphism of A-modules, with i
a torsion module and N a free A-module (and hence torsion-free), then ¢ is the zero
morphism. In fact, if ¢ were not the zero morphism, there would exists a m # 0,7 such
that ¢(m) # 0. But since M is a torsion module, there exists at least a 0 # a € A
such that a-m =0, i.e. ¢(a-m) = ap(m) = 0. Contradiction. We shall need this
(easy) algebraic result in the following:
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Proposition 7.1 Let w, be the relative dualizing sheaf of the family . In the hypo-
theses specified above, consider the restriction map:

i : Tu(wn(—k X)) —malutn (=K X))y ) = HOY, wy (—k + 1)P).
Then pr is onto for all & > 0.
Proof.

Let us consider the exact sequence of sheaves of Og-modules:
0— 05 (-Y)}—0x—0r—0,

and tensor it by wr(—kY). Because w;(—kX) is an invertible sheaf of O¢-modules
we may safely tensor the above exact sequence by it, to get the new exact sequence:

O (kX — YV)—wn(—kX)—w, (—k X)), —0. (7.9)

We now apply to the exact sequence (7.9) the functor 7., passing to the long exact
cohomology sequence:

O T (=X — V) m(wn(—kX)}—mywn (kX)) — 6—
— Rt (wr (kX = ¥))— R (wn (—kX))—0 {7.10)

The reason of the last zero is clear: it is matter of a first cohomology group of a sheaf
supported at 2 point. We contend that the homomorphism & is zero. In fact the sheaf
Ta(wz(—kX)), ) is torsion (the stalk at the generic point is 0), and we are left to prove
that the sheaf R'm.[w.(—kX — V)] is free.

It is sufficient to show, by the theorem of Grauert ([42], Corollary 12.9), that the
dimension of the k(b)-vector-spaces:

h(b) = 1 (Xp, we(—kX — Yy, ) = dimuy R mfuon(—kX - V)] @ k()

is constant, for all b € S, But S = Spec(C[[T]]) kas only 2 points: the generic point
1 and the closed point 0, the latter corresponding to the maximal ideal (T"). Hence
we have to compute h{h) only for these two points. First of all we have:

hln) = B (Eg, (KX — ¥)yy, ). (7.11)
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But [%,] - [-kX — V] = 0 (notice: [—kX — Y] is a Cartier divisor, so that the
above intersection makes sense) because they are the classes of two fibers of the map
7 : £—5 (see [9], Prop. 1.8, p. 8). Hence, by the adjunction formula (see [42], p.
361), it follows that {7.11) may be written as:

hln) = B (%, wriy,) = KO(Zn, O,) = 1.
It remains to check the dimensicn at the special fiber. One has:
h{0) = R (%o, wr(—kX - Yix,)s (7.12)

Now, for the same reasons recalled above, we have [-kX — Y][Xy] = 0 and, by
adjunction formula, we get again, from (7.12):

h(0) = A (o, wayy, ) = 1

where the last equality comes from well known properties of the relative dualizing
sheaf (e.g. the Riemann-Roch theorem for stable curve, see e.g. [8], p. 677). So
we have proven that Rlm[w,(—kX — Y)] is a free sheaf, so that § is the zero ho-
momorphism. By the exact sequence (7.10), it follows that the map g is onto as
stated.

QED

The next step consists in finding a useful Og-basis of m,w, in order to compute
explicitly the zero-scheme associated to the relative wronskian W, of the family. Here
is how we may construct a convenient basis, following [12]. Consider the commutative
diagram: e
Ty (wr(—kX)) &—— mawy

i l lpo

H(Y,wy((—k + I)P))%TH“(KW(P)) (7.13)

and choose @ € H(Y, wy(—& + 1)P) such that ap(P) 5 0, foreach 1 < & < gy.
Let {ox} be a system of preimages of @& via pr. Then (%) € H(Y,wy(P)) is a
basis of H°(Y,wy(P)). Since, by assumption, P is not a Weierstrass point for Y it
follows that such a basis has 1,2,..., gy as venishing sequence at P. Such a basis
may be lifted to mw, via the surjection pg, giving (wi,...,wy, ). The idea consists
in extending such a system of sections to a basis of all of w.w,. To achieve this goal,
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choose an arbitrary basis {@gy41,---, D} of HU(X,wx(P)). Let w; € mywy such that
polu;) =@ for gv + 1 < i < g. Becanse of the isomorphism:

muwr ®k(0) = H'(Xo,wg,) = H'(X,wx(P)) © H(Y,wv(P)),

Since (wy,. . .,w,) so constructed projects onto a basis of T.w. ® k(0), it follows,
by Nakayama’s lemma that (wi,...,w,) is actually a basis of m.w;. This is the basis
we want to use to make wronskians computations. We are now in position to provide
the

Proof of Theorem 7.3.,

which consists in showing that, using the Og-basis for m,w. constructed above, the
order of vanishing of the wronskian W, along X is

1+24+...4gy.

Repeating the same construction for the component Y, one gets, similarly, that the
order of vanishing of the Wronskian W, along ¥ is 1+2+. ..+ gx. This would prove
the theorem, since the order of vanishing of the wronskian does not depend on the
particular basis chosen.

Let U € X be an open Zariski subset of X, trivializing wy, over Oy, such that
UNY =0, and UNX # 0. Suppose that wp is a generator of HY(U, w,) over Ox(U).
Omn such an open set, X is described by the equation T = 0, where I is the local
parameter of Spec(C[[T]]). Hence, by the very construction of the basis {wy,-..,w,)
above, it follows that:

wiy, = o, 1<k < gy (7.14)
Wly = $swn, gy +1Sk<yg (7.15)
for some ¢y € Ox(U). Then we have that:

o = W(td1, % ..., 19 dgy, Ggpi1s ..., Gg) =
= t(wzﬂ) 'W(¢la¢2a“',¢g)

To be done, we only need to prove that W (¢, ¢, ..., 0,) does not vanish along X.
But for each 1 € k £ gy, we have that ¢ruwp is exactly the restriction to U of the
element oy € HO(X,wa(—kY),) and ap, = @ € HY(X,wx(P)) does not vanish at
PeY. For gy + 1 < k < g, instead, druip = wy), and wyy, = Tk € H(X,wx (P)).

W
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Now, considering the natural inclusion:
Ho(Xsz(k+ l)P) - HO(X: wX(gY + l)P)a
it follows that:
(C!l[x, .. ,ag,,lx,wg,,.z.l, . ,E.J—g),

is a basis of H(Y,wy{gy + 1)P). Hence, its wronskian,
W(¢1: .. ':¢g):

does not vanish at T' = 0.
Argning in the same way for the component Y, one finally gets equality (7.8).

QED

7.2.3 The closure of wi(2) in M,

Let now 7 : ¥— .5 be a family of stable curves such that the general curve is smooth
and non hyperelliptic. Let A be the locus of S corresponding to the singular fibers.
Over the base ' = 5\ {A} we have a family of smooth curves whose total space is
X\ m~1(A). For each stable curve over S, m : ¥— 5, set, by definition, wi{2)(S) =
wt(2)(S").

Let us write [wt(2)] as:

[wt(2)} = ad — bpbp ~ bydy — ... — b[g]é[%], (7.16)

the equality holding in A'(M,) or, which is the same, in the Picard group of the
moduli functor Pic(M,) ® Q. Thinking our problem in the moduli functor turns
out to be more useful. In fact, equality (7.16) thought in the moduli functor, means
that it may be evaluated on test families. For instance, if one wanted to compute
the coefficient a, it would be sufficient to consider a 1-parameter family 7 : ¥—5
of smooth curves. In this case, degs(d;} = 0 for each 0 < i < [g/2], because the
family has not singular fibers! Hence, on a family 7 : ¥—S of smooth curves, the
equality (7.16) would transiate as:

[wt(2)]s = [wt(2)(S)] = aX.
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As it should be clear, our aim is to explicitly determine a, bo, b1, - - -, bjgs2- The value
of the coefficient a has been already computed in section 6.4.4 (Theorem 6.2) and it
is given by:
a=3g"+4¢°+ 99> + 69+ 2.

It remains to evaluate by, ..., b9, The strategy consists in computing first all the
coefficients by, ba, ... up to bjgz) (i.e. not by). To do this we use the previous remark
and evaluate expression (7.16) on germs of 1-parameter families of stable curves with
smooth generic fiber and a (only one) reducible special fiber of type ¢. In this way we
kill all the contributions coming from the coefficients of 4;'s, for j ## i. At the very
hand we shall fill the resulting numbers in the formula (7.16).

To compute the coefficients b; (1 < i < [g/2]) one at a time, according to the
suggested strategy, we shall heavily rely on the theorem 7.3 by Cukierman. We shall
briefly recall it here, for the reader’s convenience. Let 7 : £— 5 be a stable curve
over § = Spec(C{[T]]). Suppose that the geometric generic fiber of the family, Xz,
is smooth and non hyperelliptic and that X,, the special fiber, is a stable curve of
genus g that is the union of an irreducible smooth curve X of genus £ which intersects
transversally at a point P an irreducible smooth curve Y of genus g —i. Assume that
P is not a Weierstrass point neither for X nor for Y. Then, by theorem 7.3 we have
that:

Z(Wz) = Z(W, )+ aX + 5Y,

% %,
where, for notational convenience, we set:

o= (g—;'+1) and = (z—iz-l)

having set gx = ¢ and gy = g — 4. Notice that W, is a section of the bundle
w B @ {(m* AY mutw )Y (and here we are using the fact that we are able to define
the Weierstrass divisor for the family of stable curve. Also we are going to use the
fact that we are able to take jets of such a bundle). Then W, induces a section,
denoted in the same way by abuse of notation, of the bundle:

g
w5 ® Ox(—aX — gY)® " A\E".

The aim, now, is to compute w.{[Z(DW,)]), where:

" g
DW e H° (x, J: (w,,@"zi.’) ® Ox(—aX — fY) @ 1 /\IEV) .
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Clearly, because W, does not vanish on the special fiber, the same holds for the section
DW, (in fact, DW, locally looks like a pair (w,w") where w is a local equation for

W, and w' is its derivative (in the sense of Section 5.2) along the fibers. We use now
the exact sequence 5.17 for n = 1 and for £ = w,.

. g
0-——>w,,®(d’ﬁi}'+l) (—aX - fY)@n* AEY—
g
—J (w,,a"LH* L ) (—aX - BY) @ n* \E"—
g
_)wﬂg.‘iﬂ_l;'l (""O{X _ ﬁY) ® * /\IEV—>O
so that:
. g
e J2 (w,r’%ﬂ @ Og(~aX - fY)®n" /\E")) =

[CESI e

2
- [2(-33-;—1).31(%) —aX - 8Y — ﬂ] =

_ glg+1) (g(9+ 1) +1) er(wn) +

2 2
(aX + BY)glg + 1) + es(wn) + 2(aX + BY)r"A+
l9(g+ 1) + Lei(wn)m™ A + (X + BY )2 + (x*N)2.

|

By pushing down the above equality via 7. one has:
9
s [c.z(J; (w,,""’z*—“ ®Og(—aX — fY) @7 /\IE:") )] =
_gle+1) (9(9+1) +1) -
2 2
—(g(g+ 1) + Dfe(2 ~ 1) + 5(2(g ~ 5} + 1)) +
—2(g — 1)[g(g + 1) + 1A — &?6; — 5°8; + 2086, =

_[dflg+1)*  glg+1)
_[ a2

]51'5‘
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—{lg{g + 1) + (2 = 1) + B(2(g — 8) — 1)) +

+o® + 8% —2aB}6; — 2(9 - D[glg+ 1) + YA =
=[3¢"(g+1)*+6g(g+1) — 29(g — 1)(2g + 1) —2(g - )2 +
—{[g(g + )] (a(2i — 1) + B(2(g — £) = 1))+

e B —20ft (ga(g: D? 9(9;1))}&_

Performing é.ll_the computations, after replacing @ and 5, respectively, by their val-
ues (9_;"'1) and (‘;1), and by using the fundamental relation proven in section 6.1.4:

K1 =122 — &,
one finally gets:
[wi(2)(S)] = (3g" + 44° + 99° + 69 + 2)A — (¢° + 3¢° + 29 + 2)i{g — )6 (7.17)
‘We have hence proven that:

Proposition 7.2 In Pic(M,) ® Q the following eguality holds:

- 18]
[wi(2)] = (30* +49° + 99° + 6g + 2)A ~ bodo — (¢° + 30 +29+2) > _i(g—4)8; (7.18)

i=1

It remains only to compute the coefficient bp. To do this, we shall need the intersection
theoretical consequence (7.5) of theorem 7.1. We rewrite it here:

[wt(@)]- Fo=0. (7.5)

Now, as shown by a slightly different argument by Harris and Mumford, in [44], pp.
83-84, one has the following:

Lemma 7.3
Fo-A=1, Fo:-8=12, Fp-b=-1 and Fp-4;=0, for j> 1.

Proof.
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We want to evaluate the degrees of the divisors A and é; on the base of the family s,
X— P! constructed in the example 7.1. The reader is referred to such an example for
what concerns the notation here used. First of all we notice that the degree of §; for
i > 2 is zero. In fact there is obviously no fiber of /; having a node of type i > 2. For
computing deg(d;) we use the recipe explained in Section 6.1.3, formula (6.4). First
we normalize X along the nodal section, getting back the families 7 and S together
with the sections 5; and £;. Then we apply formula (6.4), so that:

/]P" 6 = ]IP’ (CI(N.S‘;/T) + C1(NE,/5)) =04+ E2=-1.
As a matter of deg(\) recall that:
A= ¢ (Tuwy).
But T, = (H*(C,Ke) ® Oc) @ qE*wg, s0 that, actually:
A= cl(é.wé).
We contend that fP’ Az =1. We shall get such a result by using the fact that:
Kig= 12A5 — 50‘;,

and by proving that fp 15 = 0 and that fp dog = 12. For simplicity we shall skip
the ¢ from the notation. First of all deg(6o) = 12, because there are 12 rational cubics
in the pencil A} + pFs = 0. As for x;, notice that:

Let us denote by F the class of the fber. We have:
alws)=-3L+T+2F=-F+Z+2F=F+Z=¢F,

where we set £ = F) +... + Ey and ¢*F = F' + I is the total transform of the fiber

of the rational map ¢ : P?- .- — P! (7.7), so that cy{w;)? = (¢'F-¢'F)=F-F=0

and therefore k1 = 0. This concludes the proof.

QED
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By the above computations it turns out that the relation:
a—12by+ b =0,

must hold. Since we already know the values of @ and b; in the expression of wi(2),
we are also able to compute by. One gets:

_ 1 _ 1 4 3 2

bo = g5la+b) =15 (30" +40° +99° + 69+ 2+
+ {®+387+20+2)(g— 1)) =
1 1
= 546" +60° +8¢° +69) = 2(g + 1)(2¢° + ¢+ 3),

‘We have hence proven the following:

Theorem 7.4 Let g > 3. In the Chow group A(M,), the Q-class [wt(2)] of the
locus wt(2) is given by:

—_— 1 -
wt(2)] = (3¢* +4¢° +9¢° + 6g+2)A — gg(g +1)(2¢° + g+ 3)do +

5]
—{g®+39° +29+2)>_i{g —i)é:. (7.19)

i=1

QED



Chapter 8

The Tautological Ring of M,

8.1 Generalities on R*(M,)

Let g > 2. The tautological ring of M, is by definition the subring of A*(M,) generated
over (¢ by the “tautological classes” x; defined in Section 6.4.1. &; = m.(c1(w,)*t),
where 7 : Cg— M, is the “universal” curve.

Here are some known results about B*(M,):

1

2.
3.
4

A € RY{(My);
The classes of many “geometrically defined” subvarieties of M, lie in R*(M,).
Mumford shows that x1,..., K,z generate the ring.

There are some relations. For instance x4_5 is not needed as generator for g > 4
(for proving it, the idea is to find 2 formulas for {H,]). For instance, if g = 4
one finds k? = 32x3/3. We shall get such a relation in an alternative way in
Section 8.4.2. Notice that for Vi > 1, one has s;[Hy} = 0 (e.g. #:1[H,] =0, by
pushing forward the class of hyperelliptic locus). One gets in this way a relation
in codimension g — 2 + 4.

. For small genus is known that R*(M,) = A*(M,). It is known for g < 5 in

characteristic 0 (¢ = 2 being proven by Mumford, g = 3,4 by Faber, [24]-[25],
and g = b by Izadi, [47]). However it does not seem possible that the Chow
ring of M, coincides with the tautological ring for g sufficiently large. For a
discussion of this, see [26).

147
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8.2 C. Faber’s Conjectural Description of the Tau-
tological Ring
What is going to follow is a conjectural description of the tautological ring R*(M,) due

to Carel Faber ([26]). We advise the reader to have a look to the exciting description
contained in [45].

1. R*(M,) is Gorenstein with socle in degree g — 2, Le.:
(a) R (M;)=0forj>g—2,
(b} R92(M,} = Q modulo the choice of an isomorphism.
(¢} There is a perfect pairing
R{My) x B2 (My)—RI72(M,) 2 Q.
2. K1,Ke,-- -, Klg/3) generate the ring with no relations in codim < [g/3].

3. The formula for the projection on the socle holds. To explain what does this
mean, one needs two ingredients.

{a) Set, by definition:

(29— 3+ K29 =11
(29— 1)!Hf=1(2dj F )l g—23

< Tdy+1Tdptl - - - Tdp+1 2=

for TF 1 dj =g—2(d; >0).
{b) A second definition for the symbol above:

< Td]-f—l‘rdg-{—l .. Tdk-l-l >= Z Kq'!
oES,

where ¢ is written as a product of distinct cycles acting on {1,...,k}
{including the 1-cycle): if o = oyerp. .. ¢y, then:

K = Kjoy|Kleg| « - - Klan|-
and for a cycle o we define:

o] :== 3" d..

pEC
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The relations between the two definitions of the same symbol is inspired by a
formula on M, taken from [78]:

_— —_— d1+1 a+1
D =< T T - Ta D= j_ L SRR el
oES, Mgn

for me d; = 3g — 3. In the above formula the 4; are the so-called gravitational des-
cendants, defined as follows. Consider the forgetful map mo : My ny1— M, gotten
forgetting the first marking, labelled by 0. Then the above maps come equipped with
n sections P, ..., P, (repeating the marking and stabilizing). if wy, is the relative

dualizing sheaf associated to mg, then Fjw,, = ;. See [78] for more details.

Example 8.1 For g =4 one has:

gt x _7-5-3-1 35
73N T 51312 3
On the other hand, using Witten formulas as in [Wi], one has:

< Ty >= 2.

< ToTa >= Kg + Kg,

so that we get the relation:

2
ﬁ:%m
In other words we have the equations:
(2g — 1) 2¢—-1
S 2T Rkt R = g — 2~ | g -1 e

For g = 5 we have:

< TpTz >= K3 = 21K3 = K1K2 + K3.

531
We also have:
< ToTaTs >>= 300Kz = K1K1K1 + 3K1K2 + 2K3,

and n§ = 2883 together with k3kz = 20k3. So, we get the relation :
£1(2062 — 288k5) = 0,

yielding the already known inequality:

li% = 7—:5‘.3.
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8.3 Evidences for the Faber’s Conjecture

1. Results by Harer ([41]} imply indeed that &i,-..,&[gs have no relations in
codimension < g/3.

9. Loocijenga, ([60]) proved that R (M) = 0 for j > g—2 and that dimR~2(M,) <
1.

Incidentally, notice that Looijenga’s result imply Diaz’s Theorem ( see [15]): if
Z € M, is a projective subvariety, then dimZ < g — 2. Moreover this hold now
true in every characteristic. In fact n‘{“l =0 on M, and &, is ample on 'ﬂ_/Ig. If
it existed a complete subvariety Z of M, of dimension g — 1, then [Z] £,
and then it should intersect the boundary of M, which contradicts the assump-
tion on the completeness of Z in M.

3. Soon after, see [26], C. Faber proved that actually the dimension of B~*(M,)
is 1. In fact, by the Looijenga result R9~2(M,) is generated by the class of the
hyperelliptic locns. So the result comes out as a consequence of the following:

Theorem 8.1 (Faber, [26]) The class Kg—p # 0 in A?72(M).
Hence dimQR9_2(Mg) =1

In particular the class of [H,) in A9~2(M,) is not zero. See [26] for a sketch of
the proof of Theorem 8.1

4. Because x,_g 7 0 in A9~2(M,), Faber checked that his conjecture is actually a
theorem for all g < 15. The reason for that is that he is able to express, by expli-
cit calculations, the tautological ring R*(M,) as the quotient of Q[k1, . .-, Kg—2]
by a certain ideal of relations to be described in the examples below. Such a
quotient ring turns out to be Gorenstein with socle in degree g — 2, and since
R9-2(M,) is non zero by Theorem 8.1, the surjection is in fact an isomorphism.

In the examples we shall treat below in genus 3 and 4, as exercises to practise
with our jets bundles techniques, we shall check that - for such genera - in fact the
following conjectural expression of the ideal of relations in R*{(M_), hold':

1The statement of this beautiful conjecture is almost literally copied from [26].
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Conjecture Let m : C;— M, be the “universal curve” over M,, and let C*¥ be the
k-fold fibered product of C; over M. Let I, be the ideal of relations in the polynomial
ring Q[k1, . - -, g—2] generated by the relations of the form:

pﬂ-(M - G4 (-7'-29—1 - P*E));

with j > g and M is a monomial in the K; = ¢;(pjw,) and Dy; and p: C¥~1— 3, is
the structural map, forgetting all the points. Then the quotient ring Q[xa, ..., £g-2]/I,
is Gorenstein with socle in degree g — 2; hence it is isomorphic to the tautological
ring R*(M,).

The beautiful underlying idea about the conjectural description of the ideal of
relations in B*(M,) consists in noticing that computing the Chow class of the empty
set may sometime give non trivial relations between the tautological classes. We
shall apply concretely such an idea (due to Faber), by using the fact that there is no
canonical divisor having degree bigger than 2¢g — 2I!!

8.4 Explicit Computation of the Tautological ring
forg=3and g=4

As a matter of example of the techniques involved in the previous section we want
to compute explicitly the tautological rings of M3 and My;. We use the theorem by
Looijenga (already known by Faber, see [24], [25]) to write:

R(Ms) = Qsi]/Is R*(My) = Qs ko] /L. (8.1)

so that our purpose is to find the ideal of the relations I3 and f;. We want to do
this directly, without using the formulae by Mumford and the Grothendieck Riemann
Roch formula.

8.4.1 The relation x; = 12X in genus 3

The situation is as usual:
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On X xg X lives the bundle p*E and the bundle J2K; @ J*(K; — 3A) which has
rapk 5. The locus of points in & xg A" for which the natural evaluation map (Cf.
formula (6.17)):

p'E—E (K & J' (K3 — 34)),

has rank strictly smaller than 3 {i.e. < 2} is empty.
In fact, such a locus should correspond to the set of curves of genus 3 possessing
a pair of points (P, @), such that, e.g. 3F + 2@} is a canonical divisor. Hence:

pulcs(J Ky & JHKz — 3A) — p'E)] = 0.

Now:

03(J2K1 & Jl(Kg - 3A) — ,O‘E) =

(146Kt + 11K + 6K413) - (14 (3K — 6A) +

+(2K2 — 9A K, + 942D (1 — p*At)ks, (8.2)
i.e.

cs(J2KG @ JH K, — 3A) — p'E) = 6K3 + 11K (3K, — 6A) +
+6K)(2KZ — OAK, + 9A%) — (11KZ + 2KZ — 9AK, + 9A% +
+6K: (3K, — 6A))p"A = 0.

Pushing down the above expression via p one gets:

0 = p.cs(JPK, @ JHKy — 3A) — pE) = 11 - 12k; — 66Ky + 12 - 41 +
— B5dr; — 54r; — (—36 — 36+ 18- 16 — 36 - 4)\ = 6xy — T2),

ie.
Ky = 12A,

as well known.

As for R*(M,), for not getting lost with too heavy computation, we shall assume
the relation x; = 12X e we shall instead concentrate on the relations in codimension
2.
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8.4.2 Relations in R?(M,)

We know that the locus in X x5 X (S being a surface) of poiats (P, Q) such that
aP +bQ is a canonical divisor is empty if ¢ +b =7 =2-4— 1. The equations of such
loci in the case (e, b) equal respectively to (5,2) and (4, 3) are given by:

es(J' (P K)® JHg*K — 5A) — p'E)  and (8-3)
cs(J3(p"K) @ JHg K — 4A) — p*E) (8.4)

respectively. Let us set Ky = p*K and K = ¢*K. Hence the relations we seek for
are:

pulca(J4 (K1) @ J (K2~ 54) — p'E) =0 {8.5)
pulca(JEL) ® JAK; — 4A) — p°E) = 0. (8.6)

They are the relations we want if they are independent as it will turn out to be. We
_compute (8.5) first. We have :

C4(J4K1 & Jl(Kz - 5&) - p"IE) =
4

- %% {01+ Ka8) (L + 2K58)(1 + BKG)(1 + 4Ky t)(1 + 5K t)-

(L4 (Kz = BAM)(1 + (2K, — BAM)((1 ~ p"At + p"Mat)} =
= 274K} + 675K K, + 170K K; +
— 2250K3A —127T5K7 KA + +2125K7A% +
+ (—225K3 — 255K 7Ky + 850K A + 225K Ko A — 375K 1 A%)p" A+
+ (85KZ + 45K Ko + 2K3 — 150K, A — 15K, A + 25A%)p" A,

Pushing down both sides via p. one gets (recalling the basic formularium of Prop.
5.2):

0 = paca(JK, @ JY (K, — 5A) ~ p°E) = 1600k + 17062 — 260k A1 + 4800, (8.7)
We compute now (8.6). One has, at first:
C4(J3K1 & Jz(Kg - 4&) - ,O*IE) =

2 We shall not consider Az because it vanishes on a smooth surface.
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4
%':F [(1+ Kat) (1 + 2Kat)(1 + 3Ki£)(1 + 4K:t)-

(1 + (Ko — 4A)) (1 + (2K, — 4AY)(1 + (3K — 4A)t) -
(1— X+ Nt} =

= 24K? + 300K3 K, + 385K7KZ + 60K K32 +

— B00K?A — 1680K7 KA +

— 440K K2A + 1680K A% 4 960K Ko A — 640K, A% +

+ (—50K?2 - 210K2K, — 110K K7 — 6K3 + 420K A +

+ 480K KA + 44KEN — 480K A% — 96K AR + 64A%)p* A +

+ (35K2 + 60K Ky + 11KZ — 120K1A — 48K A + 48A%)p" ).

Pushing down both sides via p. one gets:

0 = puca( 3K © JH(Ky — 4A) — p"E) = —3840k; + 385k — 336K14 + 864

We put together (8.7) and (8.8) using the relation x; = 12\. One has:

3

{4;45-n§ + 480); = 1600k,
357&% + 864N, = 3840k,

with a5

3
357 864
Solving the linear system (8.9) with respect to 7 and Ay one gets:

32
K.% = -'?THQ

1
AQ = Eﬁz

=—43200£0 (1)

Moreover, Az can be also expressed as

as well known by [65].

(8.8)

(8.9)

(8.10)
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Hence we may conclude that:
R (M) = Qfra)/(5])

and that:
R (M) = Q[ra)/(5])
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